World Health Organization (2012) Dementia: a public health priority. World Health Organization, Geneva, ISBN 978-92-4-156445-8
Google Scholar
Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–21, doi:10.1212/WNL.58.11.1615
Article
CAS
PubMed
Google Scholar
Mendez MF, Shapira JS, McMurtray A, Licht E, Miller BL (2007) Accuracy of the clinical evaluation for frontotemporal dementia. Arch Neurol 64:830–5, doi:10.1001/archneur.64.6.830
Article
PubMed
Google Scholar
Cairns NJ, Bigio EH, Mackenzie IRA, Neumann M, Lee VM-Y, Hatanpaa KJ et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22, doi:10.1007/s00401-007-0237-2
Article
PubMed Central
PubMed
Google Scholar
Van der Zee J, Van Broeckhoven C (2014) Dementia in 2013: frontotemporal lobar degeneration-building on breakthroughs. Nat Rev Neurol 10:70–2, doi:10.1038/nrneurol.2013.270
Article
PubMed
Google Scholar
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–77, doi:10.1093/brain/awr179
Article
PubMed Central
PubMed
Google Scholar
Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006–14, doi:10.1212/WNL.0b013e31821103e6
Article
PubMed Central
PubMed
Google Scholar
Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–4, doi:10.1038/nature05017
Article
CAS
PubMed
Google Scholar
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H et al (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–5, doi:10.1038/31508
Article
CAS
PubMed
Google Scholar
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56, doi:10.1016/j.neuron.2011.09.011
Article
PubMed Central
CAS
PubMed
Google Scholar
Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–68, doi:10.1016/j.neuron.2011.09.010
Article
PubMed Central
CAS
PubMed
Google Scholar
Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–9, doi:10.1038/nature05016
Article
CAS
PubMed
Google Scholar
Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65, doi:10.1016/S1474-4422(11)70261-7
Article
CAS
PubMed
Google Scholar
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, et al (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491, doi: 10.1007/s00401-014-1380-1
Sieben A, Van Langenhove T, Engelborghs S, Martin J-J, Boon P, Cras P et al (2012) The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol 124:353–72, doi:10.1007/s00401-012-1029-x
Article
PubMed Central
CAS
PubMed
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–3, doi:10.1126/science.1134108
Article
CAS
PubMed
Google Scholar
Buratti E (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867, doi:10.2741/2727
Article
CAS
PubMed
Google Scholar
Gendron TF, Josephs KA, Petrucelli L (2010) Review: transactive response DNA-binding protein 43 (TDP-43): mechanisms of neurodegeneration. Neuropathol Appl Neurobiol 36:97–112, doi:10.1111/j.1365-2990.2010.01060.x
Article
PubMed Central
CAS
PubMed
Google Scholar
Ling S-C, Polymenidou M, Cleveland DW (2013) Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79:416–38, doi:10.1016/j.neuron.2013.07.033
Article
CAS
PubMed
Google Scholar
Van Langenhove T, van der Zee J, Van Broeckhoven C (2012) The molecular basis of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum. Ann Med 44:817–28, doi:10.3109/07853890.2012.665471
Article
PubMed Central
PubMed
Google Scholar
Wilson AC, Dugger BN, Dickson DW, Wang D-S (2011) TDP-43 in aging and Alzheimer’s disease - a review. Int J Clin Exp Pathol 4:147–55
PubMed Central
CAS
PubMed
Google Scholar
Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70:1850–7, doi:10.1212/01.wnl.0000304041.09418.b1
Article
PubMed Central
CAS
PubMed
Google Scholar
Irwin DJ, Trojanowski JQ, Grossman M (2013) Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer’s disease. Front Aging Neurosci 5:6, doi:10.3389/fnagi.2013.00006
Article
PubMed Central
CAS
PubMed
Google Scholar
Alladi S, Xuereb J, Bak T, Nestor P, Knibb J, Patterson K et al (2007) Focal cortical presentations of Alzheimer’s disease. Brain 130:2636–45, doi:10.1093/brain/awm213
Article
CAS
PubMed
Google Scholar
Sleegers K, Brouwers N, Van Damme P, Engelborghs S, Gijselinck I, van der Zee J et al (2009) Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 65:603–9, doi:10.1002/ana.21621
Article
CAS
PubMed
Google Scholar
Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71:1235–9, doi:10.1212/01.wnl.0000325058.10218.fc
