de Lau LM, Breteler MM: Epidemiology of Parkinson’s disease. Lancet Neurol 2006, 5: 525–535. 10.1016/S1474-4422(06)70471-9
PubMed
Google Scholar
Lees AJ, Hardy J, Revesz T: Parkinson's disease. Lancet 2009, 373: 2055–2066. 10.1016/S0140-6736(09)60492-X
CAS
PubMed
Google Scholar
Dickson DW: Parkinson's disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med 2012, 2: a009258.
PubMed Central
PubMed
Google Scholar
Stefanis L: alpha-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2: a009399.
PubMed Central
PubMed
Google Scholar
Lashuel HA, Overk CR, Oueslati A, Masliah E: The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 2013, 14: 38–48.
PubMed Central
CAS
PubMed
Google Scholar
Halliday GM, Holton JL, Revesz T, Dickson DW: Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011, 122: 187–204. 10.1007/s00401-011-0852-9
CAS
PubMed
Google Scholar
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT: Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011, 1: a006189.
PubMed Central
PubMed
Google Scholar
Irwin DJ, Lee VM, Trojanowski JQ: Parkinson's disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci 2013, 14: 626–636. 10.1038/nrn3549
PubMed Central
CAS
PubMed
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al.: Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997, 276: 2045–2047. 10.1126/science.276.5321.2045
CAS
PubMed
Google Scholar
Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nat Genet 1998, 18: 106–108. 10.1038/ng0298-106
CAS
PubMed
Google Scholar
Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, et al.: The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004, 55: 164–173. 10.1002/ana.10795
CAS
PubMed
Google Scholar
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, et al.: alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003, 302: 841. 10.1126/science.1090278
CAS
PubMed
Google Scholar
Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A: Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 2004, 364: 1169–1171. 10.1016/S0140-6736(04)17104-3
CAS
PubMed
Google Scholar
Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, et al.: Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 2004, 364: 1167–1169. 10.1016/S0140-6736(04)17103-1
CAS
PubMed
Google Scholar
Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S, et al.: Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 2011, 377: 641–649.
PubMed
Google Scholar
Dimant H, Ebrahimi-Fakhari D, McLean PJ: Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012, 18: 589–601. 10.1177/1073858412441372
PubMed Central
PubMed
Google Scholar
Ebrahimi-Fakhari D, Wahlster L, McLean PJ: Molecular Chaperones in Parkinson's Disease - Present and Future. J Parkinsons Dis 2011, 1: 299–320.
PubMed Central
CAS
PubMed
Google Scholar
Ebrahimi-Fakhari D, Wahlster L, McLean PJ: Protein degradation pathways in Parkinson's disease: curse or blessing. Acta Neuropathol 2012, 124: 153–172. 10.1007/s00401-012-1004-6
PubMed Central
CAS
PubMed
Google Scholar
Kalia LV, Kalia SK, McLean PJ, Lozano AM: Lang AE: alpha-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 2013, 73: 155–169. 10.1002/ana.23746
PubMed Central
CAS
PubMed
Google Scholar
Ebrahimi-Fakhari D, McLean PJ, Unni VK: Alpha-synuclein's degradation in vivo: opening a new (cranial) window on the roles of degradation pathways in Parkinson disease. Autophagy 2012, 8: 281–283. 10.4161/auto.8.2.18938
PubMed Central
CAS
PubMed
Google Scholar
Cook C, Stetler C, Petrucelli L: Disruption of protein quality control in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2: a009423.
PubMed Central
PubMed
Google Scholar
Kalia SK, Kalia LV, McLean PJ: Molecular chaperones as rational drug targets for Parkinson's disease therapeutics. CNS Neurol Disord Drug Targets 2010, 9: 741–753. 10.2174/187152710793237386
PubMed Central
CAS
PubMed
Google Scholar
Nixon RA: The role of autophagy in neurodegenerative disease. Nat Med 2013, 19: 983–997. 10.1038/nm.3232
CAS
PubMed
Google Scholar
Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC: Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005, 123: 383–396. 10.1016/j.cell.2005.09.028
CAS
PubMed
Google Scholar
Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Sudhof TC: Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329: 1663–1667. 10.1126/science.1195227
PubMed Central
CAS
PubMed
Google Scholar
Davidson WS, Jonas A, Clayton DF, George JM: Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998, 273: 9443–9449. 10.1074/jbc.273.16.9443
CAS
PubMed
Google Scholar
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr: NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. Biochemistry 1996, 35: 13709–13715. 10.1021/bi961799n
CAS
PubMed
Google Scholar
Bartels T, Choi JG, DJ S: alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011, 477: 107–110. 10.1038/nature10324
PubMed Central
CAS
PubMed
Google Scholar
Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, et al.: A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 2011, 108: 17797–17802. 10.1073/pnas.1113260108
PubMed Central
CAS
PubMed
Google Scholar
Dettmer U, Newman AJ, Luth ES, Bartels T, Selkoe D: In vivo cross-linking reveals principally oligomeric forms of alpha-synuclein and beta-synuclein in neurons and non-neural cells. J Biol Chem 2013, 288: 6371–6385. 10.1074/jbc.M112.403311
PubMed Central
CAS
PubMed
Google Scholar
Burre J, Vivona S, Diao J, Sharma M, Brunger AT, Sudhof TC: Properties of native brain alpha-synuclein. Nature 2013, 498: E4-E6. discussion E6–7 10.1038/nature12125
PubMed Central
CAS
PubMed
Google Scholar
Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, et al.: alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 2012, 287: 15345–15364. 10.1074/jbc.M111.318949
PubMed Central
CAS
PubMed
Google Scholar
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr: Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 2000, 97: 571–576. 10.1073/pnas.97.2.571
PubMed Central
CAS
PubMed
Google Scholar
Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E: Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 1999, 10: 717–721. 10.1097/00001756-199903170-00011
CAS
PubMed
Google Scholar
Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T: alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002, 4: 160–164.
