Kann O, Kovács R (2007) Mitochondria and neuronal activity. Am J Physiol Physiol 292(2):C641–C657
Article
CAS
Google Scholar
Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11(1):11–24
Article
PubMed
CAS
Google Scholar
Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681
Article
CAS
PubMed
PubMed Central
Google Scholar
McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2(8):a004085
Article
PubMed
PubMed Central
CAS
Google Scholar
Pivovarova NB, Andrews SB (2010) Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J 277(18):3622–3636
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo L, Tian J, Du H (2017) Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. J Alzheimers Dis 57(4):1071–1086
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith GM, Gallo G (2018) The role of mitochondria in axon development and regeneration. Dev Neurobiol 78(3):221–237
Article
CAS
PubMed
Google Scholar
Chiu GS et al (2017) Pifithrin-m prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res 77(3):742–752
Article
CAS
PubMed
Google Scholar
Devine MJ, Kittler JT (2018) Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 19(2):63–80
Article
CAS
PubMed
Google Scholar
Ren X et al (2019) The triangle of death of neurons: oxidative damage, mitochondrial dysfunction, and loss of choline-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment (‘chemobrain’) involving TNF-α. Free Radic Biol Med 134:1–8
Article
PubMed
CAS
Google Scholar
Chiu GS et al (2018) Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 9(85):35581–35597
Article
PubMed
PubMed Central
Google Scholar
Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2014) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7(1):a020362
Article
PubMed
CAS
Google Scholar
Bazargani N, Attwell D (2016) Astrocyte calcium signaling: The third wave. Nat Neurosci 19(2):182–189 Nature Publishing Group
Article
CAS
PubMed
Google Scholar
Bozoyan L, Khlghatyan J, Saghatelyan A (2012) Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 32(5):1687–1704
Article
CAS
PubMed
PubMed Central
Google Scholar
Gengatharan A, Bammann RR, Saghatelyan A (2016) The role of astrocytes in the generation, migration, and integration of new neurons in the adult olfactory bulb. Front Neurosci 10:149
Article
PubMed
PubMed Central
Google Scholar
Lundgaard I, Osório MJ, Kress BT, Sanggaard S, Nedergaard M (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173
Article
CAS
PubMed
Google Scholar
Vignais ML, Caicedo A, Brondello JM, Jorgensen C (2017) Cell connections by tunneling nanotubes: Effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy, vol 2017. Stem Cells International
Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18(4):732–742
Article
CAS
PubMed
Google Scholar
Davis CO et al (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111(26):9633–9638
Article
CAS
PubMed
PubMed Central
Google Scholar
Boukelmoune N, Chiu GS, Kavelaars A, Heijnen CJ (2018) Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun 6(1):139
Article
CAS
PubMed
PubMed Central
Google Scholar
Caicedo A et al (2015) MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep 5:9073
Article
CAS
PubMed
PubMed Central
Google Scholar
Babenko VA et al (2018) Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules 23(3)
Rogers RS, Bhattacharya J (2013) When Cells Become Organelle Donors. Physiology 28(6):414–422
Article
CAS
PubMed
Google Scholar
Jackson JG, Robinson MB (2015) Reciprocal regulation of mitochondrial dynamics and calcium signaling in astrocyte processes. J Neurosci 35(45):15199–15213
Article
CAS
PubMed
PubMed Central
Google Scholar
Oeding SJ et al (2018) Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J Cell Sci 131(17)
Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Med 5(6)
Stephen TL et al (2015) Miro1 regulates activity-driven positioning of mitochondria within astrocytic processes apposed to synapses to regulate intracellular calcium signaling. J Neurosci 35(48):15996–16011
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalinski AL et al (2019) Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J Cell Biol 218(6):1871–1890
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad T et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33(9):994–1010
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Huo XJ, Jarpe MB, Kavelaars A, Heijnen CJ (2018) Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathol Commun 6(1):103
Article
PubMed
PubMed Central
CAS
Google Scholar
Shirihai OS, Song M, Dorn GW (2015) How mitochondrial dynamism orchestrates mitophagy. Circ Res 116(11):1835–1849
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattson MP, Gleichmann M, Cheng A (2018) Mitochondria in Neuroplasticity and Neurological Disorders. Neuron 60:748–766
Article
CAS
Google Scholar
Andres AL, Gong X, Di K, Bota DA (2014) Low-doses of cisplatin injure hippocampal synapses: a mechanism for ‘chemo’ brain? Exp Neurol 255:137–144
Article
CAS
PubMed
PubMed Central
Google Scholar
Rego AC, Vesce S, Nicholls DG (2001) The mechanism of mitochondrial membrane potential retention following release of cytochrome c in apoptotic GT1-7 neural cells. Cell Death Differ 8(10):995–1003
Article
CAS
PubMed
Google Scholar
Shepherd AJ et al (2018) Angiotensin II triggers peripheral macrophage-to-sensory neuron redox crosstalk to elicit pain. J Neurosci 38(32):7032–7057
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao L, Zhang Z, Lu J, Pei G (2019) Mitochondria are dynamically transferring between human neural cells and Alexander disease-associated GFAP mutations impair the Astrocytic transfer. Front Cell Neurosci 13:316
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayakawa K et al (2016) Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535(7613):551–555
Article
CAS
PubMed
PubMed Central
Google Scholar
Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248
Article
CAS
PubMed
Google Scholar
Maj MA, Ma J, Krukowski KN, Kavelaars A, Heijnen CJ (2017) Inhibition of mitochondrial p53 accumulation by PFT-μ prevents cisplatin-induced peripheral neuropathy. Front Mol Neurosci 10:108
Article
PubMed
PubMed Central
CAS
Google Scholar
Gousset K et al (2013) Myo10 is a key regulator of TNT formation in neuronal cells. J Cell Sci 126(Pt 19):4424–4435
Article
CAS
PubMed
Google Scholar
Las G, Shirihai OS (May 2014) Miro1: new wheels for transferring mitochondria. EMBO J 33(9):939–941
Article
CAS
PubMed
PubMed Central
Google Scholar
Abounit S, Delage E, Zurzolo C, Abounit S, Delage E, Zurzolo C (2015) Identification and characterization of tunneling nanotubes for intercellular trafficking. In: Current protocols in cell biology. Wiley, Hoboken, 67(1): 12.10.1–12.10.21
Google Scholar
Li CJ, Chen PK, Sun LY, Pang CY (2017) Enhancement of Mitochondrial Transfer by Antioxidants in Human Mesenchymal Stem Cells. Oxidative Med Cell Longev 2017:8510805
Google Scholar
Astanina K et al (2015) Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells. Sci Rep 5:11453
Article
PubMed
PubMed Central
Google Scholar
Lee KS, Lu B (2014) The myriad roles of miro in the nervous system: Axonal transport of mitochondria and beyond. Front Cell Neurosci (8, October. Frontiers Media S.A.)
