Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121(2):195–206, doi:10.1016/j.cell.2005.02.011
Article
CAS
PubMed
Google Scholar
Deleault NR, Harris BT, Rees JR, Supattapone S (2007) Formation of native prions from minimal components in vitro. Proc Natl Acad Sci U S A 104(23):9741–6, doi:10.1073/pnas.0702662104
Article
PubMed Central
CAS
PubMed
Google Scholar
Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–44
Article
CAS
PubMed
Google Scholar
Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–77, doi:10.1146/annurev.neuro.31.060407.125620
Article
CAS
PubMed
Google Scholar
Lee KS, Linden R, Prado MA, Brentani RR, Martins VR (2003) Towards cellular receptors for prions. Rev Med Virol 13(6):399–408, doi:10.1002/rmv.408
Article
CAS
PubMed
Google Scholar
Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728, doi:10.1152/physrev.00007.2007
Article
CAS
PubMed
Google Scholar
Schneider B, Pietri M, Pradines E, Loubet D, Launay JM, Kellermann O et al (2011) Understanding the neurospecificity of Prion protein signaling. Front Biosci 16:169–86
Article
CAS
Google Scholar
Deleault NR, Walsh DJ, Piro JR, Wang F, Wang X, Ma J et al (2012) Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 109(28):E1938–46, doi:10.1073/pnas.1206999109
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma J (2012) The role of cofactors in prion propagation and infectivity. PLoS Pathog 8(4):e1002589, DOI: 10.1371/journal.ppat.1002589
Article
PubMed Central
CAS
PubMed
Google Scholar
Aguzzi A, Heikenwalder M, Polymenidou M (2007) Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 8(7):552–61, doi:10.1038/nrm2204
Article
CAS
PubMed
Google Scholar
Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18, doi:10.1016/j.molcel.2011.05.012
Article
CAS
PubMed
Google Scholar
Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ (2011) Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 116(5):742–6, doi:10.1111/j.1471-4159.2010.07032.x
Article
CAS
PubMed
Google Scholar
Xie HQ, Liang D, Leung KW, Chen VP, Zhu KY, Chan WK et al (2010) Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem 285(15):11537–46, doi:10.1074/jbc.M109.038711
Article
PubMed Central
CAS
PubMed
Google Scholar
Layer PG (1995) Nonclassical roles of cholinesterases in the embryonic brain and possible links to Alzheimer disease. Alzheimer Dis Assoc Disord 9(Suppl 2):29–36
Article
PubMed
Google Scholar
Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5(3):293–302, doi:10.1016/j.coph.2005.01.014
Article
CAS
PubMed
Google Scholar
Greenfield SA, Zimmermann M, Bond CE (2008) Non-hydrolytic functions of acetylcholinesterase. The significance of C-terminal peptides. FEBS J 275(4):604–11, doi:10.1111/j.1742-4658.2007.06235.x
Article
CAS
PubMed
Google Scholar
Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2(4):294–302, doi:10.1038/35067589
Article
CAS
PubMed
Google Scholar
Dinamarca MC, Sagal JP, Quintanilla RA, Godoy JA, Arrazola MS, Inestrosa NC (2010) Amyloid-beta-Acetylcholinesterase complexes potentiate neurodegenerative changes induced by the Abeta peptide. Implications for the pathogenesis of Alzheimer’s disease. Mol Neurodegener 5:4, doi:10.1186/1750-1326-5-4
Article
PubMed Central
PubMed
Google Scholar
Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid-cholinesterase interactions. Implications for Alzheimer’s disease. FEBS J 275(4):625–32, doi:10.1111/j.1742-4658.2007.06238.x
Article
CAS
PubMed
Google Scholar
Reyes AE, Chacon MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164(6):2163–74
Article
PubMed Central
CAS
PubMed
Google Scholar
Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24(6):777–87
Article
CAS
PubMed
Google Scholar