CAS
PubMed
Google Scholar
Paleologou KE, Oueslati A, Shakked G, Rospigliosi CC, Kim HY, Lamberto GR, Fernandez CO, Schmid A, Chegini F, Gai WP, et al.: Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 2010, 30: 3184–3198. 10.1523/JNEUROSCI.5922-09.2010
PubMed Central
CAS
PubMed
Google Scholar
Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jakala P, Hartmann T, Price DL, Lee MK: Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A 2005, 102: 2162–2167. 10.1073/pnas.0406976102
PubMed Central
CAS
PubMed
Google Scholar
Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT: Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 2007, 170: 1725–1738. 10.2353/ajpath.2007.061232
PubMed Central
CAS
PubMed
Google Scholar
Perrin RJ, Woods WS, Clayton DF, George JM: Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 2001, 276: 41958–41962. 10.1074/jbc.M105022200
CAS
PubMed
Google Scholar
Sharon R, Bar-Joseph I, Frosch MP, Walsh DM, Hamilton JA, Selkoe DJ: The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson's disease. Neuron 2003, 37: 583–595. 10.1016/S0896-6273(03)00024-2
CAS
PubMed
Google Scholar
Karube H, Sakamoto M, Arawaka S, Hara S, Sato H, Ren CH, Goto S, Koyama S, Wada M, Kawanami T, et al.: N-terminal region of alpha-synuclein is essential for the fatty acid-induced oligomerization of the molecules. FEBS Lett 2008, 582: 3693–3700. 10.1016/j.febslet.2008.10.001
CAS
PubMed
Google Scholar
Paleologou KE, Kragh CL, Mann DM, Salem SA, Al-Shami R, Allsop D, Hassan AH, Jensen PH, El-Agnaf OM: Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain 2009, 132: 1093–1101.
PubMed
Google Scholar
Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, Hyman BT, McLean PJ: Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One 2008, 3: e1867. 10.1371/journal.pone.0001867
PubMed Central
PubMed
Google Scholar
Tetzlaff JE, Putcha P, Outeiro TF, Ivanov A, Berezovska O, Hyman BT, McLean PJ: CHIP targets toxic alpha-Synuclein oligomers for degradation. J Biol Chem 2008, 283: 17962–17968. 10.1074/jbc.M802283200
PubMed Central
CAS
PubMed
Google Scholar
Putcha P, Danzer KM, Kranich LR, Scott A, Silinski M, Mabbett S, Hicks CD, Veal JM, Steed PM, Hyman BT, McLean PJ: Brain-permeable small-molecule inhibitors of Hsp90 prevent alpha-synuclein oligomer formation and rescue alpha-synuclein-induced toxicity. J Pharmacol Exp Ther 2010, 332: 849–857. 10.1124/jpet.109.158436
PubMed Central
CAS
PubMed
Google Scholar
Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ: Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. Faseb J 2011, 25: 326–336. 10.1096/fj.10-164624
PubMed Central
CAS
PubMed
Google Scholar
Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, et al.: In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 2011, 108: 4194–4199. 10.1073/pnas.1100976108
PubMed Central
CAS
PubMed
Google Scholar
Dimant H, Kalia S, Kalia L, Zhu L, Kibuuka L, Ebrahimi-Fakhari D, McFarland N, Fan Z, Hyman B, McLean P: Direct detection of alpha synuclein oligomers in vivo. Acta Neuropathologica Communications 2013, 1: 6. 10.1186/2051-5960-1-6
PubMed Central
PubMed
Google Scholar
Angot E, Steiner JA, Hansen C, Li JY, Brundin P: Are synucleinopathies prion-like disorders? Lancet Neurol 2010, 9: 1128–1138. 10.1016/S1474-4422(10)70213-1
PubMed
Google Scholar
Hansen C, Li JY: Beyond alpha-synuclein transfer: pathology propagation in Parkinson's disease. Trends Mol Med 2012, 18: 248–255. 10.1016/j.molmed.2012.03.002
CAS
PubMed
Google Scholar
Visanji N, Brooks P, Hazrati L-N, Lang A: The prion hypothesis in Parkinson's disease: Braak to the future. Acta Neuropathologica Communications 2013, 1: 2. 10.1186/2051-5960-1-2
PubMed Central
PubMed
Google Scholar
Hartl FU, Bracher A, Hayer-Hartl M: Molecular chaperones in protein folding and proteostasis. Nature 2011, 475: 324–332. 10.1038/nature10317
CAS
PubMed
Google Scholar
Tyedmers J, Mogk A, Bukau B: Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010, 11: 777–788. 10.1038/nrm2993
CAS
PubMed
Google Scholar
Gidalevitz T, Prahlad V, Morimoto RI: The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol 2011, 3: a009704.
