Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, Sivachenko A, Thompson DA, Wysoker A, Fennell T, Gnirke A, Pochet N, Regev A, Levin JZ (2013) Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods 10:623–629. https://doi.org/10.1038/nmeth.2483
Article
CAS
PubMed
PubMed Central
Google Scholar
Alves G, Muller B, Herlofson K, HogenEsch I, Telstad W, Aarsland D, Tysnes O-B, Larsen JP, for the Norwegian ParkWest study group (2009) Incidence of Parkinson’s disease in Norway: the Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 80:851–857. https://doi.org/10.1136/jnnp.2008.168211
Article
CAS
PubMed
Google Scholar
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at:http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Arneson D, Zhang Y, Yang X, Narayanan M (2018) Shared mechanisms among neurodegenerative diseases: from genetic factors to gene networks. J Genet 97:795–806
Article
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauer M (2007) RNA in forensic science. Forensic Sci Int Genet 1:69–74. https://doi.org/10.1016/j.fsigen.2006.11.002
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Article
CAS
PubMed
PubMed Central
Google Scholar
Borrageiro G, Haylett W, Seedat S, Kuivaniemi H, Bardien S (2018) A review of genome-wide transcriptomics studies in Parkinson’s disease. Eur J Neurosci 47:1–16. https://doi.org/10.1111/ejn.13760
Article
PubMed
Google Scholar
Bossers K, Meerhoff G, Balesar R, van Dongen JW, Kruse CG, Swaab DF, Verhaagen J (2009) Analysis of gene expression in Parkinson’s disease: possible involvement of neurotrophic support and axon guidance in dopaminergic cell death. Brain Pathol Zurich Switz 19:91–107. https://doi.org/10.1111/j.1750-3639.2008.00171.x
Article
CAS
Google Scholar
Botta-Orfila T, Tolosa E, Gelpi E, Sànchez-Pla A, Martí M-J, Valldeoriola F, Fernández M, Carmona F, Ezquerra M (2012) Microarray expression analysis in idiopathic and LRRK2-associated Parkinson’s disease. Neurobiol Dis 45:462–468. https://doi.org/10.1016/j.nbd.2011.08.033
Article
CAS
PubMed
Google Scholar
Broad Institute (2018). Picard tools. Available online at:http://broadinstitute.github.io/picard/
Burté F, Houghton D, Lowes H, Pyle A, Nesbitt S, Yarnall A, Yu-Wai-Man P, Burn DJ, Santibanez-Koref M, Hudson G (2017) Metabolic profiling of Parkinson’s disease and mild cognitive impairment. Mov Disord Off J Mov Disord Soc 32:927–932. https://doi.org/10.1002/mds.26992
Article
Google Scholar
Cantuti-Castelvetri I, Keller-McGandy C, Bouzou B, Asteris G, Clark TW, Frosch MP, Standaert DG (2007) Effects of gender on nigral gene expression and parkinson disease. Neurobiol Dis 26:606–614. https://doi.org/10.1016/j.nbd.2007.02.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Capurro A, Bodea L-G, Schaefer P, Luthi-Carter R, Perreau VM (2014) Computational deconvolution of genome wide expression data from Parkinson’s and Huntington’s disease brain tissues using population-specific expression analysis. Front Neurosci 8:441. https://doi.org/10.3389/fnins.2014.00441
Article
PubMed
Google Scholar
Chandrasekaran S, Bonchev D (2013) A network view on Parkinson’s disease. Comput Struct Biotechnol J 7:e201304004. https://doi.org/10.5936/csbj.201304004
Article
PubMed
PubMed Central
Google Scholar
Colla E (2019) Linking the endoplasmic reticulum to Parkinson’s disease and alpha-Synucleinopathy. Front Neurosci 13:560. https://doi.org/10.3389/fnins.2019.00560
Article
PubMed
PubMed Central
Google Scholar
Cooper-Knock J, Kirby J, Ferraiuolo L, Heath PR, Rattray M, Shaw PJ (2012) Gene expression profiling in human neurodegenerative disease. Nat Rev Neurol 8:518–530. https://doi.org/10.1038/nrneurol.2012.156
Article
CAS
PubMed
Google Scholar
Dickson DW (2012) Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2:a009258–a009258. https://doi.org/10.1101/cshperspect.a009258
Article
CAS
PubMed
PubMed Central
Google Scholar
Duke DC, Moran LB, Kalaitzakis ME, Deprez M, Dexter DT, Pearce RKB, Graeber MB (2006) Transcriptome analysis reveals link between proteasomal and mitochondrial pathways in Parkinson’s disease. Neurogenetics 7:139–148. https://doi.org/10.1007/s10048-006-0033-5
Article
CAS
PubMed
Google Scholar
Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH, Longo KA, Latourelle JC (2016) Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genet 9:5. https://doi.org/10.1186/s12920-016-0164-y
Article
CAS
Google Scholar
