Alirezaei M, Kemball CC, Flynn CT, Wood MR, Whitton JL, Kiosses WB (2010) Short-term fasting induces profound neuronal autophagy. Autophagy 6:702–710
Article
PubMed
PubMed Central
Google Scholar
Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R (2007) Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 16:2600–2615. https://doi.org/10.1093/hmg/ddm217
Article
CAS
PubMed
Google Scholar
Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Group ES, Roos RA (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506–1513. https://doi.org/10.1212/01.wnl.0000334276.09729.0e
Article
CAS
PubMed
Google Scholar
Babu JR, Seibenhener ML, Peng J, Strom AL, Kemppainen R, Cox N, Zhu H, Wooten MC, Diaz-Meco MT, Moscat J et al (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J Neurochem 106:107–120. https://doi.org/10.1111/j.1471-4159.2008.05340.x
Article
CAS
Google Scholar
Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D, Rhee SG (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17:73–84. https://doi.org/10.1016/j.cmet.2012.12.002
Article
CAS
PubMed
Google Scholar
Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H, Kopito RR (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448:704–708. https://doi.org/10.1038/nature06022
Article
CAS
PubMed
Google Scholar
Bhat KP, Yan S, Wang CE, Li S, Li XJ (2014) Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad Sci U S A 111:5706–5711. https://doi.org/10.1073/pnas.1402215111
Article
CAS
PubMed
PubMed Central
Google Scholar
Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28:6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ (2015) Treating the whole body in Huntington's disease. Lancet Neurol 14:1135–1142. https://doi.org/10.1016/S1474-4422(15)00177-5
Article
PubMed
Google Scholar
Chen X, Kondo K, Motoki K, Homma H, Okazawa H (2015) Fasting activates macroautophagy in neurons of Alzheimer's disease mouse model but is insufficient to degrade amyloid-beta. Sci Rep 5:12115. https://doi.org/10.1038/srep12115
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunha-Santos J, Duarte-Neves J, Carmona V, Guarente L, Pereira de Almeida L, Cavadas C (2016) Caloric restriction blocks neuropathology and motor deficits in Machado-Joseph disease mouse models through SIRT1 pathway. Nat Commun 7:11445. https://doi.org/10.1038/ncomms11445
Article
CAS
PubMed
PubMed Central
Google Scholar
Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH et al (2013) Functions of autophagy in normal and diseased liver. Autophagy 9:1131–1158. https://doi.org/10.4161/auto.25063
Article
CAS
PubMed
PubMed Central
Google Scholar
De Souza RA, Leavitt BR (2015) Neurobiology of Huntington’s disease. Curr Top Behav Neurosci 22:81–100. https://doi.org/10.1007/7854_2014_353
Article
CAS
PubMed
Google Scholar
Dikic I (2017) Proteasomal and Autophagic degradation systems. Annu Rev Biochem 86:193–224. https://doi.org/10.1146/annurev-biochem-061516-044908
Article
CAS
PubMed
Google Scholar
Duan W, Guo Z, Jiang H, Ware M, Li XJ, Mattson MP (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 100:2911–2916. https://doi.org/10.1073/pnas.0536856100
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrnhoefer DE, Skotte NH, Savill J, Nguyen YT, Ladha S, Cao LP, Dullaghan E, Hayden MR (2011) A quantitative method for the specific assessment of caspase-6 activity in cell culture. PLoS One 6:e27680. https://doi.org/10.1371/journal.pone.0027680
Article
CAS
PubMed
PubMed Central
Google Scholar
Ehrnhoefer DE, Sutton L, Hayden MR (2011) Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 17:475–492. https://doi.org/10.1177/1073858410390378
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Daher MT, Hangen E, Bruyere J, Poizat G, Al-Ramahi I, Pardo R, Bourg N, Souquere S, Mayet C, Pierron G et al (2015) Huntingtin proteolysis releases non-polyQ fragments that cause toxicity through dynamin 1 dysregulation. EMBO J 34:2255–2271. https://doi.org/10.15252/embj.201490808
Article
CAS
PubMed
PubMed Central
Google Scholar
Gafni J, Papanikolaou T, Degiacomo F, Holcomb J, Chen S, Menalled L, Kudwa A, Fitzpatrick J, Miller S, Ramboz S et al (2012) Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J Neurosci 32:7454–7465. https://doi.org/10.1523/JNEUROSCI.6379-11.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5:e9199. https://doi.org/10.1371/journal.pone.0009199
Article
PubMed
PubMed Central
Google Scholar
Graham RK, Deng Y, Carroll J, Vaid K, Cowan C, Pouladi MA, Metzler M, Bissada N, Wang L, Faull RL et al (2010) Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 30:15019–15029. https://doi.org/10.1523/JNEUROSCI.2071-10.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Graham RK, Deng Y, Pouladi MA, Vaid K, Ehrnhoefer DE, Southwell AL, Bissada N, Franciosi S, Hayden MR (2012) Caspase-6-resistant mutant huntingtin does not rescue the toxic effects of caspase-cleavable mutant huntingtin in vivo. J Huntington’s Dis 1:243–260