PubMed Central
PubMed
Google Scholar
Finka A, Goloubinoff P: Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013, 18: 591–605. 10.1007/s12192-013-0413-3
PubMed Central
CAS
PubMed
Google Scholar
Hartl FU, Hayer-Hartl M: Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 2009, 16: 574–581. 10.1038/nsmb.1591
CAS
PubMed
Google Scholar
Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK: Distinct Roles In Vivo for the Ubiquitin-Proteasome System and the Autophagy-Lysosomal Pathway in the Degradation of {alpha}-Synuclein. J Neurosci 2011, 31: 14508–14520. 10.1523/JNEUROSCI.1560-11.2011
PubMed Central
CAS
PubMed
Google Scholar
Finka A, Mattoo RU, Goloubinoff P: Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells. Cell Stress Chaperones 2011, 16: 15–31. 10.1007/s12192-010-0216-8
PubMed Central
CAS
PubMed
Google Scholar
Richter K, Haslbeck M, Buchner J: The heat shock response: life on the verge of death. Mol Cell 2010, 40: 253–266. 10.1016/j.molcel.2010.10.006
CAS
PubMed
Google Scholar
Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU: Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2010, 2: a004390.
PubMed Central
CAS
PubMed
Google Scholar
Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R: Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 1998, 94: 471–480. 10.1016/S0092-8674(00)81588-3
CAS
PubMed
Google Scholar
Mosser DD, Theodorakis NG, Morimoto RI: Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 1988, 8: 4736–4744.
PubMed Central
CAS
PubMed
Google Scholar
Morimoto RI: Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998, 12: 3788–3796. 10.1101/gad.12.24.3788
CAS
PubMed
Google Scholar
Shi Y, Mosser DD, Morimoto RI: Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 1998, 12: 654–666. 10.1101/gad.12.5.654
PubMed Central
CAS
PubMed
Google Scholar
Kaushik S, Cuervo AM: Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 2012, 22: 407–417. 10.1016/j.tcb.2012.05.006
PubMed Central
CAS
PubMed
Google Scholar
Dice JF: Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990, 15: 305–309. 10.1016/0968-0004(90)90019-8
CAS
PubMed
Google Scholar
Chiang HL, Terlecky SR, Plant CP, Dice JF: A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989, 246: 382–385. 10.1126/science.2799391
CAS
PubMed
Google Scholar
Agarraberes FA, Dice JF: A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 2001, 114: 2491–2499.
CAS
PubMed
Google Scholar
Cuervo AM, Dice JF: A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996, 273: 501–503. 10.1126/science.273.5274.501
CAS
PubMed
Google Scholar
Agarraberes FA, Terlecky SR, Dice JF: An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 1997, 137: 825–834. 10.1083/jcb.137.4.825
PubMed Central
CAS
PubMed
Google Scholar
Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM: The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 2008, 28: 5747–5763. 10.1128/MCB.02070-07
PubMed Central
CAS
PubMed
Google Scholar
Cuervo AM, Dice JF, Knecht E: A population of rat liver lysosomes responsible for the selective uptake and degradation of cytosolic proteins. J Biol Chem 1997, 272: 5606–5615. 10.1074/jbc.272.9.5606
CAS
PubMed
Google Scholar
Cuervo AM, Dice JF: Age-related decline in chaperone-mediated autophagy. J Biol Chem 2000, 275: 31505–31513.
CAS
PubMed
Google Scholar
Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M, Cuervo AM: Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 2007, 120: 782–791. 10.1242/jcs.001073
CAS
PubMed
Google Scholar
Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY: Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 1998, 19: 148–154. 10.1038/502
CAS
PubMed
Google Scholar
Kazemi-Esfarjani P, Benzer S: Genetic suppression of polyglutamine toxicity in Drosophila. Science 2000, 287: 1837–1840. 10.1126/science.287.5459.1837
CAS
PubMed
Google Scholar
Chai Y, Koppenhafer SL, Bonini NM, Paulson HL: Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J Neurosci 1999, 19: 10338–10347.
