Wenning G, Tison F, Ben Shlomo Y, Daniel S, Quinn N: Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997, 12(2):133–147. 10.1002/mds.870120203
CAS
PubMed
Google Scholar
Ozawa T, Okuizumi K, Ikeuchi T, Wakabayashi K, Takahashi H, Tsuji S: Analysis of the expression level of alpha-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol 2001, 102(2):188–190.
CAS
PubMed
Google Scholar
Wenning G, Shlomo YB, Magalhaes M, Danie S, Quinn N: Clinical features and natural history of multiple system atrophy. Brain 1994, 117(4):835–845. 10.1093/brain/117.4.835
PubMed
Google Scholar
Schrag A, Wenning GK, Quinn N, Ben‒Shlomo Y: Survival in multiple system atrophy. Mov Disord 2008, 23(2):294–296. 10.1002/mds.21839
PubMed
Google Scholar
Papapetropoulos S, Tuchman A, Laufer D, Papatsoris AG, Papapetropoulos N, Mash DC: Causes of death in multiple system atrophy. J Neurol Neurosurg Psychiatry 2007, 78(3):327–329.
PubMed
PubMed Central
Google Scholar
Schrag A, Ben-Shlomo Y, Quinn N: Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999, 354(9192):1771–1775. 10.1016/S0140-6736(99)04137-9
CAS
PubMed
Google Scholar
Bower JH, Maraganore DM, McDonnell SK, Rocca WA: Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 1997, 49(5):1284–1288. 10.1212/WNL.49.5.1284
CAS
PubMed
Google Scholar
Hara K, Momose Y, Tokiguchi S, Shimohata M, Terajima K, Onodera O, Kakita A, Yamada M, Takahashi H, Hirasawa M: Multiplex families with multiple system atrophy. Arch Neurol 2007, 64(4):545–551. 10.1001/archneur.64.4.545
PubMed
Google Scholar
Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki H: Heredity in multiple system atrophy. J Neurol Sci 2006, 240(1):107–110.
CAS
PubMed
Google Scholar
Multiple-System Atrophy Research C: Mutations in COQ2 in familial and sporadic multiple-system atrophy. New Engl J Med 2013, 369(3):233–244. doi:10.1056/NEJMoa1212115
Google Scholar
Stemberger S, Scholz SW, Singleton AB: Wenning GK (2011) Genetic players in multiple system atrophy: unfolding the nature of the beast. Neurobiol Aging 1924, 32(10):e1925–1914. doi:10.1016/j.neurobiolaging.2011.04.001
Google Scholar
Chrysostome V, Tison F, Yekhlef F, Sourgen C, Baldi I, Dartigues JF: Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine, France. Neuroepidemiology 2004, 23(4):201–208. 10.1159/000078506
CAS
PubMed
Google Scholar
Seo JH, Yong SW, Song SK, Lee JE, Sohn YH, Lee PH: A case–control study of multiple system atrophy in Korean patients. Mov Disord 2010, 25(12):1953–1959. 10.1002/mds.23185
PubMed
Google Scholar
Vanacore N, Bonifati V, Fabbrini G, Colosimo C, De Michele G, Marconi R, Stocchi F, Nicholl D, Bonuccelli U, De Mari M, Vieregge P, Meco G, Consortium E: Case–control study of multiple system atrophy. Mov Disord 2005, 20(2):158–163. 10.1002/mds.20303
PubMed
Google Scholar
Vogt IR, Lees AJ, Evert BO, Klockgether T, Bonin M, Wüllner U: Transcriptional changes in multiple system atrophy and parkinson's disease putamen. Exp Neurol 2006, 199(2):465–478. 10.1016/j.expneurol.2006.01.008
CAS
PubMed
Google Scholar
Nee LE, Gomez MR, Dambrosia J, Bale S, Eldridge R, Polinsky RJ: Environmental—occupational risk factors and familial associations in multiple system atrophy: A preliminary investigation. Clin Auton Res 1991, 1(1):9–13. 10.1007/BF01826052
CAS
PubMed
Google Scholar
Papp MI, Kahn JE, Lantos PL: Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci 1989, 94(1):79–100.
