Goetz CG: The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 2011, 1: a008862.
PubMed
PubMed Central
Google Scholar
Lewy FH: Paralysis agitans. In Pathologische anatomie. Edited by: Lewandowsky M. Springer, City; 1912:920–933.
Google Scholar
Parent M, Parent A: Substantia nigra and Parkinson’s disease: a brief history of their long and intimate relationship. Can J Neurol Sci 2010, 37: 313–319.
PubMed
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL: Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276: 2045–2047.
CAS
PubMed
Google Scholar
Sulzer D: Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 2007, 30: 244–250.
CAS
PubMed
Google Scholar
Chaudhuri KR, Schapira AH: Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 2009, 8: 464–474.
CAS
PubMed
Google Scholar
Foltynie T, Brayne C, Barker RA: The heterogeneity of idiopathic Parkinson’s disease. J Neurol 2002, 249: 138–145.
PubMed
Google Scholar
Zarow C, Lyness SA, Mortimer JA, Chui HC: Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 2003, 60: 337–341.
PubMed
Google Scholar
Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, Jacobs AH, Herholz K, Heiss WD: Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005, 65: 1716–1722.
CAS
PubMed
Google Scholar
Rinne JO, Ma SY, Lee MS, Collan Y, Roytta M: Loss of cholinergic neurons in the pedunculopontine nucleus in Parkinson’s disease is related to disability of the patients. Parkinsonism Relat Disord 2008, 14: 553–557.
PubMed
Google Scholar
Thannickal TC, Lai YY, Siegel JM: Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 2007, 130: 1586–1595.
PubMed
Google Scholar
Shults CW: Lewy bodies. Proc Natl Acad Sci U S A 2006, 103: 1661–1668.
CAS
PubMed
PubMed Central
Google Scholar
Forno LS: Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996, 55: 259–272.
CAS
PubMed
Google Scholar
Gomez-Tortosa E, Newell K, Irizarry MC, Sanders JL, Hyman BT: alpha-Synuclein immunoreactivity in dementia with Lewy bodies: morphological staging and comparison with ubiquitin immunostaining. Acta Neuropathol 2000, 99: 352–357.
CAS
PubMed
Google Scholar
Jellinger KA: Neuropathological spectrum of synucleinopathies. Mov Disord 2003, 18(Suppl 6):S2-S12.
PubMed
Google Scholar
Sakamoto M, Uchihara T, Hayashi M, Nakamura A, Kikuchi E, Mizutani T, Mizusawa H, Hirai S: Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling for alpha-synuclein, ubiquitin, and thiazin red. Exp Neurol 2002, 177: 88–94.
CAS
PubMed
Google Scholar
Kanazawa T, Adachi E, Orimo S, Nakamura A, Mizusawa H, Uchihara T: Pale neurites, premature alpha-synuclein aggregates with centripetal extension from axon collaterals. Brain Pathol 2012, 22: 67–78.
PubMed
Google Scholar
Norris EH, Giasson BI: Role of oxidative damage in protein aggregation associated with Parkinson’s disease and related disorders. Antioxid Redox Signal 2005, 7: 672–684.
PubMed
Google Scholar
Pollanen MS, Dickson DW, Bergeron C: Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 1993, 52: 183–191.
CAS
PubMed
Google Scholar
Arima K, Ueda K, Sunohara N, Hirai S, Izumiyama Y, Tonozuka-Uehara H, Kawai M: Immunoelectron-microscopic demonstration of NACP/alpha-synuclein-epitopes on the filamentous component of Lewy bodies in Parkinson’s disease and in dementia with Lewy bodies. Brain Res 1998, 808: 93–100.
CAS
PubMed
Google Scholar
Galloway PG, Mulvihill P, Perry G: Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol 1992, 140: 809–822.
CAS
PubMed
PubMed Central
Google Scholar
Kanazawa T, Uchihara T, Takahashi A, Nakamura A, Orimo S, Mizusawa H: Three-layered structure shared between Lewy bodies and lewy neurites-three-dimensional reconstruction of triple-labeled sections. Brain Pathol 2008, 18: 415–422.
PubMed
Google Scholar
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M: Alpha-synuclein in Lewy bodies. Nature 1997, 388: 839–840.
CAS
PubMed
Google Scholar
Beyer K, Ariza A: alpha-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol Neurobiol 2013, 47: 509–524.
CAS
PubMed
Google Scholar
Vitte J, Traver S, Maues De Paula A, Lesage S, Rovelli G, Corti O, Duyckaerts C, Brice A: Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol 2010, 69: 959–972.
CAS
PubMed
Google Scholar
Miki Y, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K: Accumulation of histone deacetylase 6, an aggresome-related protein, is specific to Lewy bodies and glial cytoplasmic inclusions. Neuropathology 2011, 31: 561–568.
PubMed
Google Scholar
Tanikawa S, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K: Endosomal sorting related protein CHMP2B is localized in Lewy bodies and glial cytoplasmic inclusions in alpha-synucleinopathy. Neurosci Lett 2012, 527: 16–21.
CAS
PubMed
Google Scholar
Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J: Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci 2008, 13: 3850–3856.