Edwards YJK, Beecham GW, Scott WK, Khuri S, Bademci G, Tekin D, Martin ER, Jiang Z, Mash DC, ffrench-Mullen J, Pericak-Vance MA, Tsinoremas N, Vance JM (2011) Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach. PLoS One 6:e16917. https://doi.org/10.1371/journal.pone.0016917
Article
CAS
PubMed
PubMed Central
Google Scholar
Elstner M, Morris CM, Heim K, Bender A, Mehta D, Jaros E, Klopstock T, Meitinger T, Turnbull DM, Prokisch H (2011) Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol (Berl) 122:75–86. https://doi.org/10.1007/s00401-011-0828-9
Article
CAS
Google Scholar
Flønes IH, Fernandez-Vizarra E, Lykouri M, Brakedal B, Skeie GO, Miletic H, Lilleng PK, Alves G, Tysnes O-B, Haugarvoll K, Dölle C, Zeviani M, Tzoulis C (2018) Neuronal complex I deficiency occurs throughout the Parkinson’s disease brain, but is not associated with neurodegeneration or mitochondrial DNA damage. Acta Neuropathol (Berl) 135:409–425. https://doi.org/10.1007/s00401-017-1794-7
Article
Google Scholar
Gaare JJ, Nido GS, Sztromwasser P, Knappskog PM, Dahl O, Lund-Johansen M, Maple-Grødem J, Alves G, Tysnes O-B, Johansson S, Haugarvoll K, Tzoulis C (2018) Rare genetic variation in mitochondrial pathways influences the risk for Parkinson’s disease: mitochondrial pathways in PD. Mov Disord 33:1591–1600. https://doi.org/10.1002/mds.64
Article
CAS
PubMed
PubMed Central
Google Scholar
Gallego Romero I, Pai AA, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:42. https://doi.org/10.1186/1741-7007-12-42
Article
CAS
PubMed
PubMed Central
Google Scholar
Gelb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33–39
Article
CAS
PubMed
Google Scholar
Gillis J, Mistry M, Pavlidis P (2010) Gene function analysis in complex data sets using ErmineJ. Nat Protoc 5:1148–1159. https://doi.org/10.1038/nprot.2010.78
Article
CAS
PubMed
Google Scholar
Grünblatt E, Mandel S, Jacob-Hirsch J, Zeligson S, Amariglo N, Rechavi G, Li J, Ravid R, Roggendorf W, Riederer P, Youdim MBH (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm Vienna Austria 111:1543–1573. https://doi.org/10.1007/s00702-004-0212-1
Article
CAS
Google Scholar
Hauser MA, Li Y-J, Xu H, Noureddine MA, Shao YS, Gullans SR, Scherzer CR, Jensen RV, McLaurin AC, Gibson JR, Scott BL, Jewett RM, Stenger JE, Schmechel DE, Hulette CM, Vance JM (2005) Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch Neurol 62:917–921. https://doi.org/10.1001/archneur.62.6.917
Article
PubMed
Google Scholar
Henderson-Smith A, Corneveaux JJ, De Both M, Cuyugan L, Liang WS, Huentelman M, Adler C, Driver-Dunckley E, Beach TG, Dunckley TL (2016) Next-generation profiling to identify the molecular etiology of Parkinson dementia. Neurol Genet 2:e75. https://doi.org/10.1212/NXG.0000000000000075
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang R, Jaritz M, Guenzl P, Vlatkovic I, Sommer A, Tamir IM, Marks H, Klampfl T, Kralovics R, Stunnenberg HG, Barlow DP, Pauler FM (2011) An RNA-Seq strategy to detect the complete coding and non-coding Transcriptome including full-length imprinted macro ncRNAs. PLoS One 6:e27288. https://doi.org/10.1371/journal.pone.0027288
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaffe AE, Tao R, Norris AL, Kealhofer M, Nellore A, Shin JH, Kim D, Jia Y, Hyde TM, Kleinman JE, Straub RE, Leek JT, Weinberger DR (2017) qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci U S A 114:7130–7135. https://doi.org/10.1073/pnas.1617384114
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelley KW, Nakao-Inoue H, Molofsky AV, Oldham MC (2018) Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nat Neurosci 21:1171–1184. https://doi.org/10.1038/s41593-018-0216-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Article
CAS
PubMed
PubMed Central
Google Scholar
Luan H, Liu L-F, Meng N, Tang Z, Chua K-K, Chen L-L, Song J-X, Mok VCT, Xie L-X, Li M, Cai Z (2015) LC-MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res 14:467–478. https://doi.org/10.1021/pr500807t
Article
CAS
PubMed
Google Scholar
Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P (2017, 2017) Cross-laboratory analysis of brain cell type Transcriptomes with applications to interpretation of bulk tissue data. eNeuro 4. https://doi.org/10.1523/ENEURO.0212-17.2017
Mancarci O. (2019). Homologene: quick access to homologene and gene annotation updates. R package version 1.4.68. Available online at:https://CRAN.R-project.org/package=homologene
Mancarci O. (2019). ermineR: gene set analysis with multifunctionality assessment. R package version 1.0.1. Available online at:https://github.com/PavlidisLab/ermineR