CAS
PubMed
Google Scholar
Warrick JM, Chan HY, Gray-Board GL, Chai Y, Paulson HL, Bonini NM: Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat Genet 1999, 23: 425–428. 10.1038/70532
CAS
PubMed
Google Scholar
McLean PJ, Kawamata H, Shariff S, Hewett J, Sharma N, Ueda K, Breakefield XO, Hyman BT: TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 2002, 83: 846–854. 10.1046/j.1471-4159.2002.01190.x
CAS
PubMed
Google Scholar
Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M, et al.: Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol 2006, 168: 947–961. 10.2353/ajpath.2006.050770
PubMed Central
CAS
PubMed
Google Scholar
Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM: Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 2002, 295: 865–868. 10.1126/science.1067389
CAS
PubMed
Google Scholar
Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin J, Pan C, Shin J, Zhu D, Zhang J: Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 2007, 17: 139–145. 10.1111/j.1750-3639.2007.00048.x
CAS
PubMed
Google Scholar
Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C, Montine TJ, Montine KS, Aebersold RH, Zhang J: Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 2004, 279: 39155–39164. 10.1074/jbc.M405456200
CAS
PubMed
Google Scholar
Kuhn K, Wellen J, Link N, Maskri L, Lubbert H, Stichel CC: The mouse MPTP model: gene expression changes in dopaminergic neurons. Eur J Neurosci 2003, 17: 1–12. 10.1046/j.1460-9568.2003.02408.x
PubMed
Google Scholar
St Martin JL, Klucken J, Outeiro TF, Nguyen P, Keller-McGandy C, Cantuti-Castelvetri I, Grammatopoulos TN, Standaert DG, Hyman BT, McLean PJ: Dopaminergic neuron loss and up-regulation of chaperone protein mRNA induced by targeted over-expression of alpha-synuclein in mouse substantia nigra. J Neurochem 2007, 100: 1449–1457.
CAS
PubMed
Google Scholar
Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L: SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci 2012, 32: 124–132. 10.1523/JNEUROSCI.3442-11.2012
PubMed Central
CAS
PubMed
Google Scholar
Fan GH, Zhou HY, Yang H, Chen SD: Heat shock proteins reduce alpha-synuclein aggregation induced by MPP + in SK-N-SH cells. FEBS Lett 2006, 580: 3091–3098. 10.1016/j.febslet.2006.04.057
CAS
PubMed
Google Scholar
Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, Hyman BT, McLean PJ: Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 2006, 351: 631–638. 10.1016/j.bbrc.2006.10.085
PubMed Central
CAS
PubMed
Google Scholar
Zourlidou A: Payne Smith MD, Latchman DS: HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J Neurochem 2004, 88: 1439–1448. 10.1046/j.1471-4159.2003.02273.x
CAS
PubMed
Google Scholar
Klucken J, Shin Y, Hyman BT, McLean PJ: A single amino acid substitution differentiates Hsp70-dependent effects on alpha-synuclein degradation and toxicity. Biochem Biophys Res Commun 2004, 325: 367–373. 10.1016/j.bbrc.2004.10.037
CAS
PubMed
Google Scholar
Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ: Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity. J Biol Chem 2004, 279: 25497–25502. 10.1074/jbc.M400255200
CAS
PubMed
Google Scholar
Shimshek DR, Mueller M, Wiessner C, Schweizer T, van der Putten PH: The HSP70 molecular chaperone is not beneficial in a mouse model of alpha-synucleinopathy. PLoS One 2010, 5: e10014. 10.1371/journal.pone.0010014
PubMed Central
PubMed
Google Scholar
Cao S, Gelwix CC, Caldwell KA, Caldwell GA: Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 2005, 25: 3801–3812. 10.1523/JNEUROSCI.5157-04.2005
CAS
PubMed
Google Scholar
Li X, Lee J, Parsons D, Janaurajs K, Standaert DG: Evaluation of TorsinA as a target for Parkinson disease therapy in mouse models. PLoS One 2012, 7: e50063. 10.1371/journal.pone.0050063
PubMed Central
CAS
PubMed
Google Scholar
Luk KC, Mills IP, Trojanowski JQ, Lee VM: Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 2008, 47: 12614–12625. 10.1021/bi801475r
PubMed Central
CAS
PubMed
Google Scholar
Huang C, Cheng H, Hao S, Zhou H, Zhang X, Gao J, Sun QH, Hu H, Wang CC: Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 2006, 364: 323–336. 10.1016/j.jmb.2006.08.062
CAS
PubMed
Google Scholar
Redeker V, Pemberton S, Bienvenut W, Bousset L, Melki R: Identification of Protein Interfaces between alpha-Synuclein, the Principal Component of Lewy Bodies in Parkinson Disease, and the Molecular Chaperones Human Hsc70 and the Yeast Ssa1p. J Biol Chem 2012, 287: 32630–32639. 10.1074/jbc.M112.387530
PubMed Central
CAS
PubMed
Google Scholar
Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman BT: Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J 2006, 20: 2050–2057. 10.1096/fj.05-5422com
CAS
PubMed
Google Scholar
Bruinsma IB, Bruggink KA, Kinast K, Versleijen AA, Segers-Nolten IM, Subramaniam V, Kuiperij HB, Boelens W, de Waal RM, Verbeek MM: Inhibition of alpha-synuclein aggregation by small heat shock proteins. Proteins 2011, 79: 2956–2967. 10.1002/prot.23152
CAS
PubMed
Google Scholar
Duennwald ML, Echeverria A, Shorter J: Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 2012, 10: e1001346. 10.1371/journal.pbio.1001346
PubMed Central
CAS
PubMed
Google Scholar
Falsone SF, Kungl AJ, Rek A, Cappai R, Zangger K: The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein alpha-synuclein. J Biol Chem 2009, 284: 31190–31199. 10.1074/jbc.M109.057240
PubMed Central
CAS
PubMed
Google Scholar
Daturpalli S, Waudby CA, Meehan S, Jackson SE: Hsp90 Inhibits alpha-Synuclein Aggregation by Interacting with Soluble Oligomers. J Mol Biol 2013, 22: 4614–4628.