CAS
PubMed
PubMed Central
Google Scholar
Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin J, Pan C, Shin J, Zhu D, Zhang J: Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol 2007, 17: 139–145.
CAS
PubMed
Google Scholar
Braak H, Del Tredici K: Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging 2004, 25: 19–23.
CAS
PubMed
Google Scholar
Braak H, del Tredici K: Neuroanatomy and pathology of sporadic Parkinson’s disease. Springer, City; 2009.
Google Scholar
van de Berg WD, Hepp DH, Dijkstra AA, Rozemuller JA, Berendse HW, Foncke E: Patterns of α-synuclein pathology in incidental cases and clinical subtypes of Parkinson’s disease. Parkinsonism Relat Disord Suppl 2012, 1: S28-S30.
Google Scholar
Hishikawa N, Hashizume Y, Yoshida M, Sobue G: Widespread occurrence of argyrophilic glial inclusions in Parkinson’s disease. Neuropathol Appl Neurobiol 2001, 27: 362–372.
CAS
PubMed
Google Scholar
Braak H, Sastre M, Del Tredici K: Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 2007, 114: 231–241.
CAS
PubMed
Google Scholar
Selikhova M, Williams DR, Kempster PA, Holton JL, Revesz T, Lees AJ: A clinico-pathological study of subtypes in Parkinson’s disease. Brain 2009, 132: 2947–2957.
CAS
PubMed
Google Scholar
Burke RE, Dauer WT, Vonsattel JP: A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 2008, 64: 485–491.
PubMed
PubMed Central
Google Scholar
Halliday G, Hely M, Reid W, Morris J: The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 2008, 115: 409–415.
PubMed
Google Scholar
Rocca WA, McDonnell SK, Strain KJ, Bower JH, Ahlskog JE, Elbaz A, Schaid DJ, Maraganore DM: Familial aggregation of Parkinson’s disease: The Mayo Clinic family study. Ann Neurol 2004, 56: 495–502.
PubMed
Google Scholar
Sveinbjornsdottir S, Hicks AA, Jonsson T, Petursson H, Gugmundsson G, Frigge ML, Kong A, Gulcher JR, Stefansson K: Familial aggregation of Parkinson’s disease in Iceland. N Engl J Med 2000, 343: 1765–1770.
CAS
PubMed
Google Scholar
Farrer MJ: Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 2006, 7: 306–318.
CAS
PubMed
Google Scholar
Schiesling C, Kieper N, Seidel K, Kruger R: Review: Familial Parkinson’s disease–genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 2008, 34: 255–271.
CAS
PubMed
Google Scholar
Corti O, Lesage S, Brice A: What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 2011, 91: 1161–1218.
CAS
PubMed
Google Scholar
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K: alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302: 841.
CAS
PubMed
Google Scholar
Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marti-Masso JF, Perez-Tur J, Wood NW, Singleton AB: Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004, 44: 595–600.
CAS
PubMed
Google Scholar
Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Muller-Myhsok B, Dickson DW, Meitinger T, Strom TM, Wszolek ZK, Gasser T: Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44: 601–607.
CAS
PubMed
Google Scholar
Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998, 18: 106–108.
CAS
PubMed
Google Scholar
Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG: The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004, 55: 164–173.
CAS
PubMed
Google Scholar
Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T: Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2011, 2: 440.
PubMed
PubMed Central
Google Scholar
Ross OA, Braithwaite AT, Skipper LM, Kachergus J, Hulihan MM, Middleton FA, Nishioka K, Fuchs J, Gasser T, Maraganore DM, Adler CH, Larvor L, Chartier-Harlin MC, Nilsson C, Langston JW, Gwinn K, Hattori N, Farrer MJ: Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 2008, 63: 743–750.
CAS
PubMed
Google Scholar
Ahn TB, Kim SY, Kim JY, Park SS, Lee DS, Min HJ, Kim YK, Kim SE, Kim JM, Kim HJ, Cho J, Jeon BS: Alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 2008, 70: 43–49.
CAS
PubMed
Google Scholar
Kruger R, Kuhn W, Leenders KL, Sprengelmeyer R, Muller T, Woitalla D, Portman AT, Maguire RP, Veenma L, Schroder U, Schols L, Epplen JT, Riess O, Przuntek H: Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. Neurology 2001, 56: 1355–1362.
CAS
PubMed
Google Scholar
Markopoulou K, Dickson DW, McComb RD, Wszolek ZK, Katechalidou L, Avery L, Stansbury MS, Chase BA: Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease. Acta Neuropathol 2008, 116: 25–35.
CAS
PubMed
PubMed Central
Google Scholar
Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier-Harlin MC, Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N, Kawakami H, Lambert JC, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, Quattrone A, Riess O, Tan EK, Van Broeckhoven C: Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006, 296: 661–670.
CAS
PubMed
Google Scholar
Mellick GD, Maraganore DM, Silburn PA: Australian data and meta-analysis lend support for alpha-synuclein (NACP-Rep1) as a risk factor for Parkinson’s disease. Neurosci Lett 2005, 375: 112–116.
CAS
PubMed
Google Scholar
Farrer M, Maraganore DM, Lockhart P, Singleton A, Lesnick TG, de Andrade M, West A, de Silva R, Hardy J, Hernandez D: alpha-Synuclein gene haplotypes are associated with Parkinson’s disease. Hum Mol Genet 2001, 10: 1847–1851.