Melkov A, Baskar R, Alcalay Y, Abdu U (2016) A new mode of mitochondrial transport and polarized sorting regulated by dynein, Milton and Miro. Development 143(22):4203–4213
Article
CAS
PubMed
Google Scholar
Jiang D et al (2016) Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis 7(11)
Marlein CR et al (2019) CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res 79(9):2285–2297
Article
CAS
PubMed
Google Scholar
Berridge MV, Schneider RT, McConnell MJ (2016) Mitochondrial Transfer from Astrocytes to Neurons following Ischemic Insult: Guilt by Association? Cell Metab 24(3):376–378
Article
CAS
PubMed
Google Scholar
Wang Y, Cui J, Sun X, Zhang Y (2011) Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18(4):732–742
Article
CAS
PubMed
Google Scholar
Vichaya EG et al (2015) Mechanisms of chemotherapy-induced behavioral toxicities. Front Neurosci 9:131
Article
PubMed
PubMed Central
Google Scholar
Wilkins HM, Weidling IW, Ji Y, Swerdlow RH (2017) Mitochondria-derived damage-associated molecular patterns in neurodegeneration. Front Immunol 8:508
Article
PubMed
PubMed Central
CAS
Google Scholar
Nemani N et al (2018) MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca2+ stress. Cell Rep 23(4):1005–1019
Article
CAS
PubMed
PubMed Central
Google Scholar
Leo M, Schmitt L-I, Jastrow H, Thomale J, Kleinschnitz C, Hagenacker T (2017) Cisplatin alters the function and expression of N-type voltage-gated calcium channels in the absence of morphological damage of sensory neurons. Mol Pain 13:1744806917746565
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernocchi G et al (2015) Neurotoxic effects of platinum compounds: studies in vivo on intracellular calcium homeostasis in the immature central nervous system. Toxics 3(2):224–248
Article
CAS
PubMed
PubMed Central
Google Scholar
Prins D, Michalak M (2011) Organellar calcium buffers. Cold Spring Harb Perspect Biol 3(3):1–16
Article
CAS
Google Scholar
Modi S et al (2019) Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 10(1):4399
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo Y, Bond JD, Ingram VM (1997) Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc Natl Acad Sci U S A 94(18):9705–9710
Article
CAS
PubMed
PubMed Central
Google Scholar
Krebs J, Agellon LB, Michalak M (2015) Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res Commun 460(1):114–121
Article
CAS
PubMed
Google Scholar
“Brain RNA-Seq.” [Online]. Available: http://www.brainrnaseq.org/. [Accessed 27 Nov 2019]
Kilari D, Guancial E, Kim ES (2016) Role of copper transporters in platinum resistance. World J Clin Oncol 7(1):106–113
Article
PubMed
PubMed Central
Google Scholar
Kuo MT, Chen HHW, Song IS, Savaraj N, Ishikawa T (2007) The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev 26(1):71–83
Article
CAS
PubMed
Google Scholar
Blair BG, Larson C, Safaei R, Howell SB (2009) Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin Cancer Res 15(13):4312–4321
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XM, Walitt B, Saligan L, Tiwari AFY, Cheung CW, Zhang ZJ (2015) Chemobrain: A critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine 72(1):86–96
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutmann DH (2019) Clearing the Fog surrounding Chemobrain. Cell 176(1–2):2–4
Article
CAS
PubMed
Google Scholar
Asher A (2011) Cognitive dysfunction among Cancer survivors. Am J Phys Med Rehabil 90(Suppl 1):S16–S26
Article
PubMed
Google Scholar
Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13(6):1059–1067
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou W, Kavelaars A, Heijnen CJ (2016) Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One 11(3)
Chiang ACA, Huo X, Kavelaars A, Heijnen CJ (2019) Chemotherapy accelerates age-related development of tauopathy and results in loss of synaptic integrity and cognitive impairment. Brain Behav Immun 79:319–325
Article
CAS
PubMed
Google Scholar
Van Den Bosch L (2019) HDAC6 and Miro1: Another interaction causing trouble in neurons. J Cell Biol 218(6):1769–1770
Article
CAS
Google Scholar