Ahmadian SS, Rezvanian A, Peterson M, Weintraub S, Bigio EH, Mesulam MM, Geula C (2015) Loss of calbindin-D28K is associated with the full range of tangle pathology within basal forebrain cholinergic neurons in Alzheimer's disease. Neurobiol Aging 36:3163–3170. https://doi.org/10.1016/j.neurobiolaging.2015.09.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Altundag A, Ay SA, Hira S, Salihoglu M, Baskoy K, Deniz F, Tekeli H, Kurt O, Yonem A, Hummel T (2017) Olfactory and gustatory functions in patients with non-complicated type 1 diabetes mellitus. Eur Arch Otorhinolaryngol 274:2621–2627. https://doi.org/10.1007/s00405-017-4497-8
Article
PubMed
Google Scholar
Bachor TP, Karbanova J, Buttner E, Bermudez V, Marquioni-Ramella M, Carmeliet P, Corbeil D, Suburo AM (2017) Early ciliary and prominin-1 dysfunctions precede neurogenesis impairment in a mouse model of type 2 diabetes. Neurobiol Dis 108:13–28. https://doi.org/10.1016/j.nbd.2017.07.010
Article
CAS
PubMed
Google Scholar
Baskin DG, Stein LJ, Ikeda H, Woods SC, Figlewicz DP, Porte D, Jr., Greenwood MR, Dorsa DM (1985) Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci 36: 627–633
Bekkers JM, Suzuki N (2013) Neurons and circuits for odor processing in the piriform cortex. Trends Neurosci 36:429–438. https://doi.org/10.1016/j.tins.2013.04.005
Article
CAS
PubMed
Google Scholar
Biessels GJ, Reagan LP (2015) Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci 16:660–671. https://doi.org/10.1038/nrn4019
Article
CAS
PubMed
Google Scholar
Bonfanti L, Olive S, Poulain DA, Theodosis DT (1992) Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. Neuroscience 49:419–436
Article
CAS
PubMed
Google Scholar
Brady DR, Mufson EJ (1997) Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain. Neuroscience 80:1113–1125
Article
CAS
PubMed
Google Scholar
Bramerson A, Johansson L, Ek L, Nordin S, Bende M (2004) Prevalence of olfactory dysfunction: the skovde population-based study. Laryngoscope 114:733–737. https://doi.org/10.1097/00005537-200404000-00026
Article
PubMed
Google Scholar
Candeias E, Sebastiao I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI, Duarte AI (2017) Brain GLP-1/IGF-1 signaling and autophagy mediate Exendin-4 protection against apoptosis in type 2 diabetic rats. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0622-3
Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667. https://doi.org/10.1038/nature08002
Article
CAS
PubMed
PubMed Central
Google Scholar
Cassano T, Romano A, Macheda T, Colangeli R, Cimmino CS, Petrella A, LaFerla FM, Cuomo V, Gaetani S (2011) Olfactory memory is impaired in a triple transgenic model of Alzheimer disease. Behav Brain Res 224:408–412. https://doi.org/10.1016/j.bbr.2011.06.029
Article
PubMed
Google Scholar
Coronas-Samano G, Baker KL, Tan WJ, Ivanova AV, Verhagen JV (2016) Fus1 KO mouse as a model of oxidative stress-mediated sporadic Alzheimer's disease: circadian disruption and long-term spatial and olfactory memory impairments. Front Aging Neurosci 8:268. https://doi.org/10.3389/fnagi.2016.00268
Article
PubMed
PubMed Central
Google Scholar
Cukierman T, Gerstein HC, Williamson JD (2005) Cognitive decline and dementia in diabetes--systematic overview of prospective observational studies. Diabetologia 48:2460–2469. https://doi.org/10.1007/s00125-005-0023-4
Article
CAS
PubMed
Google Scholar
D'Amico M, Di Filippo C, Marfella R, Abbatecola AM, Ferraraccio F, Rossi F, Paolisso G (2010) Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer's prone mice. Exp Gerontol 45:202–207. https://doi.org/10.1016/j.exger.2009.12.004
Article
PubMed
Google Scholar