CAS
PubMed
Google Scholar
Tan EK, Chai A, Teo YY, Zhao Y, Tan C, Shen H, Chandran VR, Teoh ML, Yih Y, Pavanni R, Wong MC, Puvan K, Lo YL, Yap E: Alpha-synuclein haplotypes implicated in risk of Parkinson’s disease. Neurology 2004, 62: 128–131.
CAS
PubMed
Google Scholar
Bendor JT, Logan TP, Edwards RH: The function of alpha-synuclein. Neuron 2013, 79: 1044–1066.
CAS
PubMed
Google Scholar
Boassa D, Berlanga ML, Yang MA, Terada M, Hu J, Bushong EA, Hwang M, Masliah E, George JM, Ellisman MH: Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. J Neurosci 2013, 33: 2605–2615.
CAS
PubMed
PubMed Central
Google Scholar
Ono K, Ikeda T, Takasaki J, Yamada M: Familial Parkinson disease mutations influence alpha-synuclein assembly. Neurobiol Dis 2011, 43: 715–724.
CAS
PubMed
Google Scholar
Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA: Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 2001, 49: 313–319.
CAS
PubMed
Google Scholar
Yamaguchi K, Cochran EJ, Murrell JR, Polymeropoulos MH, Shannon KM, Crowther RA, Goedert M, Ghetti B: Abundant neuritic inclusions and microvacuolar changes in a case of diffuse Lewy body disease with the A53T mutation in the alpha-synuclein gene. Acta Neuropathol 2005, 110: 298–305.
PubMed
Google Scholar
Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM: Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 2002, 34: 521–533.
CAS
PubMed
Google Scholar
Gaugler MN, Genc O, Bobela W, Mohanna S, Ardah MT, El-Agnaf OM, Cantoni M, Bensadoun JC, Schneggenburger R, Knott GW, Aebischer P, Schneider BL: Nigrostriatal overabundance of alpha-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity. Acta Neuropathol 2012, 123: 653–669.
CAS
PubMed
Google Scholar
Gwinn-Hardy K, Mehta ND, Farrer M, Maraganore D, Muenter M, Yen SH, Hardy J, Dickson DW: Distinctive neuropathology revealed by alpha-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol 2000, 99: 663–672.
CAS
PubMed
Google Scholar
Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Zuchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER: Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 2010, 74: 97–109.
CAS
PubMed
PubMed Central
Google Scholar
Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, Paisan-Ruiz C, Lichtner P, Scholz SW, Hernandez DG, Kruger R, Federoff M, Klein C, Goate A, Perlmutter J, Bonin M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, et al.: Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009, 41: 1308–1312.
CAS
PubMed
PubMed Central
Google Scholar
Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T: Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009, 41: 1303–1307.
CAS
PubMed
Google Scholar
Paisan-Ruiz C, Nath P, Washecka N, Gibbs JR, Singleton AB: Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Hum Mutat 2008, 29: 485–490.
CAS
PubMed
Google Scholar
Wider C, Ross OA, Wszolek ZK: Genetics of Parkinson disease and essential tremor. Curr Opin Neurol 2010, 23: 388–393.
PubMed
PubMed Central
Google Scholar
Paisan-Ruiz C: LRRK2 gene variation and its contribution to Parkinson disease. Hum Mutat 2009, 30: 1153–1160.
CAS
PubMed
Google Scholar
Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW: Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case–control study. Lancet Neurol 2008, 7: 583–590.
CAS
PubMed
PubMed Central
Google Scholar
Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA: Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 2006, 9: 1231–1233.
CAS
PubMed
Google Scholar
Ross OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulos S, Mash DC, Litvan I, Gordon MF, Wszolek ZK, Farrer MJ, Dickson DW: Lrrk2 and Lewy body disease. Ann Neurol 2006, 59: 388–393.
CAS
PubMed
Google Scholar
Friedman LG, Lachenmayer ML, Wang J, He L, Poulose SM, Komatsu M, Holstein GR, Yue Z: Disrupted autophagy leads to dopaminergic axon and dendrite degeneration and promotes presynaptic accumulation of alpha-synuclein and LRRK2 in the brain. J Neurosci 2012, 32: 7585–7593.
CAS
PubMed
PubMed Central
Google Scholar
Mamais A, Raja M, Manzoni C, Dihanich S, Lees A, Moore D, Lewis PA, Bandopadhyay R: Divergent alpha-synuclein solubility and aggregation properties in G2019S LRRK2 Parkinson’s disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiol Dis 2013, 58: 183–190.
CAS
PubMed
PubMed Central
Google Scholar
Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, Hedrich K, Adel S, Gonzales-McNeal M, Hilker R, Kramer PL, Klein C: Lewy body Parkinson’s disease in a large pedigree with 77 Parkin mutation carriers. Ann Neurol 2005, 58: 411–422.
CAS
PubMed
Google Scholar
Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N, Barber KR, Aguirre JD, Burchell L, Purkiss A, Walden H, Shaw GS: A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease. Nat Commun 2013, 4: 1983.