Rees TM, Berson A, Sklan EH, Younkin L, Younkin S, Brimijoin S et al (2005) Memory deficits correlating with acetylcholinesterase splice shift and amyloid burden in doubly transgenic mice. Curr Alzheimer Res 2(3):291–300
Article
CAS
PubMed
Google Scholar
De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40(35):10447–57
Article
PubMed
Google Scholar
Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L et al (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–9
Article
CAS
PubMed
Google Scholar
Taylor P, Lappi S (1975) Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding. Biochemistry 14(9):1989–97
Article
CAS
PubMed
Google Scholar
Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12(33):4377–87
Article
CAS
PubMed
Google Scholar
Holzgrabe U, Kapkova P, Alptuzun V, Scheiber J, Kugelmann E (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 11(2):161–79, doi:10.1517/14728222.11.2.161
Article
CAS
PubMed
Google Scholar
Munoz-Torrero D (2008) Acetylcholinesterase inhibitors as disease-modifying therapies for Alzheimer’s disease. Curr Med Chem 15(24):2433–55
Article
CAS
PubMed
Google Scholar
Rampa A, Belluti F, Gobbi S, Bisi A (2011) Hybrid-based multi-target ligands for the treatment of Alzheimer’s disease. Curr Top Med Chem 11(22):2716–30
Article
CAS
PubMed
Google Scholar
Pera M, Martinez-Otero A, Colombo L, Salmona M, Ruiz-Molina D, Badia A et al (2009) Acetylcholinesterase as an amyloid enhancing factor in PrP82-146 aggregation process. Mol Cell Neurosci 40(2):217–24, doi:0.1016/j.mcn.2008.10.008
Article
CAS
PubMed
Google Scholar
Pera M, Roman S, Ratia M, Camps P, Munoz-Torrero D, Colombo L et al (2006) Acetylcholinesterase triggers the aggregation of PrP 106–126. Biochem Biophys Res Commun 346(1):89–94, doi:10.1016/j.bbrc.2006.04.187
Article
CAS
PubMed
Google Scholar
Silveyra MX, Cuadrado-Corrales N, Marcos A, Barquero MS, Rabano A, Calero M et al (2006) Altered glycosylation of acetylcholinesterase in Creutzfeldt-Jakob disease. J Neurochem 96(1):97–104, doi:10.1111/j.1471-4159.2005.03514.x
Article
CAS
PubMed
Google Scholar
Silveyra MX, Garcia-Ayllon MS, Calero M, Saez-Valero J (2006) Altered glycosylation of acetylcholinesterase in the Creutzfeldt-Jakob cerebrospinal fluid. J Mol Neurosci: MN 30(1–2):65–6, doi:10.1385/JMN:30:1:65
Article
CAS
PubMed
Google Scholar
Rezaei H, Marc D, Choiset Y, Takahashi M, Hui Bon Hoa G, Haertle T et al (2000) High yield purification and physico-chemical properties of full-length recombinant allelic variants of sheep prion protein linked to scrapie susceptibility. Eur J Biochem/FEBS 267(10):2833–9
Article
CAS
Google Scholar
Carletti E, Li H, Li B, Ekstrom F, Nicolet Y, Loiodice M et al (2008) Aging of cholinesterases phosphylated by tabun proceeds through O-dealkylation. J Am Chem Soc 130(47):16011–20, doi:10.1021/ja804941z
Article
CAS
PubMed
Google Scholar
Camps P, Contreras J, Font-Bardia M, Morral J, Munoz-Torrero D, Solans X (1998) Enantioselective synthesis of tacrine − huperzine A hybrids. Preparative chiral MPLC separation of their racemic mixtures and absolute configuration assignments by X-ray diffraction analysis. Tetrahedron Asymmetry 9(9):835–49
Article
CAS
Google Scholar
Camps P, Formosa X, Munoz-Torrero D, Petrignet J, Badia A, Clos MV (2005) Synthesis and pharmacological evaluation of huprine-tacrine heterodimers: subnanomolar dual binding site acetylcholinesterase inhibitors. J Med Chem 48(6):1701–4, doi:10.1021/jm0496741
Article
CAS
PubMed
Google Scholar
Archer F, Bachelin C, Andreoletti O, Besnard N, Perrot G, Langevin C et al (2004) Cultured peripheral neuroglial cells are highly permissive to sheep prion infection. J Virol 78(1):482–90
Article
PubMed Central
CAS
PubMed
Google Scholar
Vilette D, Andreoletti O, Archer F, Madelaine MF, Vilotte JL, Lehmann S et al (2001) Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc Natl Acad Sci U S A 98(7):4055–9, doi:10.1073/pnas.061337998