Google Scholar
Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z et al (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125:1179–1191. https://doi.org/10.1016/j.cell.2006.04.026
Article
CAS
PubMed
Google Scholar
Hodgson JG, Smith DJ, McCutcheon K, Koide HB, Nishiyama K, Dinulos MB, Stevens ME, Bissada N, Nasir J, Kanazawa I et al (1996) Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype. Hum Mol Genet 5:1875–1885
Article
CAS
PubMed
Google Scholar
Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR 3rd, Bordone L, Guarente L, Krainc D (2011) Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 18:159–165. https://doi.org/10.1038/nm.2559
Article
PubMed
Google Scholar
Jiang M, Wang J, Fu J, Du L, Jeong H, West T, Xiang L, Peng Q, Hou Z, Cai H et al (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med 18:153–158. https://doi.org/10.1038/nm.2558
Article
PubMed
PubMed Central
Google Scholar
Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, Goldberg YP, Gietz RD, Pickart CM, Hayden MR (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271:19385–19394
Article
CAS
PubMed
Google Scholar
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD, Adeli K et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356
Article
PubMed
PubMed Central
Google Scholar
Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33:517–527. https://doi.org/10.1016/j.molcel.2009.01.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Krainc D (2010) Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases. Arch Neurol 67:388–392. https://doi.org/10.1001/archneurol.2010.40
Article
PubMed
Google Scholar
Lee JH, Tecedor L, Chen YH, Monteys AM, Sowada MJ, Thompson LM, Davidson BL (2015) Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes. Neuron 85:303–315. https://doi.org/10.1016/j.neuron.2014.12.019
Article
CAS
PubMed
Google Scholar
Lim J, Lachenmayer ML, Wu S, Liu W, Kundu M, Wang R, Komatsu M, Oh YJ, Zhao Y, Yue Z (2015) Proteotoxic stress induces phosphorylation of p62/SQSTM1 by ULK1 to regulate selective autophagic clearance of protein aggregates. PLoS Genet 11:e1004987. https://doi.org/10.1371/journal.pgen.1004987
Article
PubMed
PubMed Central
Google Scholar
Ma D, Panda S, Lin JD (2011) Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J 30:4642–4651. https://doi.org/10.1038/emboj.2011.322
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin DD, Heit RJ, Yap MC, Davidson MW, Hayden MR, Berthiaume LG (2014) Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of huntingtin. Hum Mol Genet 23:3166–3179. https://doi.org/10.1093/hmg/ddu027
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin DD, Ladha S, Ehrnhoefer DE, Hayden MR (2015) Autophagy in Huntington disease and huntingtin in autophagy. Trends Neurosci 38:26–35. https://doi.org/10.1016/j.tins.2014.09.003
Article
CAS
PubMed
Google Scholar
Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D et al (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat Neurosci 13:567–576. https://doi.org/10.1038/nn.2528
Article
CAS
PubMed
PubMed Central
Google Scholar
Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM (2017) Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 8:14063. https://doi.org/10.1038/ncomms14063
Article
CAS
PubMed
PubMed Central
Google Scholar
Maywood ES, Fraenkel E, McAllister CJ, Wood N, Reddy AB, Hastings MH, Morton AJ (2010) Disruption of peripheral circadian timekeeping in a mouse model of Huntington's disease and its restoration by temporally scheduled feeding. J Neurosci 30:10199–10204. https://doi.org/10.1523/JNEUROSCI.1694-10.2010
Article
CAS
PubMed
Google Scholar
Menzies FM, Fleming A, Rubinsztein DC (2015) Compromised autophagy and neurodegenerative diseases. Nat Rev Neurosci 16:345–357. https://doi.org/10.1038/nrn3961
Article
CAS
PubMed
Google Scholar
Metzler M, Gan L, Mazarei G, Graham RK, Liu L, Bissada N, Lu G, Leavitt BR, Hayden MR (2010) Phosphorylation of huntingtin at Ser421 in YAC128 neurons is associated with protection of YAC128 neurons from NMDA-mediated excitotoxicity and is modulated by PP1 and PP2A. J Neurosci 30:14318–14329. https://doi.org/10.1523/JNEUROSCI.1589-10.2010
Article
CAS
PubMed
Google Scholar
Morton AJ (2013) Circadian and sleep disorder in Huntington's disease. Exp Neurol 243:34–44. https://doi.org/10.1016/j.expneurol.2012.10.014
Article
PubMed
Google Scholar
Ntsapi C, Loos B (2016) Caloric restriction and the precision-control of autophagy: a strategy for delaying neurodegenerative disease progression. Exp Gerontol 83:97–111. https://doi.org/10.1016/j.exger.2016.07.014
Article
CAS
PubMed