Darsalia V, Larsson M, Lietzau G, Nathanson D, Nystrom T, Klein T, Patrone C (2016) Gliptins-mediated neuroprotection against stroke requires chronic pre-treatment and is glucagon-like peptide-1 receptor independent. Diabetes Obes Metab. https://doi.org/10.1111/dom.12641
Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A, Patrone C (2013) The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 62:1289–1296. https://doi.org/10.2337/db12-0988
Article
CAS
PubMed
PubMed Central
Google Scholar
Daulatzai MA (2015) Olfactory dysfunction: its early temporal relationship and neural correlates in the pathogenesis of Alzheimer's disease. J Neural Transm (Vienna) 122:1475–1497. https://doi.org/10.1007/s00702-015-1404-6
Article
CAS
Google Scholar
Deacon CF, Holst JJ (2013) Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: comparison, efficacy and safety. Expert Opin Pharmacother 14:2047–2058. https://doi.org/10.1517/14656566.2013.824966
Article
CAS
PubMed
Google Scholar
Doty RL (2017) Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 16:478–488. https://doi.org/10.1016/S1474-4422(17)30123-0
Article
PubMed
Google Scholar
Franks KH, Chuah MI, King AE, Vickers JC (2015) Connectivity of pathology: the olfactory system as a model for network-driven mechanisms of Alzheimer's disease pathogenesis. Front Aging Neurosci 7:234. https://doi.org/10.3389/fnagi.2015.00234
Article
PubMed
PubMed Central
Google Scholar
Gault VA, Lennox R, Flatt PR (2015) Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes Metab. https://doi.org/10.1111/dom.12432
Giger R, Nicoucar K, Kurt AM, Grouzman E, Lacroix JS (2000) Study of the enzyme peptidyl peptidase IV in nasal mucosa. Schweiz Med Wochenschr Suppl 125:99S–101S
Google Scholar
Gilbert PE, Murphy C (2004) The effect of the ApoE epsilon4 allele on recognition memory for olfactory and visual stimuli in patients with pathologically confirmed Alzheimer's disease, probable Alzheimer's disease, and healthy elderly controls. J Clin Exp Neuropsychol 26:779–794. https://doi.org/10.1080/13803390490509439
Article
PubMed
Google Scholar
Gottfried JA (2010) Central mechanisms of odour object perception. Nat Rev Neurosci 11:628–641. https://doi.org/10.1038/nrn2883
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouveri E, Katotomichelakis M, Gouveris H, Danielides V, Maltezos E, Papanas N (2014) Olfactory dysfunction in type 2 diabetes mellitus: an additional manifestation of microvascular disease? Angiology 65:869–876. https://doi.org/10.1177/0003319714520956
Article
CAS
PubMed
Google Scholar
Groeneveld ON, Kappelle LJ, Biessels GJ (2016) Potentials of incretin-based therapies in dementia and stroke in type 2 diabetes mellitus. J Diabetes Invest 7:5–16. https://doi.org/10.1111/jdi.12420
Article
CAS
Google Scholar
Gundersen HJ, Bagger P, Bendtsen TF, Evans SM, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B et al (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS 96:857–881
Article
CAS
PubMed
Google Scholar
Hamilton LK, Aumont A, Julien C, Vadnais A, Calon F, Fernandes KJ (2010) Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer's disease. Eur J Neurosci 32:905–920. https://doi.org/10.1111/j.1460-9568.2010.07379.x
Article
PubMed
Google Scholar
Hardigan T, Yasir A, Abdelsaid M, Coucha M, El-Shaffey S, Li W, Johnson MH, Ergul A (2016) Linagliptin treatment improves cerebrovascular function and remodeling and restores reduced cerebral perfusion in type 2 diabetes. Am J Physiol Regul Integr Comp Physiol 311:R466–R477. https://doi.org/10.1152/ajpregu.00057.2016
Article
PubMed
PubMed Central
Google Scholar
Hardy D, Saghatelyan A (2017) Different forms of structural plasticity in the adult olfactory bulb. Neurogenesis (Austin) 4:e1301850. https://doi.org/10.1080/23262133.2017.1301850
Article
Google Scholar