Google Scholar
Kourtis N, Tavernarakis N: Cellular stress response pathways and ageing: intricate molecular relationships. Embo J 2011, 30: 2520–2531. 10.1038/emboj.2011.162
PubMed Central
CAS
PubMed
Google Scholar
Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE: Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 1992, 140: 345–356.
PubMed Central
CAS
PubMed
Google Scholar
Braak H, Del Tredici K, Sandmann-Kiel D, Rub U, Schultz C: Nerve cells expressing heat-shock proteins in Parkinson's disease. Acta Neuropathol 2001, 102: 449–454.
CAS
PubMed
Google Scholar
Waudby CA, Knowles TP, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S: The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 2010, 98: 843–851. 10.1016/j.bpj.2009.10.056
PubMed Central
CAS
PubMed
Google Scholar
Cantuti-Castelvetri I, Klucken J, Ingelsson M, Ramasamy K, McLean PJ, Frosch MP, Hyman BT, Standaert DG: Alpha-synuclein and chaperones in dementia with Lewy bodies. J Neuropathol Exp Neurol 2005, 64: 1058–1066. 10.1097/01.jnen.0000190063.90440.69
CAS
PubMed
Google Scholar
Klucken J, Ingelsson M, Shin Y, Irizarry MC, Hedley-Whyte ET, Frosch M, Growdon J, McLean P, Hyman BT: Clinical and biochemical correlates of insoluble alpha-synuclein in dementia with Lewy bodies. Acta Neuropathol 2006, 111: 101–108. 10.1007/s00401-005-0027-7
CAS
PubMed
Google Scholar
Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA, Schapira AH: Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol 2010, 67: 1464–1472.
PubMed
Google Scholar
Hauser MA, Li YJ, Xu H, Noureddine MA, Shao YS, Gullans SR, Scherzer CR, Jensen RV, McLaurin AC, Gibson JR, et al.: Expression profiling of substantia nigra in Parkinson disease, progressive supranuclear palsy, and frontotemporal dementia with parkinsonism. Arch Neurol 2005, 62: 917–921.
PubMed
Google Scholar
Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH: Alterations in lysosomal and proteasomal markers in Parkinson's disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 2009, 35: 385–398. 10.1016/j.nbd.2009.05.023
CAS
PubMed
Google Scholar
Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E: Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 2010, 5: e9313. 10.1371/journal.pone.0009313
PubMed Central
PubMed
Google Scholar
Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M: Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci 2010, 30: 12535–12544. 10.1523/JNEUROSCI.1920-10.2010
CAS
PubMed
Google Scholar
Klucken J, Poehler AM, Ebrahimi-Fakhari D, Schneider J, Nuber S, Rockenstein E, Schlotzer-Schrehardt U, Hyman BT, McLean PJ, Masliah E, Winkler J: Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. Autophagy 2012, 8: 754–766. 10.4161/auto.19371
PubMed Central
CAS
PubMed
Google Scholar
Higashi S, Moore DJ, Minegishi M, Kasanuki K, Fujishiro H, Kabuta T, Togo T, Katsuse O, Uchikado H, Furukawa Y, et al.: Localization of MAP1-LC3 in vulnerable neurons and Lewy bodies in brains of patients with dementia with Lewy bodies. J Neuropathol Exp Neurol 2011, 70: 264–280. 10.1097/NEN.0b013e318211c86a
CAS
PubMed
Google Scholar
Hinault MP, Cuendet AF, Mattoo RU, Mensi M, Dietler G, Lashuel HA, Goloubinoff P: Stable alpha-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones. J Biol Chem 2010, 285: 38173–38182. 10.1074/jbc.M110.127753
PubMed Central
CAS
PubMed
Google Scholar
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004, 305: 1292–1295. 10.1126/science.1101738
CAS
PubMed
Google Scholar
Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L: Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008, 283: 23542–23556. 10.1074/jbc.M801992200
PubMed Central
CAS
PubMed
Google Scholar
Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L: Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 2009, 4: e5515. 10.1371/journal.pone.0005515
PubMed Central
PubMed
Google Scholar
Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, et al.: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 2008, 118: 777–788.
PubMed Central
CAS
PubMed
Google Scholar
Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z: Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323: 124–127. 10.1126/science.1166088
PubMed Central
CAS
PubMed
Google Scholar
Lavedan C: The synuclein family. Genome Res 1998, 8: 871–880.
