Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):631–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the Therapeutics strategies. Mol Neurobiol. 2014;53(1):648–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butterfield D. Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. A review. Free Radic Res. 2002;36(12):1307–13.
Article
CAS
PubMed
Google Scholar
Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet. 2010;19(R1):R12–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angelova PR, Abramov AY. Alpha-synuclein and beta-amyloid – different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration. Biochem Biophys Res Commun. 2016.
Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J. Altered cerebral energy metabolism in Alzheimer’s disease: a PET study. J Nucl Med. 1994;35(1):1–6.
CAS
PubMed
Google Scholar
Göbel B, Oltmanns KM, Chung M. Linking neuronal brain activity to the glucose metabolism. Theor Biol Med Model. 2013;10(1):50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Astrup J, Sørensen PM, Sørensen HR. Oxygen and glucose consumption related to Na + -K+ transport in canine brain. Stroke. 1981;12(6):726–30.
Article
CAS
PubMed
Google Scholar
Relman AS. The physiological behavior of rubidium and cesium in relation to that of potassium. Yale J Biol Med. 1956;29(3):248–62.
CAS
PubMed
PubMed Central
Google Scholar
Fieve RR, Meltzer H, Dunner DL, Levitt M, Mendlewicz J, Thomas A. Rubidium: biochemical, behavioral, and metabolic studies in humans. Am J Psychiatry. 1973;130(1):55–61.
Article
CAS
PubMed
Google Scholar
Tomlinson S, Mathialagan PD, Maloney SK. Special K: testing the potassium link between radioactive rubidium (86Rb) turnover and metabolic rate. J Exp Biol. 2013.
Vanhoe H, Vandecasteele C, Versieck J, Dams R. Determination of iron, cobalt, copper, zinc, rubidium, molybdenum, and cesium in human serum by inductively coupled plasma mass spectrometry. Anal Chem. 1989;61(17):1851–7.
Article
CAS
PubMed
Google Scholar
Gerhardsson L, Lundh T, Minthon L, Londos E. Metal concentrations in plasma and cerebrospinal fluid in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 2008;25(6):508–15.
Article
CAS
PubMed
Google Scholar
Vance DE, Ehmann WD, Markesbery WR. A search for longitudinal variations in trace element levels in nails of Alzheimer’s disease patients. Biol Trace Elem Res. 1990;26–27(1):461–70.
Article
PubMed
Google Scholar
Basun H, Forssell LG, Wetterberg L, Winblad B. Metals and trace elements in plasma and cerebrospinal fluid in normal aging and Alzheimer’s disease. J Neural Transm Park Dis Dement Sect. 1991;3(4):231–58.
CAS
PubMed
Google Scholar
Cornett CR, Ehmann WD, Wekstein DR, Markesbery WR. Trace elements in Alzheimer’s disease pituitary glands. Biol Trace Elem Res. 1998;62(1–2):107–14.
Article
CAS
PubMed
Google Scholar
Cornett CR, Markesbery WR, Ehmann WD. Imbalances of trace elements related to oxidative damage in Alzheimer’s disease brain. Neurotoxicology. 1998;19(3):339–45.
CAS
PubMed
Google Scholar
Ellis KA, Bush AI, Darby D, De Fazio D, Foster J, Hudson P, Lautenschlager NT, Lenzo N, Martins RN, Maruff P, et al. The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr. 2009;21(4):672–87.
Article
PubMed
Google Scholar
Rembach A, Hare DJ, Lind M, Fowler CJ, Cherny RA, McLean C, Bush AI, Masters CL, Roberts BR. Decreased copper in Alzheimer’s disease brain is predominantly in the soluble extractable fraction. Int J Alzheimers Dis. 2013;2013(1–2):1–7.
Article
CAS
Google Scholar
Roberts BR, Hare DJ, McLean CA, Conquest A, Lind M, Li Q-X, Bush AI, Masters CL, Morganti-Kossmann M-C, Frugier T. Traumatic brain injury induces elevation of Co in the human brain. Metallomics. 2015;7(1):124–8.
Article
CAS
Google Scholar
Rembach A, Hare DJ, Doecke JD, Burnham SC, Volitakis I, Fowler CJ, Cherny RA, McLean C, Grimm R, Martins R, et al. Decreased serum zinc is an effect of ageing and not Alzheimer’s disease. Metallomics. 2014;6(7):1216–9.
