Kaup AR, Mirzakhanian H, Jeste DV, Eyler LT (2011) A review of the brain structure correlates of successful cognitive aging. J Neuropsychiatry Clin Neurosci 23:6–15
Article
PubMed
PubMed Central
Google Scholar
Ackley SF, Zimmerman SC, Brenowitz WD, Tchetgen EJT, Gold AL, Manly JJ, et al (2021) Effect of reductions in amyloid levels on cognitive change in randomized trials: instrumental variable meta-analysis. BMJ 372:n156
Matthews FE, Brayne C, Lowe J, McKeith I, Wharton SB, Ince P (2009) Epidemiological pathology of dementia: attributable-risks at death in the medical research council cognitive function and ageing study. PLoS Med 6:e1000180
Article
PubMed
PubMed Central
Google Scholar
Schneider JA, Arvanitakis Z, Bang W, Bennett DA (2007) Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69:2197–2204
Article
PubMed
Google Scholar
Kapasi A, DeCarli C, Schneider JA (2017) Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol (Berl) 134:171–186
Article
Google Scholar
Power MC, Mormino E, Soldan A, James BD, Yu L, Armstrong NM et al (2018) Combined neuropathological pathways account for age-related risk of dementia. Ann Neurol 84:10–22
Article
CAS
PubMed
PubMed Central
Google Scholar
Murman DL (2015) The impact of age on cognition. Semin Hear 36:111–121
Article
PubMed
PubMed Central
Google Scholar
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ et al (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71:362–381
Article
PubMed
Google Scholar
Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ et al (2019) Introduction to digital image analysis in whole-slide imaging: a white paper from the digital pathology association. J Pathol Inform 10:9
Article
PubMed
PubMed Central
Google Scholar
Signaevsky M, Prastawa M, Farrell K, Tabish N, Baldwin E, Han N et al (2019) Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy. Lab Invest 99:1019–1029
Article
PubMed
PubMed Central
Google Scholar
Tang Z, Chuang KV, DeCarli C, Jin L-W, Beckett L, Keiser MJ et al (2019) Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline. Nat Commun 10:2173
Article
PubMed
PubMed Central
CAS
Google Scholar
Vega AR, Chkheidze R, Jarmale V, Shang P, Foong C, Diamond MI et al (2021) Deep learning reveals disease-specific signatures of white matter pathology in tauopathies. Acta Neuropathol Commun 9:170
Article
CAS
PubMed
PubMed Central
Google Scholar
Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ et al (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25:1301–1309
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F (2021) Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng 5:555–570
Article
PubMed
PubMed Central
Google Scholar
Bell V, Wilkinson S, Greco M, Hendrie C, Mills B, Deeley Q (2020) What is the functional/organic distinction actually doing in psychiatry and neurology? Wellcome Open Res 5:138
Article
PubMed
PubMed Central
Google Scholar
DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32
Article
PubMed
PubMed Central
Google Scholar
Rabinovici GD, Carrillo MC, Forman M, DeSanti S, Miller DS, Kozauer N et al (2017) Multiple comorbid neuropathologies in the setting of Alzheimer’s disease neuropathology and implications for drug development. Alzheimers Dement N Y N 3:83–91
Article
Google Scholar
Houx PJ, Shepherd J, Blauw G-J, Murphy MB, Ford I, Bollen EL et al (2002) Testing cognitive function in elderly populations: the PROSPER study. PROspective Study of Pravastatin in the Elderly at Risk. J Neurol Neurosurg Psychiatry 73:385–389
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim ASP, Gaiteri C, Yu L, Sohail S, Swardfager W, Tasaki S et al (2018) Seasonal plasticity of cognition and related biological measures in adults with and without Alzheimer disease: analysis of multiple cohorts. PLoS Med 15:e1002647
Article
PubMed
PubMed Central
CAS
Google Scholar
Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N, Thomas RG et al (2020) Screening for cognitive impairment in older adults: updated evidence report and systematic review for the us preventive services task force. JAMA 323:764–785
Article
PubMed
Google Scholar
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M et al (2022) Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol (Berl) 143:33–53
Article
CAS
Google Scholar
Iida MA, Farrell K, Walker JM, Richardson TE, Marx GA, Bryce CH et al (2021) Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 9:134
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker JM, Richardson TE, Farrell K, Iida MA, Foong C, Shang P et al (2021) Early selective vulnerability of the CA2 hippocampal subfield in primary age-related tauopathy. J Neuropathol Exp Neurol 80:102–111
Article
CAS
PubMed
PubMed Central
Google Scholar