CAS
PubMed
Google Scholar
Mak SK, McCormack AL, Manning-Bog AB, Cuervo AM, Di Monte DA: Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 2010, 285: 13621–13629. 10.1074/jbc.M109.074617
PubMed Central
CAS
PubMed
Google Scholar
Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper JM: Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease. Cell Death Dis 2013, 4: e545. 10.1038/cddis.2013.73
PubMed Central
CAS
PubMed
Google Scholar
Malkus KA, Ischiropoulos H: Regional deficiencies in chaperone-mediated autophagy underlie alpha-synuclein aggregation and neurodegeneration. Neurobiol Dis 2012, 46: 732–744. 10.1016/j.nbd.2012.03.017
PubMed Central
CAS
PubMed
Google Scholar
Xilouri M, Brekk OR, Landeck N, Pitychoutis PM, Papasilekas T, Papadopoulou-Daifoti Z, Kirik D, Stefanis L: Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration. Brain 2013, 136: 2130–2146. 10.1093/brain/awt131
PubMed
Google Scholar
Venderova K, Park DS: Programmed cell death in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2: a009365.
PubMed Central
PubMed
Google Scholar
Galluzzi L, Blomgren K, Kroemer G: Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci 2009, 10: 481–494. 10.1038/nrn2665
CAS
PubMed
Google Scholar
Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C: Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med 2008, 12: 743–761. 10.1111/j.1582-4934.2008.00273.x
PubMed Central
CAS
PubMed
Google Scholar
Fulda S, Gorman AM, Hori O, Samali A: Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010, 2010: 214074.
PubMed Central
PubMed
Google Scholar
Benarroch EE: Heat shock proteins: multiple neuroprotective functions and implications for neurologic disease. Neurology 2011, 76: 660–667. 10.1212/WNL.0b013e31820c3119
PubMed
Google Scholar
Stankiewicz AR, Lachapelle G, Foo CP, Radicioni SM, Mosser DD: Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. J Biol Chem 2005, 280: 38729–38739. 10.1074/jbc.M509497200
CAS
PubMed
Google Scholar
Gotoh T, Terada K, Oyadomari S: Mori M: hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 2004, 11: 390–402. 10.1038/sj.cdd.4401369
CAS
PubMed
Google Scholar
Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES: Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000, 2: 476–483. 10.1038/35019510
CAS
PubMed
Google Scholar
Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G: Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001, 3: 839–843. 10.1038/ncb0901-839
CAS
PubMed
Google Scholar
Sabirzhanov B, Stoica BA, Hanscom M, Piao CS, Faden AI: Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 2012, 123: 542–554. 10.1111/j.1471-4159.2012.07927.x
PubMed Central
CAS
PubMed
Google Scholar
Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR: Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000, 2: 469–475. 10.1038/35019501
CAS
PubMed
Google Scholar
Ruchalski K, Mao H, Li Z, Wang Z, Gillers S, Wang Y, Mosser DD, Gabai V, Schwartz JH, Borkan SC: Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem 2006, 281: 7873–7880. 10.1074/jbc.M513728200
CAS
PubMed
Google Scholar
Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E, Kouranti I, Spahr C, Pance A, Kroemer G, Garrido C: Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 2003, 22: 6669–6678. 10.1038/sj.onc.1206794
CAS
PubMed
Google Scholar
Matsumori Y, Hong SM, Aoyama K, Fan Y, Kayama T, Sheldon RA, Vexler ZS, Ferriero DM, Weinstein PR, Liu J: Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J Cereb Blood Flow Metab 2005, 25: 899–910. 10.1038/sj.jcbfm.9600080
CAS
PubMed
Google Scholar
Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, Gurbuxani S, Arrigo AP, Kroemer G, Solary E, Garrido C: Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000, 2: 645–652. 10.1038/35023595
CAS
PubMed
Google Scholar
Nylandsted J, Gyrd-Hansen M, Danielewicz A, Fehrenbacher N, Lademann U, Hoyer-Hansen M, Weber E, Multhoff G, Rohde M, Jaattela M: Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 2004, 200: 425–435. 10.1084/jem.20040531
PubMed Central
CAS
PubMed
Google Scholar
Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini MV: Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 2009, 163: 735–740. 10.1016/j.neuroscience.2009.06.070
CAS
PubMed
Google Scholar
Quigney DJ, Gorman AM, Samali A: Heat shock protects PC12 cells against MPP + toxicity. Brain Res 2003, 993: 133–139. 10.1016/j.brainres.2003.09.004
CAS
PubMed
Google Scholar
Bush KT, Goldberg AL, Nigam SK: Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 1997, 272: 9086–9092. 10.1074/jbc.272.14.9086
CAS
PubMed
Google Scholar
Dong Z, Wolfer DP, Lipp HP, Bueler H: Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 2005, 11: 80–88.