Article
PubMed Central
CAS
PubMed
Google Scholar
Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C et al (2005) Screening of 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected cells. J Biol Chem 280(12):11247–58, doi:10.1074/jbc.M407006200
Article
CAS
PubMed
Google Scholar
Jennings LL, Malecki M, Komives EA, Taylor P (2003) Direct analysis of the kinetic profiles of organophosphate-acetylcholinesterase adducts by MALDI-TOF mass spectrometry. Biochemistry 42(37):11083–91, doi:10.1021/bi034756x
Article
CAS
PubMed
Google Scholar
Breydo L, Makarava N, Baskakov IV (2008) Methods for conversion of prion protein into amyloid fibrils. Methods Mol Biol 459:105–15, doi:10.1007/978-1-59745-234-2_8
Article
PubMed
Google Scholar
Bocharova OV, Makarava N, Breydo L, Anderson M, Salnikov VV, Baskakov IV (2006) Annealing prion protein amyloid fibrils at high temperature results in extension of a proteinase K-resistant core. J Biol Chem 281(4):2373–9, doi:10.1074/jbc.M510840200
Article
CAS
PubMed
Google Scholar
El Moustaine D, Perrier V, Acquatella-Tran Van Ba I, Meersman F, Ostapchenko VG, Baskakov IV et al (2011) Amyloid features and neuronal toxicity of mature prion fibrils are highly sensitive to high pressure. J Biol Chem 286(15):13448–59, doi:10.1074/jbc.M110.192872
Article
PubMed Central
PubMed
Google Scholar
Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A et al (2010) The physical relationship between infectivity and prion protein aggregates is strain-dependent. PLoS Pathog 6(4):e1000859, doi:10.1371/journal.ppat.1000859
Article
PubMed Central
PubMed
Google Scholar
Beringue V, Andreoletti O, Le Dur A, Essalmani R, Vilotte JL, Lacroux C et al (2007) A bovine prion acquires an epidemic bovine spongiform encephalopathy strain-like phenotype on interspecies transmission. J Neurosci: Offic J Soc Neurosci 27(26):6965–71, doi:10.1523/JNEUROSCI. 0693-07.2007
Article
CAS
Google Scholar
Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N et al (2013) The toll-like receptor agonist imiquimod is active against prions. PLoS One 8(8):e72112, doi:10.1371/journal.pone.0072112
Article
PubMed Central
CAS
PubMed
Google Scholar
Tribouillard-Tanvier D, Beringue V, Desban N, Gug F, Bach S, Voisset C et al (2008) Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 3(4):e1981, doi:10.1371/journal.pone.0001981
Article
PubMed Central
PubMed
Google Scholar
Camps P, El Achab R, Morral J, Munoz-Torrero D, Badia A, Banos JE et al (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43(24):4657–66
Article
CAS
PubMed
Google Scholar
Rezaei H, Choiset Y, Eghiaian F, Treguer E, Mentre P, Debey P et al (2002) Amyloidogenic unfolding intermediates differentiate sheep prion protein variants. J Mol Biol 322(4):799–814
Article
CAS
PubMed
Google Scholar
Baskakov IV, Legname G, Baldwin MA, Prusiner SB, Cohen FE (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277(24):21140–8, doi:10.1074/jbc.M111402200
Article
CAS
PubMed
Google Scholar
Espallergues J, Galvan L, Sabatier F, Rana-Poussine V, Maurice T, Chatonnet A (2010) Behavioral phenotyping of heterozygous acetylcholinesterase knockout (AChE+/−) mice showed no memory enhancement but hyposensitivity to amnesic drugs. Behav Brain Res 206(2):263–73, doi:10.1016/j.bbr.2009.09.024
Article
CAS
PubMed
Google Scholar
Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–50, doi:10.1146/annurev.neuro.24.1.519
Article
CAS
PubMed
Google Scholar
Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95(23):13363–83
Article
PubMed Central
CAS
PubMed
Google Scholar
Makarava N, Kovacs GG, Bocharova O, Savtchenko R, Alexeeva I, Budka H et al (2010) Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathol 119(2):177–87, doi:10.1007/s00401-009-0633-x