Hof PR, Morrison JH (1991) Neocortical neuronal subpopulations labeled by a monoclonal antibody to calbindin exhibit differential vulnerability in Alzheimer's disease. Exp Neurol 111:293–301
Article
CAS
PubMed
Google Scholar
Hussain S, Mansouri S, Sjoholm A, Patrone C, Darsalia V (2014) Evidence for cortical neuronal loss in male type 2 diabetic Goto-Kakizaki rats. JAD. https://doi.org/10.3233/JAD-131958
Ichimiya Y, Emson PC, Mountjoy CQ, Lawson DE, Heizmann CW (1988) Loss of calbindin-28K immunoreactive neurones from the cortex in Alzheimer-type dementia. Brain Res 475:156–159
Article
CAS
PubMed
Google Scholar
Inaguma Y, Shinohara H, Inagaki T, Kato K (1992) Immunoreactive parvalbumin concentrations in parahippocampal gyrus decrease in patients with Alzheimer's disease. J Neurol Sci 110:57–61
Article
CAS
PubMed
Google Scholar
Isaacson JS (2010) Odor representations in mammalian cortical circuits. Curr Opin Neurobiol 20:328–331. https://doi.org/10.1016/j.conb.2010.02.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Isik AT, Soysal P, Yay A, Usarel C (2017) The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer's disease. Diabetes Res Clin Pract 123:192–198. https://doi.org/10.1016/j.diabres.2016.12.010
Article
CAS
PubMed
Google Scholar
Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–328. https://doi.org/10.1038/nrn2836
Article
CAS
PubMed
PubMed Central
Google Scholar
Jorgensen MB, Buch NH (1961) Studies on the sense of smell and taste in diabetics. Acta Otolaryngol 53:539–545
Article
CAS
PubMed
Google Scholar
Kalaria RN (2009) Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nature reviews. Neurology 5:305–306. https://doi.org/10.1038/nrneurol.2009.72
PubMed
Google Scholar
Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6:e25760. https://doi.org/10.1371/journal.pone.0025760
Article
CAS
PubMed
PubMed Central
Google Scholar
Kodl CT, Seaquist ER (2008) Cognitive dysfunction and diabetes mellitus. Endocr Rev 29:494–511. https://doi.org/10.1210/er.2007-0034
Article
CAS
PubMed
PubMed Central
Google Scholar
Kook SY, Jeong H, Kang MJ, Park R, Shin HJ, Han SH, Son SM, Song H, Baik SH, Moon M et al (2014) Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ 21:1575–1587. https://doi.org/10.1038/cdd.2014.67
Article
CAS
PubMed
PubMed Central
Google Scholar
Kornelius E, Lin CL, Chang HH, Li HH, Huang WN, Yang YS, Lu YL, Peng CH, Huang CN (2015) DPP-4 inhibitor Linagliptin attenuates Abeta-induced cytotoxicity through activation of AMPK in neuronal cells. CNS Neurosci Ther 21:549–557. https://doi.org/10.1111/cns.12404
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosaraju J, Gali CC, Khatwal RB, Dubala A, Chinni S, Holsinger RM, Madhunapantula VS, Muthureddy Nataraj SK, Basavan D (2013) Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer's disease. Neuropharmacology 72:291–300. https://doi.org/10.1016/j.neuropharm.2013.04.008
Article
CAS
PubMed
Google Scholar
Kosaraju J, Holsinger RM, Guo L, Tam KY (2016) Linagliptin, a dipeptidyl Peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer's disease. Mol Neurobio. https://doi.org/10.1007/s12035-016-0125-7
Kosaraju J, Madhunapantula SV, Chinni S, Khatwal RB, Dubala A, Muthureddy Nataraj SK, Basavan D (2014) Dipeptidyl peptidase-4 inhibition by Pterocarpus Marsupium and Eugenia Jambolana ameliorates streptozotocin induced Alzheimer's disease. Behav Brain Res 267:55–65. https://doi.org/10.1016/j.bbr.2014.03.026
Article
CAS
PubMed
Google Scholar
Lacroix MC, Caillol M, Durieux D, Monnerie R, Grebert D, Pellerin L, Repond C, Tolle V, Zizzari P, Baly C (2015) Long-lasting metabolic imbalance related to obesity alters olfactory tissue homeostasis and impairs olfactory-driven behaviors. Chem Senses 40:537–556. https://doi.org/10.1093/chemse/bjv039