CAS
PubMed
Google Scholar
Nagel F, Falkenburger BH, Tonges L, Kowsky S, Poppelmeyer C, Schulz JB, Bahr M, Dietz GP: Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson's disease. J Neurochem 2008, 105: 853–864. 10.1111/j.1471-4159.2007.05204.x
CAS
PubMed
Google Scholar
Gorman AM, Szegezdi E, Quigney DJ, Samali A: Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochem Biophys Res Commun 2005, 327: 801–810. 10.1016/j.bbrc.2004.12.066
CAS
PubMed
Google Scholar
Walter P, Ron D: The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011, 334: 1081–1086. 10.1126/science.1209038
CAS
PubMed
Google Scholar
Wang S, Kaufman RJ: The impact of the unfolded protein response on human disease. J Cell Biol 2012, 197: 857–867. 10.1083/jcb.201110131
PubMed Central
CAS
PubMed
Google Scholar
Korennykh A, Walter P: Structural basis of the unfolded protein response. Annu Rev Cell Dev Biol 2012, 28: 251–277. 10.1146/annurev-cellbio-101011-155826
CAS
PubMed
Google Scholar
Gorman AM, Healy SJ, Jager R, Samali A: Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther 2012, 134: 306–316. 10.1016/j.pharmthera.2012.02.003
CAS
PubMed
Google Scholar
Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W: Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 2007, 354: 707–711. 10.1016/j.bbrc.2007.01.043
CAS
PubMed
Google Scholar
Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W: Activation of the unfolded protein response is an early event in Alzheimer's and Parkinson's disease. Neurodegener Dis 2012, 10: 212–215. 10.1159/000334536
CAS
PubMed
Google Scholar
Makioka K, Yamazaki T, Fujita Y, Takatama M, Nakazato Y, Okamoto K: Involvement of endoplasmic reticulum stress defined by activated unfolded protein response in multiple system atrophy. J Neurol Sci 2010, 297: 60–65. 10.1016/j.jns.2010.06.019
CAS
PubMed
Google Scholar
Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM, Ross CA: Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 2005, 14: 3801–3811. 10.1093/hmg/ddi396
CAS
PubMed
Google Scholar
Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al.: Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 2006, 313: 324–328. 10.1126/science.1129462
PubMed Central
CAS
PubMed
Google Scholar
Sugeno N, Takeda A, Hasegawa T, Kobayashi M, Kikuchi A, Mori F, Wakabayashi K, Itoyama Y: Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. J Biol Chem 2008, 283: 23179–23188. 10.1074/jbc.M802223200
CAS
PubMed
Google Scholar
Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C, Spano P: Induction of the unfolded protein response by alpha-synuclein in experimental models of Parkinson's disease. J Neurochem 2011, 116: 588–605. 10.1111/j.1471-4159.2010.07143.x
CAS
PubMed
Google Scholar
Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL, Lee MK: Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci 2012, 32: 3306–3320. 10.1523/JNEUROSCI.5367-11.2012
PubMed Central
CAS
PubMed
Google Scholar
Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N, Gorbatyuk OS: Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 2012, 20: 1327–1337. 10.1038/mt.2012.28
PubMed Central
CAS
PubMed
Google Scholar
Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK: Accumulation of toxic alpha-synuclein oligomer within endoplasmic reticulum occurs in alpha-synucleinopathy in vivo. J Neurosci 2012, 32: 3301–3305. 10.1523/JNEUROSCI.5368-11.2012
PubMed Central
CAS
PubMed
Google Scholar
de Munter JP, Lee C, Wolters E: Cell based therapy in Parkinsonism. Transl Neurodegener 2013, 2: 13. 10.1186/2047-9158-2-13
PubMed Central
CAS
PubMed
Google Scholar
Andreux PA, Houtkooper RH, Auwerx J: Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov 2013, 12: 465–483. 10.1038/nrd4023
PubMed Central
CAS
PubMed
Google Scholar
Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, et al.: Priorities in Parkinson's disease research. Nat Rev Drug Discov 2011, 10: 377–393. 10.1038/nrd3430
CAS
PubMed
Google Scholar
Voisine C, Pedersen JS, Morimoto RI: Chaperone networks: tipping the balance in protein folding diseases. Neurobiol Dis 2010, 40: 12–20. 10.1016/j.nbd.2010.05.007
PubMed Central
CAS
PubMed
Google Scholar
Auluck PK, Bonini NM: Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 2002, 8: 1185–1186. 10.1038/nm1102-1185
CAS
PubMed
Google Scholar
McLean PJ, Klucken J, Shin Y, Hyman BT: Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun 2004, 321: 665–669. 10.1016/j.bbrc.2004.07.021
CAS
PubMed
Google Scholar
Auluck PK, Meulener MC, Bonini NM: Mechanisms of Suppression of {alpha}-Synuclein Neurotoxicity by Geldanamycin in Drosophila. J Biol Chem 2005, 280: 2873–2878.
CAS
PubMed
Google Scholar
Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN: Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J Mol Biol 2005, 351: 1081–1100. 10.1016/j.jmb.2005.06.060
CAS
PubMed
Google Scholar
Liu J, Zhang JP, Shi M, Quinn T, Bradner J, Beyer R, Chen S, Zhang J: Rab11a and HSP90 regulate recycling of extracellular alpha-synuclein. J Neurosci 2009, 29: 1480–1485. 10.1523/JNEUROSCI.6202-08.2009
PubMed Central
CAS
PubMed
Google Scholar
Emmanouilidou E, Stefanis L, Vekrellis K: Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol Aging 2010, 31: 953–968. 10.1016/j.neurobiolaging.2008.07.008
CAS
PubMed
Google Scholar
Riedel M, Goldbaum O, Schwarz L, Schmitt S, Richter-Landsberg C: 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy. PLoS One 2010, 5: e8753. 10.1371/journal.pone.0008753
PubMed Central
PubMed
Google Scholar
Kilpatrick K, Novoa JA, Hancock T, Guerriero CJ, Wipf P, Brodsky JL, Segatori L: Chemical Induction of Hsp70 Reduces alpha-Synuclein Aggregation in Neuroglioma Cells. ACS Chem Biol 2013, 7: 1460–1468.