CAS
PubMed
Google Scholar
Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH: Lipid rafts mediate the synaptic localization of α-synuclein. J Neurosci 2004, 24(30):6715–6723. 10.1523/JNEUROSCI.1594-04.2004
CAS
PubMed
Google Scholar
Jo E, McLaurin JA, Yip CM, St George-Hyslop P, Fraser PE: α-Synuclein membrane interactions and lipid specificity. J Biol Chem 2000, 275(44):34328–34334.
CAS
PubMed
Google Scholar
Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH, Castillo PE, Shinsky N, Verdugo JM, Armanini M, Ryan A, Hynes M, Phillips H, Sulzer D, Rosenthal A: Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000, 25(1):239–252. 10.1016/S0896-6273(00)80886-7
CAS
PubMed
Google Scholar
Gai WP, Pountney DL, Power JHT, Li QX, Culvenor JG, McLean C, Jensen PH, Blumbergs PC: α-synuclein fibrils constitute the central core of oligodendroglial inclusion filaments in multiple system atrophy. Exp Neurol 2003, 181(1):68–78. 10.1016/S0014-4886(03)00004-9
CAS
PubMed
Google Scholar
Michikawa M: Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer's disease? J Neurosci Res 2003, 72(2):141–146. 10.1002/jnr.10585
CAS
PubMed
Google Scholar
Teunissen C, Lütjohann D, Von Bergmann K, Verhey F, Vreeling F, Wauters A, Bosmans E, Bosma H, van Boxtel M, Maes M: Combination of serum markers related to several mechanisms in Alzheimer’s disease. Neurobiol Aging 2003, 24(7):893–902. 10.1016/S0197-4580(03)00005-8
CAS
PubMed
Google Scholar
Baumann N, Pham-Dinh D: Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001, 81(2):871–927.
CAS
PubMed
Google Scholar
Ravera S, Bartolucci M, Calzia D, Aluigi MG, Ramoino P, Morelli A, Panfoli I: Tricarboxylic acid cycle-sustained oxidative phosphorylation in isolated myelin vesicles. Biochimie 2013, 95(11):1991–1998. doi:10.1016/j.biochi.2013.07.003 10.1016/j.biochi.2013.07.003
CAS
PubMed
Google Scholar
Wang JT, Medress ZA, Barres BA: Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 2012, 196(1):7–18. doi:10.1083/jcb.201108111 10.1083/jcb.201108111
CAS
PubMed
PubMed Central
Google Scholar
Smith CM, Cooksey E, Duncan ID: Myelin loss does not lead to axonal degeneration in a long-lived model of chronic demyelination. J Neurosci 2013, 33(6):2718–2727. doi:10.1523/JNEUROSCI.4627–12.2013 10.1523/JNEUROSCI.4627-12.2013
CAS
PubMed
PubMed Central
Google Scholar
Song YJ, Lundvig DM, Huang Y, Gai WP, Blumbergs PC, Hojrup P, Otzen D, Halliday GM, Jensen PH: p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am J Pathol 2007, 171(4):1291–1303. 10.2353/ajpath.2007.070201
CAS
PubMed
PubMed Central
Google Scholar
Matsuo A, Akiguchi I, Lee GC, McGeer EG, McGeer PL, Kimura J: Myelin degeneration in multiple system atrophy detected by unique antibodies. Am J Pathol 1998, 153(3):735–744. 10.1016/S0002-9440(10)65617-9
CAS
PubMed
PubMed Central
Google Scholar
Lindersson E, Lundvig D, Petersen C, Madsen P, Nyengaard JR, Hojrup P, Moos T, Otzen D, Gai WP, Blumbergs PC, Jensen PH: p25alpha Stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J Biol Chem 2005, 280(7):5703–5715. doi:10.1074/jbc.M410409200
CAS
PubMed
Google Scholar
Kragh CL, Lund LB, Febbraro F, Hansen HD, Wei-Ping G, El-Agnaf O, Richter-Landsberg C, Jensen PH: alpha-synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem 2009, 284(15):10211–10222. 10.1074/jbc.M809671200
CAS
PubMed
PubMed Central
Google Scholar
Kovacs GG, Gelpi E, Lehotzky A, Hotberger R, Erdei A, Budka H, Ovadi J: The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 2007, 113(2):153–161. 10.1007/s00401-006-0167-4
CAS
PubMed
Google Scholar
Giasson BI, Murray IV, Trojanowski JQ, Lee VM-Y: A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. J Biol Chem 2001, 276(4):2380–2386. 10.1074/jbc.M008919200
CAS
PubMed
Google Scholar