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang Z, Zhang Y, Wang F, Wang X, Xu Y, Yang H, et al (2013) De novo generation of infectious prions with bacterially expressed recombinant prion protein. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. doi:10.1096/fj.13-233965
Duysen EG, Li B, Xie W, Schopfer LM, Anderson RS, Broomfield CA et al (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J Pharmacol Exp Ther 299(2):528–35
CAS
PubMed
Google Scholar
Moore RA, Timmes A, Wilmarth PA, Priola SA (2010) Comparative profiling of highly enriched 22 L and Chandler mouse scrapie prion protein preparations. Proteomics 10(15):2858–69, doi:10.1002/pmic.201000104
Article
PubMed Central
CAS
PubMed
Google Scholar
Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A et al (2012) Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J Med Chem 55(2):661–9, doi:10.1021/jm200840c
Article
CAS
PubMed
Google Scholar
Cobb NJ, Sonnichsen FD, McHaourab H, Surewicz WK (2007) Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure. Proc Natl Acad Sci U S A 104(48):18946–51, doi:10.1073/pnas.0706522104
Article
PubMed Central
CAS
PubMed
Google Scholar
Lu X, Wintrode PL, Surewicz WK (2007) Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 104(5):1510–5, doi:10.1073/pnas.0608447104
Article
PubMed Central
CAS
PubMed
Google Scholar
Makarava N, Baskakov IV (2008) The same primary structure of the prion protein yields two distinct self-propagating states. J Biol Chem 283(23):15988–96, doi:10.1074/jbc.M800562200
Article
PubMed Central
CAS
PubMed
Google Scholar
Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KP, Eisenberg D et al (2010) Two amyloid States of the prion protein display significantly different folding patterns. J Mol Biol 400(4):908–21, doi:10.1016/j.jmb.2010.05.051
Article
PubMed Central
CAS
PubMed
Google Scholar
Tycko R, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV (2010) The alpha-helical C-terminal domain of full-length recombinant PrP converts to an in-register parallel beta-sheet structure in PrP fibrils: evidence from solid state nuclear magnetic resonance. Biochemistry 49(44):9488–97, doi:10.1021/bi1013134
Article
PubMed Central
CAS
PubMed
Google Scholar
Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187(1–3):10–22, doi:10.1016/j.cbi.2010.01.042
Article
PubMed Central
CAS
PubMed
Google Scholar
Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A et al (2012) Facilitated cross-species transmission of prions in extraneural tissue. Science 335(6067):472–5, doi:10.1126/science.1215659
Article
CAS
PubMed
Google Scholar
McGovern G, Jeffrey M (2007) Scrapie-specific pathology of sheep lymphoid tissues. PLoS One 2(12):e1304, doi:10.1371/journal.pone.0001304
Article
PubMed Central
PubMed
Google Scholar
Bellinger DL, Lorton D, Hamill RW, Felten SY, Felten DL (1993) Acetylcholinesterase staining and choline acetyltransferase activity in the young adult rat spleen: lack of evidence for cholinergic innervation. Brain Behav Immun 7(3):191–204, doi:10.1006/brbi.1993.1021
Article
CAS
PubMed
Google Scholar
Lampert IA, Van Noorden S (1996) Acetyl cholinesterase is expressed in the follicular dendritic cells of germinal centres: differences between normal and neoplastic follicles. J Pathol 180(2):169–74, doi:10.1002/(SICI)1096-9896(199610)180:2<169::AID-PATH621>3.0.CO;2-D
Article
CAS
PubMed
Google Scholar
Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S et al (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J Biol Chem 285(14):10252–64, doi:10.1074/jbc.M109.083857
Article
PubMed Central
CAS
PubMed
Google Scholar
Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–32, doi:10.1038/nature07761
Article
PubMed Central
CAS
PubMed
Google Scholar