PubMed
PubMed Central
Google Scholar
Lonskaya I, Desforges NM, Hebron ML, Moussa CE: Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance. PLoS One 2013, 8: e83914.
PubMed
PubMed Central
Google Scholar
Kawahara K, Hashimoto M, Bar-On P, Ho GJ, Crews L, Mizuno H, Rockenstein E, Imam SZ, Masliah E: alpha-Synuclein aggregates interfere with Parkin solubility and distribution: role in the pathogenesis of Parkinson disease. J Biol Chem 2008, 283: 6979–6987.
CAS
PubMed
Google Scholar
Rogaeva E, Johnson J, Lang AE, Gulick C, Gwinn-Hardy K, Kawarai T, Sato C, Morgan A, Werner J, Nussbaum R, Petit A, Okun MS, McInerney A, Mandel R, Groen JL, Fernandez HH, Postuma R, Foote KD, Salehi-Rad S, Liang Y, Reimsnider S, Tandon A, Hardy J, St George-Hyslop P, Singleton AB: Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 2004, 61: 1898–1904.
PubMed
Google Scholar
Annesi G, Savettieri G, Pugliese P, D'Amelio M, Tarantino P, Ragonese P, La Bella V, Piccoli T, Civitelli D, Annesi F, Fierro B, Piccoli F, Arabia G, Caracciolo M, Ciro Candiano IC, Quattrone A: DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol 2005, 58: 803–807.
CAS
PubMed
Google Scholar
Westbroek W, Gustafson AM, Sidransky E: Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends Mol Med 2011, 17: 485–493.
CAS
PubMed
PubMed Central
Google Scholar
Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW: Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009, 132: 1783–1794.
PubMed
PubMed Central
Google Scholar
Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A, Chen CM, Clark LN, Condroyer C, De Marco EV, Durr A, Eblan MJ, Fahn S, Farrer MJ, Fung HC, Gan-Or Z, Gasser T, Gershoni-Baruch R, Giladi N, Griffith A, Gurevich T, Januario C, Kropp P, Lang AE, Lee-Chen GJ, Lesage S, et al.: Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009, 361: 1651–1661.
CAS
PubMed
PubMed Central
Google Scholar
Schellinck HM, Cyr DP, Brown RE: How many ways an mouse behavioral experiments go wrong? Confounding variables in mouse models of neurodegenerative diseases and how to control them. In Advances in the Study of Behavior. Edited by: Brockmann HJ. Academic Press, Burlington; 2010:255–366.
Google Scholar
van der Staay FJ, Arndt SS, Nordquist RE: Evaluation of animal models of neurobehavioral disorders. Behavioral and Brain Functions 2009, 5: 11.
PubMed
PubMed Central
Google Scholar
Willner P, Mitchell PJ: The validity of animal models of predisposition to depression. Behav Pharmacol 2002, 13: 169–188.
CAS
PubMed
Google Scholar
Duty S, Jenner P: Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2011, 164: 1357–1391.
CAS
PubMed
PubMed Central
Google Scholar
Lane E, Dunnett S: Animal models of Parkinson’s disease and L-dopa induced dyskinesia: how close are we to the clinic? Psychopharmacology (Berl) 2008, 199: 303–312.
CAS
Google Scholar
Kieburtz K, Ravina B: Why hasn't neuroprotection worked in Parkinson’s disease? Nat Clin Pract Neurol 2007, 3: 240–241.
CAS
PubMed
Google Scholar
Fishbein I, Kuo YM, Giasson BI, Nussbaum RL: Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation. Brain 2014, 137: 3235–3247.
PubMed
PubMed Central
Google Scholar
Ginns EI, Mak SK, Ko N, Karlgren J, Akbarian S, Chou VP, Guo Y, Lim A, Samuelsson S, LaMarca ML, Vazquez-DeRose J, Manning-Bog AB: Neuroinflammation and alpha-synuclein accumulation in response to glucocerebrosidase deficiency are accompanied by synaptic dysfunction. Mol Genet Metab 2014, 111: 152–162.
CAS
PubMed
Google Scholar
Rothaug M, Zunke F, Mazzulli JR, Schweizer M, Altmeppen H, Lullmann-Rauch R, Kallemeijn WW, Gaspar P, Aerts JM, Glatzel M, Saftig P, Krainc D, Schwake M, Blanz J: LIMP-2 expression is critical for beta-glucocerebrosidase activity and alpha-synuclein clearance. Proc Natl Acad Sci U S A 2014, 111: 15573–15578.
CAS
PubMed
PubMed Central
Google Scholar
Jenner P: The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism Relat Disord 2003, 9: 131–137.
PubMed
Google Scholar
Jenner P: Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 2008, 64(Suppl 2):S16-S29.
CAS
PubMed
Google Scholar
Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 1984, 50: 85–90.
CAS
PubMed
Google Scholar
McDowell K, Chesselet MF: Animal models of the non-motor features of Parkinson’s disease. Neurobiol Dis 2012, 46: 597–606.
PubMed
PubMed Central
Google Scholar
Halliday G, Herrero MT, Murphy K, McCann H, Ros-Bernal F, Barcia C, Mori H, Blesa FJ, Obeso JA: No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Mov Disord 2009, 24: 1519–1523.