Google Scholar
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC: Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 2007, 282: 5641–5652.
CAS
PubMed
Google Scholar
Yu WB, Jiang T, Lan DM, Lu JH, Yue ZY, Wang J, Zhou P: Trehalose inhibits fibrillation of A53T mutant alpha-synuclein and disaggregates existing fibrils. Arch Biochem Biophys 2012, 523: 144–150. 10.1016/j.abb.2012.04.021
CAS
PubMed
Google Scholar
Shaltiel-Karyo R, Frenkel-Pinter M, Rockenstein E, Patrick C, Levy-Sakin M, Schiller A, Egoz-Matia N, Masliah E, Segal D, Gazit E: A blood–brain barrier (BBB) disrupter is also a potent alpha-synuclein (alpha-syn) aggregation inhibitor: a novel dual mechanism of mannitol for the treatment of Parkinson disease (PD). J Biol Chem 2013, 288: 17579–17588. 10.1074/jbc.M112.434787
PubMed Central
CAS
PubMed
Google Scholar
Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H: Inhibition of formation of alpha-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochim Biophys Acta 1830, 2013: 4065–4072.
Google Scholar
Ono K, Ikemoto M, Kawarabayashi T, Ikeda M, Nishinakagawa T, Hosokawa M, Shoji M, Takahashi M, Nakashima M: A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P + A53T transgenic mice. Parkinsonism Relat Disord 2009, 15: 649–654. 10.1016/j.parkreldis.2009.03.002
PubMed
Google Scholar
Porter JR, Fritz CC, Depew KM: Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol 2010, 14: 412–420. 10.1016/j.cbpa.2010.03.019
CAS
PubMed
Google Scholar
Shen HY, He JC, Wang Y, Huang QY, Chen JF: Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem 2005, 280: 39962–39969. 10.1074/jbc.M505524200
CAS
PubMed
Google Scholar
Schulte TW, Neckers LM: The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998, 42: 273–279. 10.1007/s002800050817
CAS
PubMed
Google Scholar
Kim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L, Trepel JB: Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 2009, 9: 1479–1492. 10.2174/156802609789895728
CAS
PubMed
Google Scholar
Cleren C, Calingasan NY, Chen J, Beal MF: Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J Neurochem 2005, 94: 995–1004. 10.1111/j.1471-4159.2005.03253.x
CAS
PubMed
Google Scholar
Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG, Mena MA: The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 2011, 58: 512–520. 10.1016/j.neuint.2011.01.008
CAS
PubMed
Google Scholar
Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, Kaneko M, Okuma Y, et al.: Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 2007, 101: 1491–1504. 10.1111/j.1471-4159.2006.04440.x
CAS
PubMed
Google Scholar
Malik B, Nirmalananthan N, Gray AL, La Spada AR, Hanna MG, Greensmith L: Co-induction of the heat shock response ameliorates disease progression in a mouse model of human spinal and bulbar muscular atrophy: implications for therapy. Brain 2013, 136: 926–943. 10.1093/brain/aws343
PubMed Central
PubMed
Google Scholar
Cudkowicz ME, Shefner JM, Simpson E, Grasso D, Yu H, Zhang H, Shui A, Schoenfeld D, Brown RH, Wieland S, Barber JR: Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve 2008, 38: 837–844. 10.1002/mus.21059
CAS
PubMed
Google Scholar
Lanka V, Wieland S, Barber J, Cudkowicz M: Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs 2009, 18: 1907–1918. 10.1517/13543780903357486
CAS
PubMed
Google Scholar
Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B: Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 2009, 10: 109. 10.1186/1471-2202-10-109
PubMed Central
PubMed
Google Scholar
Neef DW, Turski ML, Thiele DJ: Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 2010, 8: e1000291. 10.1371/journal.pbio.1000291
PubMed Central
PubMed
Google Scholar
Calamini B, Morimoto RI: Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2012, 12: 2623–2640.
PubMed Central
CAS
PubMed
Google Scholar
Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N: Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004, 10: 148–154. 10.1038/nm985
CAS
PubMed
Google Scholar
Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G, Court FA, van Zundert B, Hetz C: Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013, 9: 1308–1320. 10.4161/auto.25188
CAS
PubMed
Google Scholar
Lan DM, Liu FT, Zhao J, Chen Y, Wu JJ, Ding ZT, Yue ZY, Ren HM, Jiang YP, Wang J: Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant alpha-synuclein. Neurochem Res 2012, 37: 2025–2032. 10.1007/s11064-012-0823-0
CAS
PubMed
Google Scholar
Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT, Goedert M: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 2012, 135: 2169–2177. 10.1093/brain/aws143
PubMed Central
PubMed
Google Scholar
Kruger U, Wang Y, Kumar S, Mandelkow EM: Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012, 33: 2291–2305. 10.1016/j.neurobiolaging.2011.11.009
PubMed
Google Scholar