Steele JC, Richardson JC, Olszewski J: Progressive supranuclear palsy. Arch Neurol 1964, 10: 333–359. 10.1001/archneur.1964.00460160003001
Article
CAS
PubMed
Google Scholar
Nath U, Ben-Shlomo Y, Thomson RG, Morris HR, Wood NW, Lees AJ, Burn DJ: The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 2001, 124: 1438–1449. 10.1093/brain/124.7.1438
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA: Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989, 3: 519–526. 10.1016/0896-6273(89)90210-9
Article
CAS
PubMed
Google Scholar
Panda D, Goode BL, Feinstein SC, Wilson L: Kinetic stabilization of microtubule dynamics. Biochemistry 1995, 34: 11117–111127. 10.1021/bi00035a017
Article
CAS
PubMed
Google Scholar
Ingelsson M, Ramasamy K, Russ C, Freeman SH, Orne J, Raju S, Matsui T, Growdon JH, Frosch MP, Ghetti B, Brown RH, Irizarry MC, Hyman BT: Increase in the relative expression of tau with four microtubule binding repeat regions in frontotemporal lobar degeneration and progressive supranuclear palsy brains. Acta Neuropathol 2007, 114: 471–479. 10.1007/s00401-007-0280-z
Article
CAS
PubMed
Google Scholar
Sergeant N, Wattez A, Delacourte A: Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neurochem 1999, 72: 1243–1249. 10.1046/j.1471-4159.1999.0721243.x
Article
CAS
PubMed
Google Scholar
Arai T, Ikeda K, Akiyama H, Tsuchiya K, Yagishita S, Takamatsu J: Intracellular processing of aggregated tau differs between corticobasal degeneration and progressive supranuclear palsy. Clin Med 2001, 12: 935–938.
CAS
Google Scholar
Arai T, Ikeda K, Akiyama H, Nonaka T, Hasegawa M, Ishiguro K, Iritani S, Tsuchiya K, Iseki E, Yagishita S, Oda T, Mochizuki A: Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann Neurol 2004, 55: 72–79. 10.1002/ana.10793
Article
CAS
PubMed
Google Scholar
Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y: Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their τ isoform distribution and phosphorylation. Ann Neurol 1998, 43: 193–204. 10.1002/ana.410430209
Article
CAS
PubMed
Google Scholar
Arai T, Ikeda K, Akiyama H, Tsuchiya K, Iritani S, Ishiguro K, Yagishita S, Oda T, Odawara T, Iseki E: Different immunoreactivities of the microtubule-binding region of tau and its molecular basis in brains from patients with Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol 2003, 105: 489–498.
CAS
PubMed
Google Scholar
Yamada T, McGeer PL, McGeer EG: Appearance of paired nucleated, tau-positive glia in patients with progressive supranuclear palsy brain tissue. Neurosci Lett 1992, 135: 99–102. 10.1016/0304-3940(92)90145-W
Article
CAS
PubMed
Google Scholar
Hauw JJ, Verny M, Delaère P, Cervera P, He Y, Duyckaerts C: Constant neurofibrillary changes in the neocortex in progressive supranuclear palsy. Basic differences with Alzheimer’s disease and aging. Neurosci Lett 1990, 119: 182–186. 10.1016/0304-3940(90)90829-X
Article
CAS
PubMed
Google Scholar
Arima K: Ultrastructural characteristics of tau filaments in tauopathies: immuno-electron microscopic demonstration of tau filaments in tauopathies. Neuropathology 2006, 26: 475–483. 10.1111/j.1440-1789.2006.00669.x
Article
PubMed
Google Scholar
Hof PR, Delacourte A, Bouras C: Distribution of cortical neurofibrillary tangles in progressive supranuclear palsy: a quantitative analysis of six cases. Acta Neuropathol 1992, 84: 45–51. 10.1007/BF00427214
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, Kayed R: Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol Neurodegener 2011, 6: 1–14. 10.1186/1750-1326-6-1
Article
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R: Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 2012, 26: 1946–1959. 10.1096/fj.11-199851
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, Jackson GR, Kayed R: Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2012, 2: 700.