PubMed
Google Scholar
Sonsalla PK, Heikkila RE: Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Prog Neuropsychopharmacol Biol Psychiatry 1988, 12: 345–354.
CAS
PubMed
Google Scholar
Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, Lau YS: Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 2002, 956: 156–165.
CAS
PubMed
Google Scholar
Meredith GE, Totterdell S, Potashkin JA, Surmeier DJ: Modeling PD pathogenesis in mice: advantages of a chronic MPTP protocol. Parkinsonism Relat Disord 2008, 14(Suppl 2):S112-S115.
PubMed
PubMed Central
Google Scholar
Fornai F, Schluter OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Sudhof TC: Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci U S A 2005, 102: 3413–3418.
CAS
PubMed
PubMed Central
Google Scholar
Alvarez-Fischer D, Guerreiro S, Hunot S, Saurini F, Marien M, Sokoloff P, Hirsch EC, Hartmann A, Michel PP: Modelling Parkinson-like neurodegeneration via osmotic minipump delivery of MPTP and probenecid. J Neurochem 2008, 107: 701–711.
CAS
PubMed
Google Scholar
Gibrat C, Saint-Pierre M, Bousquet M, Levesque D, Rouillard C, Cicchetti F: Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 2009, 109: 1469–1482.
CAS
PubMed
Google Scholar
Shimoji M, Zhang L, Mandir AS, Dawson VL, Dawson TM: Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Brain Res Mol Brain Res 2005, 134: 103–108.
CAS
PubMed
Google Scholar
Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT: Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 2003, 23: 10756–10764.
CAS
PubMed
Google Scholar
Wang XF, Li S, Chou AP, Bronstein JM: Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol Dis 2006, 23: 198–205.
PubMed
Google Scholar
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000, 3: 1301–1306.
CAS
PubMed
Google Scholar
Sherer TB, Kim JH, Betarbet R, Greenamyre JT: Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 2003, 179: 9–16.
CAS
PubMed
Google Scholar
Tien LT, Kaizaki A, Pang Y, Cai Z, Bhatt AJ, Fan LW: Neonatal exposure to lipopolysaccharide enhances accumulation of alpha-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life. Toxicology 2013, 308: 96–103.
CAS
PubMed
PubMed Central
Google Scholar
Silva BA, Einarsdottir O, Fink AL, Uversky VN: Biophysical Characterization of alpha-Synuclein and Rotenone Interaction. Biomolecules 2013, 3: 703–732.
PubMed
PubMed Central
Google Scholar
Uversky VN, Li J, Fink AL: Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 2001, 500: 105–108.
CAS
PubMed
Google Scholar
Drolet RE, Cannon JR, Montero L, Greenamyre JT: Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 2009, 36: 96–102.
CAS
PubMed
Google Scholar
Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E: Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone. Neuroscience 2011, 181: 234–242.
CAS
PubMed
Google Scholar
Cicchetti F, Drouin-Ouellet J, Gross RE: Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 2009, 30: 475–483.
CAS
PubMed
Google Scholar
Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, Cicchetti F: Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 2004, 18: 717–719.
CAS
PubMed
Google Scholar
Cookson MR, van der Brug M: Cell systems and the toxic mechanism(s) of alpha-synuclein. Exp Neurol 2008, 209: 5–11.
CAS
PubMed
Google Scholar
McNaught KS, Perl DP, Brownell AL, Olanow CW: Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 2004, 56: 149–162.
CAS
PubMed
Google Scholar
Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ: Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 2008, 28: 8189–8198.
CAS
PubMed
Google Scholar
Paine SM, Anderson G, Bedford K, Lawler K, Mayer RJ, Lowe J, Bedford L: Pale body-like inclusion formation and neurodegeneration following depletion of 26S proteasomes in mouse brain neurones are independent of alpha-synuclein. PLoS One 2013, 8: e54711.
CAS
PubMed
PubMed Central
Google Scholar
Banerjee R, Starkov AA, Beal MF, Thomas B: Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 2009, 1792: 651–663.
CAS
PubMed
Google Scholar
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006, 38: 515–517.
CAS
PubMed
Google Scholar
Cannon JR, Greenamyre JT: Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 2010, 184: 17–33.
CAS
PubMed
Google Scholar
Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM, Egami K, Munishkina L, Zhang J, Gardner B, Wakabayashi J, Sesaki H, Cheng Y, Finkbeiner S, Nussbaum RL, Masliah E, Edwards RH: Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 2011, 286: 20710–20726.
CAS
PubMed
PubMed Central
Google Scholar
Dawson TM, Ko HS, Dawson VL: Genetic animal models of Parkinson’s disease. Neuron 2010, 66: 646–661.
CAS
PubMed
PubMed Central
Google Scholar
Ekstrand MI, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson FS, Trifunovic A, Hoffer B, Cullheim S, Mohammed AH, Olson L, Larsson NG: Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A 2007, 104: 1325–1330.
CAS
PubMed
PubMed Central
Google Scholar
Chesselet MF: In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 2008, 209: 22–27.
CAS
PubMed
Google Scholar
Lin X, Parisiadou L, Sgobio C, Liu G, Yu J, Sun L, Shim H, Gu XL, Luo J, Long CX, Ding J, Mateo Y, Sullivan PH, Wu LG, Goldstein DS, Lovinger D, Cai H: Conditional expression of Parkinson’s disease-related mutant alpha-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 2012, 32: 9248–9264.