Conway KA, Harper JD, Lansbury PT Jr: Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 2000, 39(10):2552–2563. 10.1021/bi991447r
CAS
PubMed
Google Scholar
Li J, Uversky VN, Fink AL: Effect of familial parkinson's disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry 2001, 40(38):11604–11613. 10.1021/bi010616g
CAS
PubMed
Google Scholar
Conway KA, Lee S-J, Rochet J-C, Ding TT, Williamson RE, Lansbury PT: Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci 2000, 97(2):571–576. 10.1073/pnas.97.2.571
CAS
PubMed
PubMed Central
Google Scholar
Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr: α-synuclein, especially the parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 2002, 322(5):1089–1102. 10.1016/S0022-2836(02)00735-0
CAS
PubMed
Google Scholar
Goldberg MS, Lansbury PT Jr: Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000, 2(7):E115-E119. 10.1038/35017124
CAS
PubMed
Google Scholar
Davidson WS, Jonas A, Clayton DF, George JM: Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998, 273(16):9443–9449. 10.1074/jbc.273.16.9443
CAS
PubMed
Google Scholar
Perrin RJ, Woods WS, Clayton DF, George JM: Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 2001, 276(45):41958–41962. 10.1074/jbc.M105022200
CAS
PubMed
Google Scholar
Cole NB, Murphy DD, Grider T, Rueter S, Brasaemle D, Nussbaum RL: Lipid droplet binding and oligomerization properties of the parkinson's disease protein α-synuclein. J Biol Chem 2002, 277(8):6344–6352. 10.1074/jbc.M108414200
CAS
PubMed
Google Scholar
Lee HJ, Choi C, Lee SJ: Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. J Biol Chem 2002, 277(1):671–678.
CAS
PubMed
Google Scholar
Decker L, Ffrench-Constant C: Lipid rafts and integrin activation regulate oligodendrocyte survival. J Neurosci 2004, 24(15):3816–3825. 10.1523/JNEUROSCI.5725–03.2004 10.1523/JNEUROSCI.5725-03.2004
CAS
PubMed
Google Scholar
Pike LJ: Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 2006, 47(7):1597–1598. 10.1194/jlr.E600002-JLR200
CAS
PubMed
Google Scholar
Simons M, Krämer EM, Thiele C, Stoffel W, Trotter J: Assembly of myelin by association of proteolipid protein with cholesterol-and galactosylceramide-rich membrane domains. J Cell Biol 2000, 151(1):143–154. 10.1083/jcb.151.1.143
CAS
PubMed
PubMed Central
Google Scholar
Hanada K, Nishijima M, Akamatsu Y, Pagano RE: Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem 1995, 270(11):6254–6260. 10.1074/jbc.270.11.6254
CAS
PubMed
Google Scholar
Scheiffele P, Roth MG, Simons K: Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 1997, 16(18):5501–5508. doi:10.1093/emboj/16.18.5501 10.1093/emboj/16.18.5501
CAS
PubMed
PubMed Central
Google Scholar
Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M: Binding of α-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. J Biol Chem 1998, 273(41):26292–26294. 10.1074/jbc.273.41.26292
CAS
PubMed
Google Scholar
Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE: Defective membrane interactions of familial parkinson's disease mutant A30P α-synuclein. J Mol Biol 2002, 315(4):799–807. 10.1006/jmbi.2001.5269
CAS
PubMed
Google Scholar
Scholz SW, Houlden H, Schulte C, Sharma M, Li A, Berg D, Melchers A, Paudel R, Gibbs JR, Simon-Sanchez J, Paisan-Ruiz C, Bras J, Ding J, Chen H, Traynor BJ, Arepalli S, Zonozi RR, Revesz T, Holton J, Wood N, Lees A, Oertel W, Wullner U, Goldwurm S, Pellecchia MT, Illig T, Riess O, Fernandez HH, Rodriguez RL, Okun MS, et al.: SNCA variants are associated with increased risk for multiple system atrophy. Ann Neurol 2009, 65(5):610–614. doi:10.1002/ana.21685 10.1002/ana.21685
CAS
PubMed
PubMed Central
Google Scholar
Maroteaux L, Campanelli JT, Scheller RH: Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci Offic J Soc Neurosci 1988, 8(8):2804–2815.