Article
CAS
PubMed
Google Scholar
Lang BT, Yan Y, Dempsey RJ, Vemuganti R (2009) Impaired neurogenesis in adult type-2 diabetic rats. Brain Res 1258:25–33. https://doi.org/10.1016/j.brainres.2008.12.026
Article
CAS
PubMed
Google Scholar
Larsson M, Hedner M, Papenberg G, Seubert J, Backman L, Laukka EJ (2016) Olfactory memory in the old and very old: relations to episodic and semantic memory and APOE genotype. Neurobiol Aging 38:118–126. https://doi.org/10.1016/j.neurobiolaging.2015.11.012
Article
CAS
PubMed
Google Scholar
Le Floch JP, Le Lievre G, Labroue M, Paul M, Peynegre R, Perlemuter L (1993) Smell dysfunction and related factors in diabetic patients. Diabetes Care 16:934–937
Article
CAS
PubMed
Google Scholar
Lehmkuhl AM, Dirr ER, Fleming SM (2014) Olfactory assays for mouse models of neurodegenerative disease. JOVE:e51804. https://doi.org/10.3791/51804
Li W, Howard JD, Gottfried JA (2010) Disruption of odour quality coding in piriform cortex mediates olfactory deficits in Alzheimer's disease. Brain J Neurol 133:2714–2726. https://doi.org/10.1093/brain/awq209
Article
Google Scholar
Li XH, Xin X, Wang Y, Wu JZ, Jin ZD, Ma LN, Nie CJ, Xiao X, Hu Y, Jin MW (2013) Pentamethylquercetin protects against diabetes-related cognitive deficits in diabetic Goto-Kakizaki rats. JAD 34:755–767. https://doi.org/10.3233/JAD-122017
CAS
PubMed
Google Scholar
Lietzau G, Darsalia V, Pintana H, Ostenson CG, Nystrom T, Fisahn A, Patrone C (2017) Type 2 diabetes alters hippocampal gamma oscillations: a potential mechanism behind impaired cognition. Psychoneuroendocrinology 82:46–50. https://doi.org/10.1016/j.psyneuen.2017.04.012
Article
PubMed
Google Scholar
Lietzau G, Nystrom T, Ostenson CG, Darsalia V, Patrone C (2016) Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist Exendin-4. Oncotarget. https://doi.org/10.18632/oncotarget.6823
Livingston JN, Unger JW, Moxley RT, Moss A (1993) Phosphotyrosine-containing proteins in the CNS of obese Zucker rats are decreased in the absence of changes in the insulin receptor. Neuroendocrinology 57:481–488
Article
CAS
PubMed
Google Scholar
Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ (2012) Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11:261–271. https://doi.org/10.1016/S1474-4422(12)70005-4
Article
PubMed
Google Scholar
Mansouri S, Barde S, Ortsater H, Eweida M, Darsalia V, Langel U, Sjoholm A, Hokfelt T, Patrone C (2013) GalR3 activation promotes adult neural stem cell survival in response to a diabetic milieu. J Neurochem 127:209–220. https://doi.org/10.1111/jnc.12396
Article
CAS
PubMed
Google Scholar
Mansouri S, Ortsater H, Pintor Gallego O, Darsalia V, Sjoholm A, Patrone C (2011) Pituitary adenylate cyclase-activating polypeptide counteracts the impaired adult neural stem cell viability induced by palmitate. J Neurosci Res. https://doi.org/10.1002/jnr.22803
Markopoulou K, Chase BA, Robowski P, Strongosky A, Narozanska E, Sitek EJ, Berdynski M, Barcikowska M, Baker MC, Rademakers Ret al (2016) Assessment of olfactory function in MAPT-associated neurodegenerative disease reveals odor-identification irreproducibility as a non-disease-specific, general characteristic of olfactory dysfunction. PLoS One 11: e0165112 https://doi.org/10.1371/journal.pone.0165112
Matsunaga Y, Negishi T, Hatakeyama A, Kawagoe Y, Sawano E, Tashiro T (2016) Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats. Int J Dev Neurosci 53:58–67. https://doi.org/10.1016/j.ijdevneu.2016.07.004
Article
CAS
PubMed
Google Scholar
Moreira PI, Santos MS, Moreno AM, Seica R, Oliveira CR (2003) Increased vulnerability of brain mitochondria in diabetic (Goto-Kakizaki) rats with aging and amyloid-beta exposure. Diabetes 52:1449–1456