CAS
PubMed
PubMed Central
Google Scholar
Chesselet MF, Richter F: Modelling of Parkinson’s disease in mice. Lancet Neurol 2011, 10: 1108–1118.
PubMed
Google Scholar
Tsika E, Moysidou M, Guo J, Cushman M, Gannon P, Sandaltzopoulos R, Giasson BI, Krainc D, Ischiropoulos H, Mazzulli JR: Distinct region-specific alpha-synuclein oligomers in A53T transgenic mice: implications for neurodegeneration. J Neurosci 2010, 30: 3409–3418.
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Isla T, Irizarry MC, Mariash A, Cheung B, Soto O, Schrump S, Sondel J, Kotilinek L, Day J, Schwarzschild MA, Cha JH, Newell K, Miller DW, Ueda K, Young AB, Hyman BT, Ashe KH: Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 2003, 24: 245–258.
CAS
PubMed
Google Scholar
Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG, Jenkins NA, Price DL, Lee MK: Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 2006, 26: 41–50.
CAS
PubMed
Google Scholar
Andres-Mateos E, Mejias R, Sasaki M, Li X, Lin BM, Biskup S, Zhang L, Banerjee R, Thomas B, Yang L, Liu G, Beal MF, Huso DL, Dawson TM, Dawson VL: Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci 2009, 29: 15846–15850.
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ 3rd, Shen J: Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 2010, 107: 9879–9884.
CAS
PubMed
PubMed Central
Google Scholar
Tong Y, Pisani A, Martella G, Karouani M, Yamaguchi H, Pothos EN, Shen J: R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci U S A 2009, 106: 14622–14627.
CAS
PubMed
PubMed Central
Google Scholar
Herzig MC, Bidinosti M, Schweizer T, Hafner T, Stemmelen C, Weiss A, Danner S, Vidotto N, Stauffer D, Barske C, Mayer F, Schmid P, Rovelli G, van der Putten PH, Shimshek DR: High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain. PLoS One 2012, 7: e36581.
CAS
PubMed
PubMed Central
Google Scholar
Lin X, Parisiadou L, Gu XL, Wang L, Shim H, Sun L, Xie C, Long CX, Yang WJ, Ding J, Chen ZZ, Gallant PE, Tao-Cheng JH, Rudow G, Troncoso JC, Liu Z, Li Z, Cai H: Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 2009, 64: 807–827.
CAS
PubMed
PubMed Central
Google Scholar
Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ: Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 2011, 6: e18568.
CAS
PubMed
PubMed Central
Google Scholar
Mizushima N, Levine B, Cuervo AM, Klionsky DJ: Autophagy fights disease through cellular self-digestion. Nature 2008, 451: 1069–1075.
CAS
PubMed
PubMed Central
Google Scholar
Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH: Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 2009, 35: 385–398.
CAS
PubMed
Google Scholar
Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M: Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 2010, 30: 12535–12544.
CAS
PubMed
Google Scholar
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D: Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 2004, 305: 1292–1295.
CAS
PubMed
Google Scholar
Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK: Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 2011, 31: 14508–14520.
CAS
PubMed
PubMed Central
Google Scholar
Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J, Bjorklund A: TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 2013, 110: E1817-E1826.
CAS
PubMed
PubMed Central
Google Scholar
Decressac M, Kadkhodaei B, Mattsson B, Laguna A, Perlmann T, Bjorklund A: alpha-Synuclein-induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci Transl Med 2012, 4: 163ra156.
PubMed
Google Scholar
Decressac M, Ulusoy A, Mattsson B, Georgievska B, Romero-Ramos M, Kirik D, Bjorklund A: GDNF fails to exert neuroprotection in a rat alpha-synuclein model of Parkinson’s disease. Brain 2011, 134: 2302–2311.
PubMed
Google Scholar
Lo Bianco C, Deglon N, Pralong W, Aebischer P: Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 2004, 17: 283–289.
CAS
PubMed
Google Scholar
Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T: Transforming growth factor-beta-1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 1995, 193: 129–132.
CAS
PubMed
Google Scholar
Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ: TGF beta 1 and TGF beta 2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol 1996, 142: 313–322.
CAS
PubMed
Google Scholar
Sánchez-Capelo A, Colin P, Guibert B, Biguet NF, Mallet J: Transforming growth factor beta 1 overexpression in the nigrostriatal system increases the dopaminergic deficit of MPTP mice. Mol Cell Neurosci 2003, 23: 614–625.
PubMed
Google Scholar
Sánchez-Capelo A, Corti O, Mallet J: Adenovirus-mediated over-expression of TGF beta 1 in the striatum decreases dopaminergic cell survival in embryonic nigral grafts. Neuroreport 1999, 10: 2169–2173.
PubMed
Google Scholar
Sánchez-Capelo A: Dual role for TGF-beta 1 in apoptosis. Cytokine Growth Factor Rev 2005, 16: 15–34.
PubMed
Google Scholar
Tapia-González S, Giraldez-Pérez RM, Cuartero MI, Casarejos MJ, Mena MA, Wang XF, Sánchez-Capelo A: Dopamine and alpha-synuclein dysfunction in Smad3 null mice. Mol Neurodegener 2011, 6: 72.