CAS
Google Scholar
Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T: The precursor protein of non-A beta component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995, 14(2):467–475. 10.1016/0896-6273(95)90302-X
CAS
PubMed
Google Scholar
Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr: NACP, a protein implicated in alzheimer's disease and learning, is natively unfolded. Biochemistry 1996, 35(43):13709–13715. 10.1021/bi961799n
CAS
PubMed
Google Scholar
McLean PJ, Kawamata H, Ribich S, Hyman BT: Membrane association and protein conformation of α-synuclein in intact neurons. J Biol Chem 2000, 275(12):8812–8816. 10.1074/jbc.275.12.8812
CAS
PubMed
Google Scholar
Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J, Selkoe DJ: α-synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci 2001, 98(16):9110–9115. 10.1073/pnas.171300598
CAS
PubMed
PubMed Central
Google Scholar
Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R: Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. J Neurosci 2002, 22(20):8797–8807.
CAS
PubMed
Google Scholar
Jenco JM, Rawlingson A, Daniels B, Morris AJ: Regulation of phospholipase D2: selective inhibition of mammalian phospholipase D isoenzymes by α-and β-synucleins. Biochemistry 1998, 37(14):4901–4909. 10.1021/bi972776r
CAS
PubMed
Google Scholar
Payton JE, Perrin RJ, Woods WS, George JM: Structural determinants of PLD2 inhibition by α-synuclein. J Mol Biol 2004, 337(4):1001–1009. 10.1016/j.jmb.2004.02.014
CAS
PubMed
Google Scholar
Liscovitch M, Czarny M, Fiucci G, Tang X: Phospholipase D: molecular and cell biology of a novel gene family. Biochem J 2000, 345(Pt 3):401.