Article
CAS
PubMed
Google Scholar
Moreira T, Malec E, Ostenson CG, Efendic S, Liljequist S (2007) Diabetic type II Goto-Kakizaki rats show progressively decreasing exploratory activity and learning impairments in fixed and progressive ratios of a lever-press task. Behav Brain Res 180:28–41. https://doi.org/10.1016/j.bbr.2007.02.034
Article
CAS
PubMed
Google Scholar
Murakawa Y, Zhang W, Pierson CR, Brismar T, Ostenson CG, Efendic S, Sima AA (2002) Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev 18:473–483. https://doi.org/10.1002/dmrr.326
Article
CAS
PubMed
Google Scholar
Nacher J, Bonfanti L (2015) New neurons from old beliefs in the adult piriform cortex? A commentary on: occurrence of new neurons in the piriform cortex. Front Neuroanat 9:62. https://doi.org/10.3389/fnana.2015.00062
Article
PubMed
PubMed Central
Google Scholar
Nagayama S, Homma R, Imamura F (2014) Neuronal organization of olfactory bulb circuits. Front Neural Circuits 8:98. https://doi.org/10.3389/fncir.2014.00098
Article
PubMed
PubMed Central
Google Scholar
Naka A, Riedl M, Luger A, Hummel T, Mueller CA (2010) Clinical significance of smell and taste disorders in patients with diabetes mellitus. Eur Arch Otorhinolaryngol 267:547–550. https://doi.org/10.1007/s00405-009-1123-4
Article
PubMed
Google Scholar
Ostenson CG, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9(Suppl 2):180–186. https://doi.org/10.1111/j.1463-1326.2007.00787.x
Article
PubMed
Google Scholar
Patrone C, Eriksson O, Lindholm D (2014) Diabetes drugs and neurological disorders: new views and therapeutic possibilities. Lancet Diabetes Endocrinol 2:256–262. https://doi.org/10.1016/S2213-8587(13)70125-6
Article
CAS
PubMed
Google Scholar
Patterson DS, Turner P, Smart JV (1966) Smell threshold in diabetes mellitus. Nature 209:625
Article
CAS
PubMed
Google Scholar
Poo C, Isaacson JS (2009) Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations. Neuron 62:850–861. https://doi.org/10.1016/j.neuron.2009.05.022
Article
CAS
PubMed
PubMed Central
Google Scholar
Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J (2012) The GK rat: a prototype for the study of non-overweight type 2 diabetes. Methods Mol Biol 933:125–159. https://doi.org/10.1007/978-1-62703-068-7_9
CAS
PubMed
Google Scholar
Riviere S, Soubeyre V, Jarriault D, Molinas A, Leger-Charnay E, Desmoulins L, Grebert D, Meunier N, Grosmaitre X (2016) High fructose diet inducing diabetes rapidly impacts olfactory epithelium and behavior in mice. Sci Rep 6:34011. https://doi.org/10.1038/srep34011
Article
CAS
PubMed
PubMed Central
Google Scholar
Roman FS, Alescio-Lautier B, Soumireu-Mourat B (1996) Age-related learning and memory deficits in odor-reward association in rats. Neurobiol Aging 17:31–40
Article
CAS
PubMed
Google Scholar
Rubio A, Belles M, Belenguer G, Vidueira S, Farinas I, Nacher J (2016) Characterization and isolation of immature neurons of the adult mouse piriform cortex. Dev Neurobiol 76:748–763. https://doi.org/10.1002/dneu.22357
Article
CAS
PubMed
Google Scholar
Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2017) SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol 333:43–50. https://doi.org/10.1016/j.taap.2017.08.005
Article
CAS
PubMed
Google Scholar
Saiz-Sanchez D, De la Rosa-Prieto C, Ubeda-Banon I, Martinez-Marcos A (2015) Interneurons, tau and amyloid-beta in the piriform cortex in Alzheimer's disease. Brain Struct Funct 220:2011–2025. https://doi.org/10.1007/s00429-014-0771-3
Article
CAS
PubMed
Google Scholar
Saiz-Sanchez D, Flores-Cuadrado A, Ubeda-Banon I, de la Rosa-Prieto C, Martinez-Marcos A (2016) Interneurons in the human olfactory system in Alzheimer's disease. Exp Neurol 276:13–21. https://doi.org/10.1016/j.expneurol.2015.11.009