Article
CAS
PubMed
Google Scholar
Hu WT, Trojanowski JQ, Shaw LM (2011) Biomarkers in frontotemporal lobar degenerations–progress and challenges. Prog Neurobiol 95:636–48, doi:10.1016/j.pneurobio.2011.04.012
Article
PubMed Central
CAS
PubMed
Google Scholar
Janssens J, Van Broeckhoven C (2013) Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet 22:R77–87, doi:10.1093/hmg/ddt349
Article
PubMed Central
CAS
PubMed
Google Scholar
Chang C, Wu T-H, Wu C-Y, Chiang M, Toh EK-W, Hsu Y-C et al (2012) The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity. Biochem Biophys Res Commun 425:219–24, doi:10.1016/j.bbrc.2012.07.071
Article
CAS
PubMed
Google Scholar
Igaz LM, Kwong LK, Xu Y, Truax AC, Uryu K, Neumann M et al (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Am J Pathol 173:182–94, doi:10.2353/ajpath.2008.080003
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y-J, Caulfield T, Xu Y-F, Gendron TF, Hubbard J, Stetler C et al (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 22:3112–22, doi:10.1093/hmg/ddt166
Article
PubMed Central
CAS
PubMed
Google Scholar
Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, Hashizume Y et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70, doi:10.1002/ana.21425
Article
PubMed Central
CAS
PubMed
Google Scholar
Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y et al (2009) Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem 284:8516–24, doi:10.1074/jbc.M809462200
Article
PubMed Central
CAS
PubMed
Google Scholar
Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–64, doi:10.1093/hmg/ddp275
Article
CAS
PubMed
Google Scholar
Wang Y-T, Kuo P-H, Chiang C-H, Liang J-R, Chen Y-R, Wang S et al (2013) The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates. J Biol Chem 288:9049–57, doi:10.1074/jbc.M112.438564
Article
PubMed Central
CAS
PubMed
Google Scholar
Neumann M, Kwong LK, Lee EB, Kremmer E, Flatley A, Xu Y et al (2009) Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies. Acta Neuropathol 117:137–49, doi:10.1007/s00401-008-0477-9
Article
PubMed Central
CAS
PubMed
Google Scholar
Tsuji H, Nonaka T, Yamashita M, Masuda-Suzukake M, Kametani F, Akiyama H et al (2012) Epitope mapping of antibodies against TDP-43 and detection of protease-resistant fragments of pathological TDP-43 in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Biochem Biophys Res Commun 417:116–21, doi:10.1016/j.bbrc.2011.11.066
Article
CAS
PubMed
Google Scholar
Zhang H-X, Tanji K, Mori F, Wakabayashi K (2008) Epitope mapping of 2E2-D3, a monoclonal antibody directed against human TDP-43. Neurosci Lett 434:170–4, doi:10.1016/j.neulet.2008.01.060
Article
CAS
PubMed
Google Scholar
Mackenzie IRA, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–3, doi:10.1007/s00401-011-0845-8
Article
PubMed Central
PubMed
Google Scholar
Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, Suzukake M et al (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135:3380–91, doi:10.1093/brain/aws230
Article
PubMed
Google Scholar
Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–6, doi:10.1007/s00401-008-0389-8
Article
PubMed Central
CAS
PubMed
Google Scholar
Foulds PG, Davidson Y, Mishra M, Hobson DJ, Humphreys KM, Taylor M et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118:647–58, doi:10.1007/s00401-009-0594-0
Article
PubMed Central
CAS
PubMed
Google Scholar
Noto Y-I, Shibuya K, Sato Y, Kanai K, Misawa S, Sawai S et al (2011) Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotroph Lateral Scler 12:140–3, doi:10.3109/17482968.2010.541263
Article
CAS
PubMed
Google Scholar
Hosokawa M, Arai T, Yamashita M, Tsuji H, Nonaka T, Masuda-Suzukake M et al (2014) Differential diagnosis of amyotrophic lateral sclerosis from Guillain-Barré syndrome by quantitative determination of TDP-43 in cerebrospinal fluid. Int J Neurosci 124:344–9, doi:10.3109/00207454.2013.848440
Article
CAS
PubMed
Google Scholar
Swarup V, Phaneuf D, Dupré N, Petri S, Strong M, Kriz J et al (2011) Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J Exp Med 208:2429–47, doi:10.1084/jem.20111313
Article
PubMed Central
CAS
PubMed
Google Scholar