CAS
PubMed
PubMed Central
Google Scholar
Narayanan V, Guo Y, Scarlata S: Fluorescence studies suggest a role for alpha-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry 2005, 44(2):462–470. doi:10.1021/bi0487140 10.1021/bi0487140
CAS
PubMed
Google Scholar
Guo Y, Rosati B, Scarlata S: alpha-Synuclein increases the cellular level of phospholipase Cbeta1. Cell Signal 2012, 24(5):1109–1114. doi:10.1016/j.cellsig.2012.01.007 10.1016/j.cellsig.2012.01.007
CAS
PubMed
PubMed Central
Google Scholar
Castagnet PI, Golovko MY, Barcelo-Coblijn GC, Nussbaum RL, Murphy EJ: Fatty acid incorporation is decreased in astrocytes cultured from alpha-synuclein gene-ablated mice. J Neurochem 2005, 94(3):839–849. doi:10.1111/j.1471–4159.2005.03247.x 10.1111/j.1471-4159.2005.03247.x
CAS
PubMed
Google Scholar
Golovko MY, Faergeman NJ, Cole NB, Castagnet PI, Nussbaum RL, Murphy EJ: α-synuclein gene deletion decreases brain palmitate uptake and alters the palmitate metabolism in the absence of α-synuclein palmitate binding. Biochemistry 2005, 44(23):8251–8259. 10.1021/bi0502137
CAS
PubMed
Google Scholar
Golovko MY, Rosenberger TA, Færgeman NJ, Feddersen S, Cole NB, Pribill I, Berger J, Nussbaum RL, Murphy EJ: Acyl-CoA synthetase activity links wild-type but not mutant α-synuclein to brain arachidonate metabolism. Biochemistry 2006, 45(22):6956–6966. 10.1021/bi0600289
CAS
PubMed
PubMed Central
Google Scholar
Ellis CE, Murphy EJ, Mitchell DC, Golovko MY, Scaglia F, Barceló-Coblijn GC, Nussbaum RL: Mitochondrial lipid abnormality and electron transport chain impairment in mice lacking α-synuclein. Mol Cell Biol 2005, 25(22):10190–10201. 10.1128/MCB.25.22.10190-10201.2005
CAS
PubMed
PubMed Central
Google Scholar
Gu M, Gash MT, Cooper JM, Wenning GK, Daniel SE, Quinn NP, Marsden CD, Schapira AH: Mitochondrial respiratory chain function in multiple system atrophy. Mov Disord 1997, 12(3):418–422. doi:10.1002/mds.870120323 10.1002/mds.870120323
CAS
PubMed
Google Scholar
Stefanova N, Reindl M, Neumann M, Haass C, Poewe W, Kahle PJ, Wenning GK: Oxidative stress in transgenic mice with oligodendroglial α-synuclein overexpression replicates the characteristic neuropathology of multiple system atrophy. Am J Pathol 2005, 166(3):869–876. 10.1016/S0002-9440(10)62307-3
CAS
PubMed
PubMed Central
Google Scholar
Ubhi K, Lee PH, Adame A, Inglis C, Mante M, Rockenstein E, Stefanova N, Wenning GK, Masliah E: Mitochondrial inhibitor 3‒nitroproprionic acid enhances oxidative modification of alpha‒synuclein in a transgenic mouse model of multiple system atrophy. J Neurosci Res 2009, 87(12):2728–2739. 10.1002/jnr.22089
CAS
PubMed
PubMed Central
Google Scholar
Duda JE, Giasson BI, Gur TL, Montine TJ, Robertson D, Biaggioni I, Hurtig HI, Stern MB, Gollomp SM, Grossman M: Immunohistochemical and biochemical studies demonstrate a distinct profile of [alpha]-synuclein permutations in multiple system atrophy. J Neuropathol Exp Neurol 2000, 59(9):830.
CAS
PubMed
Google Scholar
Dickson D, Liu WK, Hardy J, Farrer M, Mehta N, Uitti R, Mark M, Zimmerman T, Golbe L, Sage J: Widespread alterations of α-synuclein in multiple system atrophy. Am J Pathol 1999, 155(4):1241–1251. 10.1016/S0002-9440(10)65226-1
CAS
PubMed
PubMed Central
Google Scholar
Pawlyk AC, Giasson BI, Sampathu DM, Perez FA, Lim KL, Dawson VL, Dawson TM, Palmiter RD, Trojanowski JQ, Lee VMY: Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J Biol Chem 2003, 278(48):48120–48128. 10.1074/jbc.M306889200
CAS
PubMed
Google Scholar
Tong J, Wong H, Guttman M, Ang LC, Forno LS, Shimadzu M, Rajput AH, Muenter MD, Kish SJ, Hornykiewicz O: Brain α-synuclein accumulation in multiple system atrophy, parkinson's disease and progressive supranuclear palsy: a comparative investigation. Brain 2010, 133(1):172–188. 10.1093/brain/awp282
PubMed
Google Scholar
Uryu K, Richter-Landsberg C, Welch W, Sun E, Goldbaum O, Norris EH, Pham CT, Yazawa I, Hilburger K, Micsenyi M: Convergence of heat shock protein 90 with ubiquitin in filamentous α-synuclein inclusions of α-synucleinopathies. Am J Pathol 2006, 168(3):947–961. 10.2353/ajpath.2006.050770
CAS
PubMed
PubMed Central
Google Scholar
Tu P, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VMY: Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble α‒synuclein. Ann Neurol 1998, 44(3):415–422. 10.1002/ana.410440324
CAS
PubMed
Google Scholar
Quinzii C, Naini A, Salviati L, Trevisson E, Navas P, Dimauro S, Hirano M: A mutation in para-hydroxybenzoate-polyprenyl transferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 2006, 78(2):345–349. doi:10.1086/500092 10.1086/500092
CAS
PubMed
Google Scholar
Turunen M, Olsson J, Dallner G: Metabolism and function of coenzyme Q. Biochim Biophys Acta 2004, 1660(1–2):171–199.