Article
CAS
PubMed
Google Scholar
Saiz-Sanchez D, Ubeda-Banon I, De la Rosa-Prieto C, Martinez-Marcos A (2012) Differential expression of interneuron populations and correlation with amyloid-beta deposition in the olfactory cortex of an AbetaPP/PS1 transgenic mouse model of Alzheimer's disease. JAD 31:113–129. https://doi.org/10.3233/JAD-2012-111889
CAS
PubMed
Google Scholar
Sakamoto M, Kageyama R, Imayoshi I (2014) The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci 8:121. https://doi.org/10.3389/fnins.2014.00121
PubMed
PubMed Central
Google Scholar
Sanke H, Mita T, Yoshii H, Yokota A, Yamashiro K, Ingaki N, Onuma T, Someya Y, Komiya K, Tamura Y et al (2014) Relationship between olfactory dysfunction and cognitive impairment in elderly patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 106:465–473. https://doi.org/10.1016/j.diabres.2014.09.039
Article
PubMed
Google Scholar
Scheen AJ (2015) A review of gliptins for 2014. Expert Opin Pharmacother 16:43–62. https://doi.org/10.1517/14656566.2015.978289
Article
CAS
PubMed
Google Scholar
Seki T, Arai Y (1991) Expression of highly polysialylated NCAM in the neocortex and piriform cortex of the developing and the adult rat. Anat Embryol (Berl) 184:395–401
Article
CAS
Google Scholar
Seubert J, Laukka EJ, Rizzuto D, Hummel T, Fratiglioni L, Backman L, Larsson M (2017) Prevalence and correlates of olfactory dysfunction in old age: a population-based study. The journals of gerontology series a, biological sciences and medical. Sciences 72:1072–1079. https://doi.org/10.1093/gerona/glx054
Google Scholar
Shapiro LA, Ng KL, Kinyamu R, Whitaker-Azmitia P, Geisert EE, Blurton-Jones M, Zhou QY, Ribak CE (2007) Origin, migration and fate of newly generated neurons in the adult rodent piriform cortex. Brain Struct Funct 212:133–148. https://doi.org/10.1007/s00429-007-0151-3
Article
PubMed
Google Scholar
Thiebaud N, Johnson MC, Butler JL, Bell GA, Ferguson KL, Fadool AR, Fadool JC, Gale AM, Gale DS, Fadool DA (2014) Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J Neurosci 34:6970–6984. https://doi.org/10.1523/JNEUROSCI.3366-13.2014
Article
CAS
PubMed
PubMed Central
Google Scholar
Verret L, Mann EO, Hang GB, Barth AM, Cobos I, Ho K, Devidze N, Masliah E, Kreitzer AC, Mody Iet al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149: 708–721 Doi https://doi.org/10.1016/j.cell.2012.02.046
Wakabayashi T, Hidaka R, Fujimaki S, Asashima M, Kuwabara T (2016) Diabetes impairs Wnt3 protein-induced neurogenesis in olfactory bulbs via glutamate transporter 1 inhibition. J Biol Chem 291:15196–15211. https://doi.org/10.1074/jbc.M115.672857
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Caracciolo B, Wang HX, Winblad B, Backman L, Qiu C, Fratiglioni L (2010) Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes 59:2928–2935. https://doi.org/10.2337/db10-0539
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu ZP, Yang SL, Zhao S, Zheng CH, Li HH, Zhang Y, Huang RX, Li MZ, Gao Y, Zhang SJet al (2016) Biomarkers for early diagnostic of mild cognitive impairment in Type-2 diabetes patients: a multicentre, retrospective, nested case-control study. EBioMedicine 5: 105–113 https://doi.org/10.1016/j.ebiom.2016.02.014
Young JW, Sharkey J, Finlayson K (2009) Progressive impairment in olfactory working memory in a mouse model of mild cognitive impairment. Neurobiol Aging 30:1430–1443. https://doi.org/10.1016/j.neurobiolaging.2007.11.018
Article
CAS
PubMed
Google Scholar
Zhan C, Luo M (2010) Diverse patterns of odor representation by neurons in the anterior piriform cortex of awake mice. J Neurosci 30:16662–16672. https://doi.org/10.1523/JNEUROSCI.4400-10.2010
Article
CAS
PubMed
Google Scholar