PubMed
PubMed Central
Google Scholar
Calabresi P, Castrioto A, Di Filippo M, Picconi B: New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol 2013, 12: 811–821.
CAS
PubMed
Google Scholar
Winner B, Regensburger M, Schreglmann S, Boyer L, Prots I, Rockenstein E, Mante M, Zhao C, Winkler J, Masliah E, Gage FH: Role of alpha-synuclein in adult neurogenesis and neuronal maturation in the dentate gyrus. J Neurosci 2012, 32: 16906–16916.
CAS
PubMed
PubMed Central
Google Scholar
Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, Nasstrom T, Franquelim HG, Oliveira LM, Castanho MA, Lannfelt L, Bergstrom J, Ingelsson M, Quintas A, Sebastiao AM, Lopes LV, Outeiro TF: Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci 2012, 32: 11750–11762.
CAS
PubMed
Google Scholar
Tapia-González S, Muñoz MD, Cuartero MI, Sánchez-Capelo A: Smad3 is required for the survival of proliferative intermediate progenitor cells in the dentate gyrus of adult mice. Cell Communication and Signaling 2013, 11: 93.
PubMed
PubMed Central
Google Scholar
Feany MB, Bender WW: A Drosophila model of Parkinson’s disease. Nature 2000, 404: 394–398.
CAS
PubMed
Google Scholar
Mizuno H, Fujikake N, Wada K, Nagai Y: alpha-Synuclein Transgenic Drosophila As a Model of Parkinson’s Disease and Related Synucleinopathies. Parkinsons Dis 2010, 2011: 212706.
PubMed
PubMed Central
Google Scholar
Kuwahara T, Koyama A, Gengyo-Ando K, Masuda M, Kowa H, Tsunoda M, Mitani S, Iwatsubo T: Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem 2006, 281: 334–340.
CAS
PubMed
Google Scholar
Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G: Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 2003, 86: 165–172.
CAS
PubMed
Google Scholar
van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA: C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 2008, 4: e1000027.
PubMed
PubMed Central
Google Scholar
Liu D, Jin L, Wang H, Zhao H, Zhao C, Duan C, Lu L, Wu B, Yu S, Chan P, Li Y, Yang H: Silencing alpha-synuclein gene expression enhances tyrosine hydroxylase activity in MN9D cells. Neurochem Res 2008, 33: 1401–1409.
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG: Alpha-synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopaminergic cells. J Cell Sci 2005, 118: 3523–3530.
CAS
PubMed
Google Scholar
Tehranian R, Montoya SE, Van Laar AD, Hastings TG, Perez RG: Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. J Neurochem 2006, 99: 1188–1196.
CAS
PubMed
Google Scholar
Ulusoy A, Bjorklund T, Buck K, Kirik D: Dysregulated dopamine storage increases the vulnerability to alpha-synuclein in nigral neurons. Neurobiol Dis 2012, 47: 367–377.
CAS
PubMed
Google Scholar
Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A, Meloni EG, Wu N, Ackerson LC, Klapstein GJ, Gajendiran M, Roth BL, Chesselet MF, Maidment NT, Levine MS, Shen J: Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 2003, 278: 43628–43635.
CAS
PubMed
Google Scholar
Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA, Brice A, Garcia de Yebenes J: Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 2003, 12: 2277–2291.
CAS
PubMed
Google Scholar
Perez FA, Palmiter RD: Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 2005, 102: 2174–2179.
CAS
PubMed
PubMed Central
Google Scholar
Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J: Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 2005, 45: 489–496.
CAS
PubMed
Google Scholar
Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J: Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 2007, 104: 11441–11446.
CAS
PubMed
PubMed Central
Google Scholar
Abeliovich A, Schmitz Y, Fariñas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A: Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000, 25: 239–252.
CAS
PubMed
Google Scholar
Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, Lu B, Nussbaum RL: Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 2002, 22: 8797–8807.
CAS
PubMed
Google Scholar
Gitler AD, Shorter J: Prime time for alpha-synuclein. J Neurosci 2007, 27: 2433–2434.
CAS
PubMed
Google Scholar
Burke WJ, Kumar VB, Pandey N, Panneton WM, Gan Q, Franko MW, O'Dell M, Li SW, Pan Y, Chung HD, Galvin JE: Aggregation of alpha-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine. Acta Neuropathol 2008, 115: 193–203.
CAS
PubMed
Google Scholar
Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D: Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 2009, 62: 218–229.
CAS
PubMed
PubMed Central
Google Scholar
Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ: Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009, 106: 13010–13015.
CAS
PubMed
PubMed Central
Google Scholar
Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW: Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008, 14: 504–506.
CAS
PubMed
Google Scholar
Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VM: Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012, 338: 949–953.
CAS
PubMed
PubMed Central
Google Scholar
Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM: Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011, 72: 57–71.
CAS
PubMed
PubMed Central
Google Scholar
Sacino AN, Brooks M, Thomas MA, McKinney AB, Lee S, Regenhardt RW, McGarvey NH, Ayers JI, Notterpek L, Borchelt DR, Golde TE, Giasson BI: Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc Natl Acad Sci U S A 2014, 111: 10732–10737.