CAS
PubMed
Google Scholar
Quinzii CM, Lopez LC, Von-Moltke J, Naini A, Krishna S, Schuelke M, Salviati L, Navas P, DiMauro S, Hirano M: Respiratory chain dysfunction and oxidative stress correlate with severity of primary CoQ10 deficiency. FASEB J Offic Publ Fed Am Soc Exp Biol 2008, 22(6):1874–1885. doi:10.1096/fj.07–100149
CAS
Google Scholar
Quinzii CM, Lopez LC, Gilkerson RW, Dorado B, Coku J, Naini AB, Lagier-Tourenne C, Schuelke M, Salviati L, Carrozzo R, Santorelli F, Rahman S, Tazir M, Koenig M, DiMauro S, Hirano M: Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency. FASEB J Offic Publ Fed Am Soc Exp Biol 2010, 24(10):3733–3743. doi:10.1096/fj.09–152728
CAS
Google Scholar
Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, Servidei S, Valeriani M, Lynch D, Banwell B, Berg M, Dubrovsky T, Chiriboga C, Angelini C, Pegoraro E, DiMauro S: Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 2003, 60(7):1206–1208. 10.1212/01.WNL.0000055089.39373.FC
CAS
PubMed
Google Scholar
Artuch R, Brea-Calvo G, Briones P, Aracil A, Galvan M, Espinos C, Corral J, Volpini V, Ribes A, Andreu AL, Palau F, Sanchez-Alcazar JA, Navas P, Pineda M: Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci 2006, 246(1–2):153–158. doi:10.1016/j.jns.2006.01.021
CAS
PubMed
Google Scholar
Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA: Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 2012, 485(7399):517–521. doi:10.1038/nature11007
PubMed
PubMed Central
Google Scholar
Hung LW, Wang IX, Nikaido K, Liu PQ, Ames GF, Kim SH: Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 1998, 396(6712):703–707. doi:10.1038/25393 10.1038/25393
CAS
PubMed
Google Scholar
Klein I, Sarkadi B, Varadi A: An inventory of the human ABC proteins. Biochim Biophys Acta 1999, 1461(2):237–262. 10.1016/S0005-2736(99)00161-3
CAS
PubMed
Google Scholar
Kaminski WE, Piehler A, Wenzel JJ: ABC A-subfamily transporters: structure, function and disease. Bioch Biophy Acta (BBA)-Mol Basis Dis 2006, 1762(5):510–524. 10.1016/j.bbadis.2006.01.011
CAS
Google Scholar
Kim WS, Weickert CS, Garner B: Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008, 104(5):1145–1166. 10.1111/j.1471-4159.2007.05099.x
CAS
PubMed
Google Scholar
Kim WS, Hsiao JH, Bhatia S, Glaros EN, Don AS, Tsuruoka S, Shannon Weickert C, Halliday GM: ABCA8 stimulates sphingomyelin production in oligodendrocytes. Biochem J 2013, 452(3):401–410. doi:10.1042/BJ20121764 10.1042/BJ20121764
CAS
PubMed
Google Scholar
Benes FM, Turtle M, Khan Y, Farol P: Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994, 51(6):477–484. 10.1001/archpsyc.1994.03950060041004
CAS
PubMed
Google Scholar
Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AMM, Šestan N, Wildman DE: Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A 2012, 109(41):16480–16485. 10.1073/pnas.1117943109
CAS
PubMed
PubMed Central
Google Scholar
Barenholz Y, Thompson T: Sphingomyelins in bilayers and biological membranes. Biochimica et biophysica acta (BBA)-reviews on. Biomembranes 1980, 604: 129–158. 10.1016/0005-2736(80)90572-6
CAS
Google Scholar
Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K: Lipids as modulators of proteolytic activity of BACE involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 2005, 280(44):36815–36823. 10.1074/jbc.M504484200
CAS
PubMed
Google Scholar
Mathias S, Pena L, Kolesnick R: Signal transduction of stress via ceramide. Biochem J 1998, 335: 465–480.