Article
PubMed
PubMed Central
Google Scholar
Gerson JE, Kayed R: Formation and propagation of tau oligomeric seeds. Front Neurol 2013., 4: doi:10.3389/fneur.2013.00093
Google Scholar
Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A: Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res 2006, 54: 197–201. 10.1016/j.neures.2005.11.009
Article
CAS
PubMed
Google Scholar
Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A: Granular tau oligomers as intermediates of tau filaments. Biochemistry 2007, 46: 3856–3861. 10.1021/bi061359o
Article
CAS
PubMed
Google Scholar
Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, Ward S, Reyes JF, Philibert K, Glucksman MJ, Binder LI: Characterization of prefibrillar tau oligomers in vitro and in Alzheimers disease. J Biol Chem 2011, 286: 23063–23076. 10.1074/jbc.M111.237974
Article
CAS
PubMed
PubMed Central
Google Scholar
Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT: The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 2012, 181: 1426–1435. 10.1016/j.ajpath.2012.06.033
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopeikina KJ, Carlson GA, Pitstick R, Ludvigson AE, Peters A, Luebke JI, Koffie RM, Frosch MP, Hyman BT, Spires-Jones TL: Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer’s disease brain. Am J Pathol 2011, 179: 2071–2082. 10.1016/j.ajpath.2011.07.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosenberry TL, Lewis J, Hutton M, Janus C: Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 2007, 27: 3650–3662. 10.1523/JNEUROSCI.0587-07.2007
Article
CAS
PubMed
Google Scholar
Polydoro M, Acker CM, Duff K, Castillo PE, Davies P: Age-dependent impairment of cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 2009, 29: 10741–10749. 10.1523/JNEUROSCI.1065-09.2009
Article
CAS
PubMed
PubMed Central
Google Scholar
SantaCruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH: Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005, 309: 476–481. 10.1126/science.1113694
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM: Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007, 53: 337–351. 10.1016/j.neuron.2007.01.010
Article
CAS
PubMed
Google Scholar
Sahara N, DeTure M, Ren Y, Ebrahim AS, Kang D, Knight J, Volbracht C, Pedersen JT, Dickson DW, Yen SH, Lewis J: Characteristics of TBS-extractable hyperphosphorylated tau species: aggregation intermediates in rTg4510 mouse brain. J Alzheimers Dis 2013, 33: 249–263.
CAS
PubMed
PubMed Central
Google Scholar
Golbe LI: The tau of PSP: a long road to treatment. Mov Disord 2014, 29: 431–434. 10.1002/mds.25855
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves CA, Glabe CG, Kayed R: Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain. J Biol Chem 2011, 286: 22122–22130. 10.1074/jbc.M111.236257
Article
CAS
PubMed
PubMed Central
Google Scholar
Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muñoz MJ, Jackson GR, Kayed R: Preparation and characterization of neurotoxic tau oligomers. Biochemistry 2010, 49: 10039–10041. 10.1021/bi1016233
Article
CAS
PubMed
Google Scholar
Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997, 41: 17–24. 10.1002/ana.410410106
Article
CAS
PubMed
Google Scholar
Vogt BA, Vogt LJ, Vrana KE, Gioia L, Meadows RS, Challa VR, Hof PR, Van Hoesen GW: Multivariate analysis of laminar patterns of neurodegeneration in posterior cingulate cortex in Alzheimer’s disease. Exp Neurol 1998, 153: 8–22. 10.1006/exnr.1998.6852
Article
CAS
PubMed
Google Scholar
Terry RD: Do neuronal inclusions kill the cell? J Neural Transm Suppl 2000, 59: 91–93.
CAS
PubMed
Google Scholar
van de Nes JA, Nafe R, Schlote W: Non-tau based neuronal degeneration in Alzheimer’s disease – an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex. Brain Res 2008, 1213: 152–165.
Article
CAS
PubMed
Google Scholar
Lasagna-Reeves C, Sengupta U, Castillo-Carranza D, Gerson J, Guerrero-Munoz M, Troncoso J, Jackson G, Kayed R: The formation of tau pore-like structures is prevalent and cell specific: possible implications for the disease phenotypes. Acta Neuropathol Commun 2014, 2: 56. 10.1186/2051-5960-2-56
Article
PubMed
PubMed Central
Google Scholar
Alonso ADC, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K: Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 2001, 276: 37967–37973.
Article
CAS
PubMed
Google Scholar
Alonso ADC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K: Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments. PNAS 2001, 98: 6923–6928. 10.1073/pnas.121119298
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez M, Cuadros R, Smith MA, Perry G, Avila J: Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal. FEBS Lett 2000, 486: 270–274. 10.1016/S0014-5793(00)02323-1
Article
PubMed
Google Scholar
Greenwood JA, Johnson GVW: Localization and in situ phosphorylation state of nuclear tau. Exp Cell Res 1995, 220: 332–337. 10.1006/excr.1995.1323
Article
CAS
PubMed
Google Scholar
Díaz-Hernández M, Gómez-Ramos A, Rubio A, Gómez-Villafuertes R, Naranjo JR, Miras-Portugal MT, Avila J: Tissue-nonspecific alkaline phosphatase promotes the neurotoxicity effect of extracellular tau. J Biol Chem 2010, 285: 32539–32548. 10.1074/jbc.M110.145003
Article
PubMed
PubMed Central
Google Scholar
Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP: Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 2013, 14: 389–394. 10.1038/embor.2013.15
Article
CAS
PubMed
PubMed Central
Google Scholar
Keith-Rokosh J, Ang LC: Progressive supranuclear palsy: a review of co-existing neurodegeneration. Can J Neurol Sci 2008, 35: 602–608.
Article
CAS
PubMed
Google Scholar
Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Kayed R: Specific targeting of tau oligomers in htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40: S97-S111.
Castillo-Carranza DL, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett ADT, Dineley KT, Jackson GR, Kayed R: Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 2014, 34: 4260–4272. 10.1523/JNEUROSCI.3192-13.2014
Article
PubMed
Google Scholar