Google Scholar
Ochaba J, Lukacsovich T, Csikos G, Zheng S, Margulis J, Salazar L, Mao K, Lau AL, Yeung SY, Humbert S et al (2014) Potential function for the huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889–16894. https://doi.org/10.1073/pnas.1420103111
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto S, Pouladi MA, Talantova M, Yao D, Xia P, Ehrnhoefer DE, Zaidi R, Clemente A, Kaul M, Graham RK et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15:1407–1413. https://doi.org/10.1038/nm.2056
Article
CAS
PubMed
PubMed Central
Google Scholar
Pouladi MA, Graham RK, Karasinska JM, Xie Y, Santos RD, Petersen A, Hayden MR (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132:919–932. https://doi.org/10.1093/brain/awp006
Article
PubMed
Google Scholar
Pouladi MA, Xie Y, Skotte NH, Ehrnhoefer DE, Graham RK, Kim JE, Bissada N, Yang XW, Paganetti P, Friedlander RM et al (2010) Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet 19:1528–1538. https://doi.org/10.1093/hmg/ddq026
Article
CAS
PubMed
PubMed Central
Google Scholar
Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117
Article
CAS
PubMed
Google Scholar
Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, Brown SD, Rubinsztein DC (2010) Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 19:2144–2153. https://doi.org/10.1093/hmg/ddq093
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786. https://doi.org/10.1038/nature05291
Article
CAS
PubMed
Google Scholar
Rui YN, Xu Z, Patel B, Chen Z, Chen D, Tito A, David G, Sun Y, Stimming EF, Bellen HJ et al (2015) Huntingtin functions as a scaffold for selective macroautophagy. Nat Cell Biol 17:262–275. https://doi.org/10.1038/ncb3101
Article
CAS
PubMed
PubMed Central
Google Scholar
Sahani MH, Itakura E, Mizushima N (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10:431–441. https://doi.org/10.4161/auto.27344
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675
Article
CAS
PubMed
PubMed Central
Google Scholar
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068. https://doi.org/10.1128/MCB.24.18.8055-8068.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Skillings EA, Wood NI, Morton AJ (2014) Beneficial effects of environmental enrichment and food entrainment in the R6/2 mouse model of Huntington's disease. Brain Behav 4:675–686. https://doi.org/10.1002/brb3.235
Article
PubMed
PubMed Central
Google Scholar
Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC, Doty CN, Petoukhov E, Vaid K, Kordasiewicz H, Watt AT et al (2014) Allele-specific suppression of mutant huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS One 9:e107434. https://doi.org/10.1371/journal.pone.0107434
Article
PubMed
PubMed Central
Google Scholar
Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, Oh R, Bissada N, Hossain SM, Yang YZ et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12:1555–1567
Article
CAS
PubMed
Google Scholar
The Huntington's disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Huntington’s Dis Collab Res Group Cell 72:971–983
Google Scholar
Van Raamsdonk JM, Gibson WT, Pearson J, Murphy Z, Lu G, Leavitt BR, Hayden MR (2006) Body weight is modulated by levels of full-length huntingtin. Hum Mol Genet 15:1513–1523. https://doi.org/10.1093/hmg/ddl072
Article
CAS
PubMed
Google Scholar
Walter C, Clemens LE, Muller AJ, Fallier-Becker P, Proikas-Cezanne T, Riess O, Metzger S, Nguyen HP (2016) Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2016.04.041
Warby SC, Doty CN, Graham RK, Carroll JB, Yang YZ, Singaraja RR, Overall CM, Hayden MR (2008) Activated caspase-6 and caspase-6-cleaved fragments of huntingtin specifically colocalize in the nucleus. Hum Mol Genet 17:2390–2404. https://doi.org/10.1093/hmg/ddn139
Article
CAS
PubMed
Google Scholar
Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington's disease: what's in the pipeline? Movement Disord 29:1434–1445. https://doi.org/10.1002/mds.26007
Article
CAS
PubMed
Google Scholar
Wong BK, Ehrnhoefer DE, Graham RK, Martin DD, Ladha S, Uribe V, Stanek LM, Franciosi S, Qiu X, Deng Y et al (2015) Partial rescue of some features of Huntington disease in the genetic absence of caspase-6 in YAC128 mice. Neurobiol Dis 76:24–36. https://doi.org/10.1016/j.nbd.2014.12.030
Article
CAS
PubMed
Google Scholar
Wong YC, Holzbaur EL (2014) The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J Neurosci 34:1293–1305. https://doi.org/10.1523/JNEUROSCI.1870-13.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Young JE, Martinez RA, La Spada AR (2009) Nutrient deprivation induces neuronal autophagy and implicates reduced insulin signaling in neuroprotective autophagy activation. J Biol Chem 284:2363–2373. https://doi.org/10.1074/jbc.M806088200
Article
CAS
PubMed
PubMed Central
Google Scholar