Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O et al (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–34. doi:10.1093/hmg/ddp346
Article
CAS
PubMed
PubMed Central
Google Scholar
Autissier P, Soulas C, Burdo TH, Williams KC (2010) Evaluation of a 12-color flow cytometry panel to study lymphocyte, monocyte, and dendritic cell subsets in humans. Cytometry A 77:410–9. doi:10.1002/cyto.a.20859
PubMed
Google Scholar
Bliederhaeuser C, Grozdanov V, Speidel A, Zondler L, Ruf WP, Bayer H et al (2015) Age-dependent defects of alpha-synuclein oligomer uptake in microglia and monocytes. Acta Neuropathol 131:379–91. doi:10.1007/s00401-015-1504-2
Article
PubMed
Google Scholar
Chen H, O'Reilly EJ, Schwarzschild MA, Ascherio A (2008) Peripheral inflammatory biomarkers and risk of Parkinson’s disease. Am J Epidemiol 167:90–5. doi:10.1093/aje/kwm260
Article
PubMed
Google Scholar
Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B et al (2010) Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–86. doi:10.1016/j.immuni.2010.08.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Fonzo A, Wu-Chou YH, Lu CS, van Doeselaar M, Simons EJ, Rohe CF et al (2006) A common missense variant in the LRRK2 gene, Gly2385Arg, associated with Parkinson’s disease risk in Taiwan. Neurogenetics 7:133–8. doi:10.1007/s10048-006-0041-5
Article
PubMed
Google Scholar
Dzamko N, Chua G, Ranola M, Rowe DB, Halliday GM (2013) Measurement of LRRK2 and Ser910/935 phosphorylated LRRK2 in peripheral blood mononuclear cells from idiopathic Parkinson’s disease patients. J Parkinsons Dis 3:145–52. doi:10.3233/JPD-130174
CAS
PubMed
Google Scholar
Gao L, Brenner D, Llorens-Bobadilla E, Saiz-Castro G, Frank T, Wieghofer P et al (2015) Infiltration of circulating myeloid cells through CD95L contributes to neurodegeneration in mice. J Exp Med 212:469–80. doi:10.1084/jem.20132423
Article
CAS
PubMed
PubMed Central
Google Scholar
Gardet A, Benita Y, Li C, Sands BE, Ballester I, Stevens C et al (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185:5577–85. doi:10.4049/jimmunol.1000548
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillardon F, Schmid R, Draheim H (2012) Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 208:41–8. doi:10.1016/j.neuroscience.2012.02.001
Article
CAS
PubMed
Google Scholar
Grozdanov V, Bliederhaeuser C, Ruf WP, Roth V, Fundel-Clemens K, Zondler L et al (2014) Inflammatory dysregulation of blood monocytes in Parkinson’s disease patients. Acta Neuropathol. doi:10.1007/s00401-014-1345-4
PubMed
PubMed Central
Google Scholar
Habig K, Gellhaar S, Heim B, Djuric V, Giesert F, Wurst W et al (2013) LRRK2 guides the actin cytoskeleton at growth cones together with ARHGEF7 and Tropomyosin 4. Biochim Biophys Acta 1832:2352–67. doi:10.1016/j.bbadis.2013.09.009
Article
PubMed
Google Scholar
Hakimi M, Selvanantham T, Swinton E, Padmore RF, Tong Y, Kabbach G et al (2011) Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm 118:795–808. doi:10.1007/s00702-011-0653-2
Article
CAS
PubMed
PubMed Central
Google Scholar
Hinkle KM, Yue M, Behrouz B, Dachsel JC, Lincoln SJ, Bowles EE et al (2012) LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener 7:25. doi:10.1186/1750-1326-7-25
Article
CAS
PubMed
PubMed Central
Google Scholar
Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R et al (2010) Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:e10–9. doi:10.1182/blood-2009-07-235028
Article
CAS
PubMed
PubMed Central
Google Scholar
Kubo M, Kamiya Y, Nagashima R, Maekawa T, Eshima K, Azuma S et al (2010) LRRK2 is expressed in B-2 but not in B-1 B cells, and downregulated by cellular activation. J Neuroimmunol 229:123–8. doi:10.1016/j.jneuroim.2010.07.021
Article
CAS
PubMed
Google Scholar
Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V et al (2009) Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12:826–8. doi:10.1038/nn.2349
Article
CAS
PubMed
PubMed Central
Google Scholar
Moehle MS, Daher JP, Hull TD, Boddu R, Abdelmotilib HA, Mobley J et al (2015) The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Hum Mol Genet 24:4250–67. doi:10.1093/hmg/ddv157
Article
CAS
PubMed
PubMed Central
Google Scholar
Moehle MS, Webber PJ, Tse T, Sukar N, Standaert DG, Desilva TM et al (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32:1602–11. doi:10.1523/JNEUROSCI.5601-11.2012
Article
CAS
PubMed
PubMed Central
Google Scholar
Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600. doi:10.1016/j.neuron.2004.10.023
Article
CAS
PubMed
Google Scholar
Pirttila T, Mattinen S, Frey H (1992) The decrease of CD8-positive lymphocytes in Alzheimer’s disease. J Neurol Sci 107:160–5
Article
CAS
PubMed
Google Scholar
Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M et al (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63. doi:10.1016/j.bbi.2008.07.003
Article
CAS
PubMed
Google Scholar
Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–7. doi:10.1038/ng.485
Article
CAS
PubMed
Google Scholar
Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41:1308–12. doi:10.1038/ng.487
Article
CAS
PubMed
PubMed Central
Google Scholar
Speidel A, Felk S, Reinhardt P, Sterneckert J, Gillardon F (2016) Leucine-rich repeat kinase 2 influences fate decision of human monocytes differentiated from induced pluripotent stem cells. PLoS One 11:e0165949. doi:10.1371/journal.pone.0165949
Article
PubMed
PubMed Central
Google Scholar
Stevens CH, Rowe D, Morel-Kopp MC, Orr C, Russell T, Ranola M et al (2012) Reduced T helper and B lymphocytes in Parkinson’s disease. J Neuroimmunol 252:95–9. doi:10.1016/j.jneuroim.2012.07.015
Article
CAS
PubMed
Google Scholar
Stypula G, Kunert-Radek J, Stepien H, Zylinska K, Pawlikowski M (1996) Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease. Neuroimmunomodulation 3:131–4
Article
CAS
PubMed
Google Scholar
The-Jackson-Laboratory. https://www.jax.org/strain/009610. Accessed April 5th 2016
Thevenet J, Pescini Gobert R, Hooft Van Huijsduijnen R, Wiessner C, Sagot YJ (2011) Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One 6:e21519. doi:10.1371/journal.pone.0021519
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG et al (2012) LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet 21:1931–44. doi:10.1093/hmg/dds003
Article
CAS
PubMed
PubMed Central
Google Scholar
West AB, Moore DJ, Choi C, Andrabi SA, Li X, Dikeman D et al (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16:223–32. doi:10.1093/hmg/ddl471
Article
CAS
PubMed
Google Scholar
Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–7. doi:10.1016/j.neuron.2004.11.005
Article
CAS
PubMed
Google Scholar