Carriel V, Campos A, Alaminos M, Raimondo S, Geuna S (2017) Staining methods for normal and regenerative myelin in the nervous system. Methods Mol Biol Clifton NJ 1560:207–218
Article
CAS
Google Scholar
Scholtz CL (1977) Quantitative histochemistry of myelin using Luxol Fast Blue MBS. Histochem J 9:759–765
Article
CAS
PubMed
Google Scholar
McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH et al (2013) The spectrum of disease in chronic traumatic encephalopathy. Brain J Neurol 136:43–64
Article
Google Scholar
Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I et al (2014) Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol (Berl) 128:755–766
Article
CAS
Google Scholar
Pezzotti P, Scalmana S, Mastromattei A, Di Lallo D (2008) The accuracy of the MMSE in detecting cognitive impairment when administered by general practitioners: a prospective observational study. BMC Fam Pract 9:29
Article
PubMed
PubMed Central
Google Scholar
Fawcett T (2004) ROC graphs: notes and practical considerations for researchers
McKenzie AT, Katsyv I, Song W-M, Wang M, Zhang B (2016) DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC Syst Biol. s[cited 2019 May 2] 10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5111277/
Gutman DA, Khalilia M, Lee S, Nalisnik M, Mullen Z, Beezley J et al (2017) The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research. Cancer Res 77:e75–e78
Article
CAS
PubMed
PubMed Central
Google Scholar
Scutari M (2010) Learning Bayesian networks with the bnlearn R Package. J Stat Softw 35:1–22
Article
Google Scholar
Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216
Article
CAS
PubMed
PubMed Central
Google Scholar
Filley CM (2021) Cognitive dysfunction in white matter disorders: new perspectives in treatment and recovery. J Neuropsychiatry Clin Neurosci 33:349–355
Article
PubMed
Google Scholar
McAleese KE, Miah M, Graham S, Hadfield GM, Walker L, Johnson M et al (2021) Frontal white matter lesions in Alzheimer’s disease are associated with both small vessel disease and AD-associated cortical pathology. Acta Neuropathol (Berl) 142:937–950
Article
CAS
Google Scholar
McAleese KE, Walker L, Graham S, Moya ELJ, Johnson M, Erskine D et al (2017) Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol (Berl) 134:459–473
Article
CAS
Google Scholar
Hill RA, Li AM, Grutzendler J (2018) Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 21:683–695
Article
CAS
PubMed
PubMed Central
Google Scholar
Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462:144–152
Article
PubMed
Google Scholar
Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31:581–593
Article
PubMed
Google Scholar
Alosco ML, Stein TD, Tripodis Y, Chua AS, Kowall NW, Huber BR et al (2019) Association of white matter rarefaction, arteriolosclerosis, and tau with dementia in chronic traumatic encephalopathy. JAMA Neurol 76:1298–1308
Article
PubMed
PubMed Central
Google Scholar
Pfefferbaum A, Adalsteinsson E, Sullivan EV (2006) Dysmorphology and microstructural degradation of the corpus callosum: Interaction of age and alcoholism. Neurobiol Aging 27:994–1009
Article
CAS
PubMed
Google Scholar
Rosenberg GA, Wallin A, Wardlaw JM, Markus HS, Montaner J, Wolfson L et al (2016) Consensus statement for diagnosis of subcortical small vessel disease. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 36:6–25
Article
Google Scholar
Hachinski VC, Potter P, Merskey H (1987) Leuko-araiosis. Arch Neurol 44:21–23
Article
CAS
PubMed
Google Scholar
Marek M, Horyniecki M, Frączek M, Kluczewska E (2018) Leukoaraiosis - new concepts and modern imaging. Pol J Radiol 83:e76-81
Article
PubMed
PubMed Central
Google Scholar
Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838
Article
PubMed
PubMed Central
Google Scholar
Pantoni L, Garcia JH (1997) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659
Article
CAS
PubMed
Google Scholar
Haneuse S, Schildcrout J, Crane P, Sonnen J, Breitner J, Larson E (2009) Adjustment for selection bias in observational studies with application to the analysis of autopsy data. Neuroepidemiology 32:229–239
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K et al (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142:1503–1527
Article
PubMed
PubMed Central
Google Scholar
Roy S, Kumar Jain A, Lal S, Kini J (1993) A study about color normalization methods for histopathology images. Micron Oxf Engl 2018(114):42–61
Google Scholar
Ras G, Xie N, van Gerven M, Doran D (2022) Explainable deep learning: a field guide for the uninitiated. J Artif Intell Res 73:329–396
Article
Google Scholar
Sekiyama K, Takamatsu Y, Koike W, Waragai M, Takenouchi T, Sugama S et al (2016) Insight into the dissociation of behavior from histology in synucleinopathies and in related neurodegenerative diseases. J Alzheimers Dis JAD 52:831–841
Article
CAS
PubMed
Google Scholar