Article
CAS
PubMed
Google Scholar
Rembach A, Evered LA, Li Q-X, Nash T, Vidaurre L, Fowler CJ, Pertile KK, Rumble RL, Trounson BO, Maher S, et al. Alzheimer’s disease cerebrospinal fluid biomarkers are not influenced by gravity drip or aspiration extraction methodology. Alzheimers Res Ther. 2015;7(1):1.
Article
CAS
Google Scholar
Wenstrup D, Ehmann WD, Markesbery WR. Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Res. 1990;533(1):125–31.
Article
CAS
PubMed
Google Scholar
Bélavári C, Andrási E, Molnár Z, Bertalan É. Determination of alkali metals in control and AD brain samples by different techniques. Microchem J. 2005;79(1–2):367–73.
Article
CAS
Google Scholar
Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5(5):1.
Article
CAS
Google Scholar
Yu SP, Farhangrazi ZS, Ying HS, Yeh C-H, Choi DW. Enhancement of outward potassium current May participate in β-amyloid peptide-induced cortical neuronal death. Neurobiol Dis. 1998;5(2):81–8.
Article
CAS
PubMed
Google Scholar
Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc Natl Acad Sci U S A. 1993;90(22):10573–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A. 2008;105(11):4441–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hashimoto RF, Kim S, Shmulevich I, Zhang W, Bittner ML, Dougherty ER. Growing genetic regulatory networks from seed genes. Bioinformatics. 2004;20(8):1241–7.
Article
CAS
PubMed
Google Scholar
Caberlotto L, Lauria M, Nguyen T-P, Scotti M. The central role of AMP-kinase and energy homeostasis impairment in Alzheimer’s disease: a multifactor network analysis. PLoS One. 2013;8(11), e78919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 2012;32(7):1222–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hattori N, Kitagawa K, Higashida T, Yagyu K, Shimohama S, Wataya T, Perry G, Smith MA, Inagaki C. Cl − -ATPase and Na+/K + -ATPase activities in Alzheimer’s disease brains. Neurosci Lett. 1998;254(3):141–4.
Article
CAS
PubMed
Google Scholar
Chauhan NB, Lee JM, Siegel GJ. Na, K-ATPase mRNA levels and plaque load in Alzheimer’s disease. J Mol Neurosci. 1997;9(3):151–66.
Article
CAS
PubMed
Google Scholar
Roelcke U, Radü EW, von Ammon K, Hausmann O, Maguire RP, Leenders KL. Alteration of blood-brain barrier in human brain tumors: comparison of [18 F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET. J Neurol Sci. 1995;132(1):20–7.
Article
CAS
PubMed
Google Scholar
Marques F, Sousa JC, Sousa N, Palha JA. Blood–brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013;8(1):1.
Article
CAS
Google Scholar
Bien-Ly N, Boswell CA, Jeet S, Beach TG, Hoyte K, Luk W, Shihadeh V, Ulufatu S, Foreman O, Lu Y, et al. Lack of widespread BBB disruption in Alzheimer’s disease models: focus on therapeutic antibodies. Neuron. 2015;88(2):289–97.
Article
CAS
PubMed
Google Scholar
Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang G-F, Estrada S, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Ann Neurol. 2004;55(3):306–19.
Article
CAS
PubMed
Google Scholar
Brooks DJ, Beaney RP, Lammertsma AA, Leenders KL, Horlock PL, Kensett MJ, Marshall J, Thomas DG, Jones T. Quantitative measurement of blood—brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab. 1984;4(4):535–45.
Article
CAS
PubMed
Google Scholar
Zünkeler B, Carson RE, Olson J, Blasberg RG, Girton M, Bacher J, Herscovitch P, Oldfield EH. Hyperosmolar blood-brain barrier disruption in baboons: an in vivo study using positron emission tomography and rubidium-82. J Neurosurg. 1996;84(3):494–502.
Article
PubMed
Google Scholar
Leinenga G, Götz J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer's disease mouse model. Sci Transl Med. 2015;7(278):278ra233.
Article
CAS
Google Scholar
Leinenga G, Langton C, Nisbet R, Götz J. Ultrasound treatment of neurological diseases - current and emerging applications. Nat Rev Neurol. 2016;12(3):161–74.
Article
PubMed
Google Scholar
Yushmanov VE, Kharlamov A, Ibrahim TS, Zhao T, Boada FE, Jones SC. K+ dynamics in ischemic rat brain in vivo by 87Rb MRI at 7 T. NMR Biomed. 2011;24(7):778–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yushmanov VE, Kharlamov A, Boada FE, Jones SC. Monitoring of brain potassium with rubidium flame photometry and MRI. Magn Reson Med. 2007;57(3):494–500.
Article
CAS
PubMed
Google Scholar