Miller RM, Kiser GL, Kaysser-Kranich TM, Lockner RJ, Palaniappan C, Federoff HJ (2006) Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson’s disease. Neurobiol Dis 21:305–313. https://doi.org/10.1016/j.nbd.2005.07.010
Article
CAS
PubMed
Google Scholar
Moran LB, Duke DC, Deprez M, Dexter DT, Pearce RKB, Graeber MB (2006) Whole genome expression profiling of the medial and lateral substantia nigra in Parkinson’s disease. Neurogenetics 7:1–11. https://doi.org/10.1007/s10048-005-0020-2
Article
CAS
PubMed
Google Scholar
Papapetropoulos S, Ffrench-Mullen J, McCorquodale D, Qin Y, Pablo J, Mash DC (2006) Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson’s disease. Gene Expr 13:205–215
Article
CAS
PubMed
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417–419. https://doi.org/10.1038/nmeth.4197
Article
CAS
PubMed
PubMed Central
Google Scholar
Pryde KR, Taanman JW, Schapira AH (2016) A LON-ClpP Proteolytic Axis degrades complex I to extinguish ROS production in depolarized mitochondria. Cell Rep 17:2522–2531. https://doi.org/10.1016/j.celrep.2016.11.027
Article
CAS
PubMed
PubMed Central
Google Scholar
de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 54:S21–S23
PubMed
Google Scholar
Riley BE, Gardai SJ, Emig-Agius D, Bessarabova M, Ivliev AE, Schüle B, Schüle B, Alexander J, Wallace W, Halliday GM, Langston JW, Braxton S, Yednock T, Shaler T, Johnston JA (2014) Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PLoS One 9:e102909. https://doi.org/10.1371/journal.pone.0102909
Article
PubMed
PubMed Central
Google Scholar
Schuierer S, Carbone W, Knehr J, Petitjean V, Fernandez A, Sultan M, Roma G (2017) A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics 18:442. https://doi.org/10.1186/s12864-017-3827-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Simunovic F, Yi M, Wang Y, Stephens R, Sonntag KC (2010) Evidence for gender-specific transcriptional profiles of nigral dopamine neurons in Parkinson disease. PLoS One 5:e8856. https://doi.org/10.1371/journal.pone.0008856
Article
CAS
PubMed
PubMed Central
Google Scholar
Soneson C, Love MI, Robinson MD (2016) Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4:1521. https://doi.org/10.12688/f1000research.7563.2
Article
PubMed Central
Google Scholar
Srinivasan K, Friedman BA, Larson JL, Lauffer BE, Goldstein LD, Appling LL, Borneo J, Poon C, Ho T, Cai F, Steiner P, van der Brug MP, Modrusan Z, Kaminker JS, Hansen DV (2016) Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun 7:11295. https://doi.org/10.1038/ncomms11295
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamper C, Siegel A, Liang WS, Pearson JV, Stephan DA, Shill H, Connor D, Caviness JN, Sabbagh M, Beach TG, Adler CH, Dunckley T (2008) Neuronal gene expression correlates of Parkinson’s disease with dementia. Mov Disord Off J Mov Disord Soc 23:1588–1595. https://doi.org/10.1002/mds.22184
Article
Google Scholar
Toker L, Mancarci BO, Tripathy S, Pavlidis P (2018) Transcriptomic evidence for alterations in astrocytes and Parvalbumin interneurons in subjects with bipolar disorder and schizophrenia. Biol Psychiatry 84:787–796. https://doi.org/10.1016/j.biopsych.2018.07.010
Article
CAS
PubMed
PubMed Central
Google Scholar
Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, Bhaduri A, Goyal N, Rowitch DH, Kriegstein AR (2019) Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364:685–689. https://doi.org/10.1126/science.aav8130
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward CD, Gibb WR (1990) Research diagnostic criteria for Parkinson’s disease. Adv Neurol 53:245–249
CAS
PubMed
Google Scholar
Zhang Y, James M, Middleton FA, Davis RL (2005) Transcriptional analysis of multiple brain regions in Parkinson’s disease supports the involvement of specific protein processing, energy metabolism, and signaling pathways, and suggests novel disease mechanisms. Am J Med Genet B Neuropsychiatr Genet 137B:5–16. https://doi.org/10.1002/ajmg.b.30195
Article
PubMed
Google Scholar
Zhao W, He X, Hoadley KA, Parker JS, Hayes D, Perou CM (2014) Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics 15:419. https://doi.org/10.1186/1471-2164-15-419
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet J-C, Scherzer CR, Global PD Gene Expression (GPEX) Consortium (2010) PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med 2:52ra73. https://doi.org/10.1126/scitranslmed.3001059
Article
CAS
PubMed
PubMed Central
Google Scholar