Suárez-Calvet M, Dols-Icardo O, Lladó A, Sánchez-Valle R, Hernández I, Amer G et al (2014) Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 85:684–91, doi:10.1136/jnnp-2013-305972
Article
PubMed
Google Scholar
Kwong LK, Irwin DJ, Walker AK, Xu Y, Riddle DM, Trojanowski JQ et al (2014) Novel monoclonal antibodies to normal and pathologically altered human TDP-43 proteins. Acta Neuropathol Commun 2:33, doi:10.1186/2051-5960-2-33
Article
PubMed Central
PubMed
Google Scholar
Verstraete E, Kuiperij HB, van Blitterswijk MM, Veldink JH, Schelhaas HJ, van den Berg LH et al (2012) TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13:446–51, doi:10.3109/17482968.2012.703208
Article
CAS
PubMed
Google Scholar
Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ et al (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117:55–62, doi:10.1007/s00401-008-0456-1
Article
CAS
PubMed
Google Scholar
Kuiperij HB, Abdo WF, van Engelen BG, Schelhaas HJ, Verbeek MM (2010) TDP-43 plasma levels do not differentiate sporadic inclusion body myositis from other inflammatory myopathies. Acta Neuropathol 120:825–6, doi:10.1007/s00401-010-0769-8
Article
PubMed
Google Scholar
Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CAF, Lehnert S et al (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 65:1481–7, doi:10.1001/archneur.65.11.1481
Article
PubMed Central
PubMed
Google Scholar
Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15:351–6, doi:10.3109/21678421.2014.905606
Article
CAS
PubMed
Google Scholar
Yang Z, Lin F, Robertson CS, Wang KKW (2014) Dual vulnerability of TDP-43 to calpain and caspase-3 proteolysis after neurotoxic conditions and traumatic brain injury. J Cereb Blood Flow Metab 34:1444–52, doi:10.1038/jcbfm.2014.105
Article
CAS
PubMed
Google Scholar
Shodai A, Morimura T, Ido A, Uchida T, Ayaki T, Takahashi R et al (2013) Aberrant assembly of RNA recognition motif 1 links to pathogenic conversion of TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 288:14886–905, doi:10.1074/jbc.M113.451849
Article
PubMed Central
CAS
PubMed
Google Scholar
Bigio EH (2013) Making the diagnosis of frontotemporal lobar degeneration. Arch Pathol Lab Med 137:314–25, doi:10.5858/arpa.2012-0075-RA
Article
PubMed Central
CAS
PubMed
Google Scholar
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–11, doi:10.1016/j.bbrc.2006.10.093
Article
CAS
PubMed
Google Scholar
Inukai Y, Nonaka T, Arai T, Yoshida M, Hashizume Y, Beach TG et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582:2899–904, doi:10.1016/j.febslet.2008.07.027
Article
CAS
PubMed
Google Scholar
Ling S-C, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, Zhou H et al (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci U S A 107:13318–23, doi:10.1073/pnas.1008227107
Article
PubMed Central
CAS
PubMed
Google Scholar
Kadokura A, Yamazaki T, Kakuda S, Makioka K, Lemere CA, Fujita Y et al (2009) Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 463:87–92, doi:10.1016/j.neulet.2009.06.024
Article
CAS
PubMed
Google Scholar
Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–98, doi:10.1016/j.brainres.2008.06.094
Article
PubMed Central
CAS
PubMed
Google Scholar
Shodai A, Ido A, Fujiwara N, Ayaki T, Morimura T, Oono M et al (2012) Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43. PLoS One 7:e52776, doi:10.1371/journal.pone.0052776
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Y-J, Xu Y-F, Cook C, Gendron TF, Roettges P, Link CD et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci U S A 106:7607–12, doi:10.1073/pnas.0900688106
Article
PubMed Central
CAS
PubMed
Google Scholar
Sephton CF, Good SK, Atkin S, Dewey CM, Mayer P, Herz J et al (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285:6826–34, doi:10.1074/jbc.M109.061846
Article
PubMed Central
CAS
PubMed
Google Scholar
Sato T, Takeuchi S, Saito A, Ding W, Bamba H, Matsuura H et al (2009) Axonal ligation induces transient redistribution of TDP-43 in brainstem motor neurons. Neuroscience 164:1565–78, doi:10.1016/j.neuroscience.2009.09.050
Article
CAS
PubMed
Google Scholar
Nicholson AM, Finch NA, Thomas CS, Wojtas A, Rutherford NJ, Mielke MM et al (2014) Progranulin protein levels are differently regulated in plasma and CSF. Neurology 82:1871–8, doi:10.1212/WNL.0000000000000445
Article
CAS
PubMed
Google Scholar