CAS
PubMed
PubMed Central
Google Scholar
Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ, Ceballos-Diaz C, Robertson J, Golde TE, Giasson BI: Amyloidogenic alpha-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol 2014, 127: 645–665.
CAS
PubMed
PubMed Central
Google Scholar
Lee HJ, Bae EJ, Lee SJ: Extracellular alpha–synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 2014, 10: 92–98.
CAS
PubMed
Google Scholar
Ronzitti G, Bucci G, Emanuele M, Leo D, Sotnikova TD, Mus LV, Soubrane CH, Dallas ML, Thalhammer A, Cingolani LA, Mochida S, Gainetdinov RR, Stephens GJ, Chieregatti E: Exogenous alpha-Synuclein Decreases Raft Partitioning of Cav2.2 Channels Inducing Dopamine Release. J Neurosci 2014, 34: 10603–10615.
PubMed
Google Scholar
Alderson TR, Markley JL: Biophysical characterization of alpha-synuclein and its controversial structure. Intrinsically Disord Proteins 2013, 1: 18–39.
PubMed
Google Scholar
Deleersnijder A, Gerard M, Debyser Z, Baekelandt V: The remarkable conformational plasticity of alpha-synuclein: blessing or curse? Trends Mol Med 2013, 19: 368–377.
CAS
PubMed
Google Scholar
Bartels T, Choi JG, Selkoe DJ: alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011, 477: 107–110.
CAS
PubMed
PubMed Central
Google Scholar
Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Liao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Cookson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ: A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 2011, 108: 17797–17802.
CAS
PubMed
PubMed Central
Google Scholar
Beyer K: Mechanistic aspects of Parkinson’s disease: alpha-synuclein and the biomembrane. Cell Biochem Biophys 2007, 47: 285–299.
CAS
PubMed
Google Scholar
Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL: alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 1999, 274: 19509–19512.
CAS
PubMed
Google Scholar
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr: Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 2000, 97: 571–576.
CAS
PubMed
PubMed Central
Google Scholar
Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA: Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A 2000, 97: 4897–4902.
CAS
PubMed
PubMed Central
Google Scholar
Uversky VN, Li J, Fink AL: Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001, 276: 10737–10744.
CAS
PubMed
Google Scholar
Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D: Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell 2012, 149: 1048–1059.
CAS
PubMed
PubMed Central
Google Scholar
Hogen T, Levin J, Schmidt F, Caruana M, Vassallo N, Kretzschmar H, Botzel K, Kamp F, Giese A: Two different binding modes of alpha-synuclein to lipid vesicles depending on its aggregation state. Biophys J 2012, 102: 1646–1655.
PubMed
PubMed Central
Google Scholar
Stockl MT, Zijlstra N, Subramaniam V: alpha-Synuclein oligomers: an amyloid pore? Insights into mechanisms of alpha-synuclein oligomer-lipid interactions. Mol Neurobiol 2013, 47: 613–621.
PubMed
Google Scholar
Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH: Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010, 65: 66–79.
CAS
PubMed
PubMed Central
Google Scholar
Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr: Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 2001, 294: 1346–1349.
CAS
PubMed
Google Scholar
Li J, Zhu M, Manning-Bog AB, Di Monte DA, Fink AL: Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer's disease. FASEB J 2004, 18: 962–964.
CAS
PubMed
Google Scholar
Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM: Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 2005, 280: 21212–21219.
CAS
PubMed
Google Scholar
Li J, Uversky VN, Fink AL: Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 2001, 40: 11604–11613.
CAS
PubMed
Google Scholar
Azeredo da Silveira S, Schneider BL, Cifuentes-Diaz C, Sage D, Abbas-Terki T, Iwatsubo T, Unser M, Aebischer P: Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet 2009, 18: 872–887.
CAS
PubMed
Google Scholar
Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP, Mandel RJ, Muzyczka N: The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 2008, 105: 763–768.
CAS
PubMed
PubMed Central
Google Scholar
Oueslati A, Fournier M, Lashuel HA: Role of phost-translational modifications in modulating the structure, function and toxicity of a-synuclein: implications for Parkinson’s disease pathogenesis and therapies. In Progress in Brain Research. Edited by: Björklund A, Cenci MA. Academic Press, City; 2010:115–145.
Google Scholar
Haj-Yahya M, Fauvet B, Herman-Bachinsky Y, Hejjaoui M, Bavikar SN, Karthikeyan SV, Ciechanover A, Lashuel HA, Brik A: Synthetic polyubiquitinated alpha-Synuclein reveals important insights into the roles of the ubiquitin chain in regulating its pathophysiology. Proc Natl Acad Sci U S A 2013, 110: 17726–17731.
CAS
PubMed
PubMed Central
Google Scholar
Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K: Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci U S A 2009, 106: 8157–8162.
CAS
PubMed
PubMed Central
Google Scholar
Bungeroth M, Appenzeller S, Regulin A, Volker W, Lorenzen I, Grotzinger J, Pendziwiat M, Kuhlenbaumer G: Differential aggregation properties of alpha-synuclein isoforms. Neurobiol Aging 2014, 35: 1913–1919.
CAS
PubMed
Google Scholar