CAS
PubMed
PubMed Central
Google Scholar
Brady RO, Kanfer JN, Mock MB, Fredrickson DS: The metabolism of sphingomyelin. II. Evidence of an enzymatic deficiency in Niemann-Pick diseae. Proc Natl Acad Sci U S A 1966, 55(2):366–369. 10.1073/pnas.55.2.366
CAS
PubMed
PubMed Central
Google Scholar
Bleasel JM, Hsiao JT, Halliday GM, Kim WS: Increased expression of ABCA8 in multiple system atrophy brain is associated with changes in pathogenic proteins. J Parkinson’s Dis 2013. published online 24 June 2013
Google Scholar
Jin H, Ishikawa K, Tsunemi T, Ishiguro T, Amino T, Mizusawa H: Analyses of copy number and mRNA expression level of the alpha-synuclein gene in multiple system atrophy. J Med Dent Sci 2008, 55(1):145–153.
PubMed
Google Scholar
Langerveld AJ, Mihalko D, DeLong C, Walburn J, Ide CF: Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov Disord 2007, 22(6):766–777. 10.1002/mds.21259
PubMed
Google Scholar
Miller D, Johnson J, Solano S, Hollingsworth Z, Standaert D, Young A: Absence of α-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J Neural Transm 2005, 112(12):1613–1624. 10.1007/s00702-005-0378-1
CAS
PubMed
Google Scholar
Ozawa T: Morphological substrate of autonomic failure and neurohormonal dysfunction in multiple system atrophy: impact on determining phenotype spectrum. Acta Neuropathol 2007, 114(3):201–211. 10.1007/s00401-007-0254-1
PubMed
Google Scholar
Lee PH, Lim TS, Shin HW, Yong SW, Nam HS, Sohn YH: Serum cholesterol levels and the risk of multiple system atrophy: a case-control study. Movement Disorders 2009, 24(5):752–758. 10.1002/mds.22459
PubMed
Google Scholar
Cao B, Guo X, Chen K, Song W, Huang R, Wei QQ, Zhao B, Shang HF: Serum lipid levels are associated with the prevalence but not with the disease progression of multiple system atrophy in a Chinese population. Neurol Res 10.1179/1743132813Y.0000000277
Vidal JS, Vidailhet M, Elbaz A, Derkinderen P, Tzourio C, Alperovitch A: Risk factors of multiple system atrophy: a case–control study in French patients. Mov Disord 2008, 23(6):797–803. 10.1002/mds.21857
PubMed
Google Scholar
de Lau LML, Koudstaal PJ, Hofman A, Breteler MMB: Serum cholesterol levels and the risk of Parkinson's disease. Am J Epidemiol 2006, 164(10):998–1002. 10.1093/aje/kwj283
PubMed
Google Scholar
Simon KC, Chen H, Schwarzschild M, Ascherio A: Hypertension, hypercholesterolemia, diabetes, and risk of parkinson disease. Neurology 2007, 69(17):1688–1695. 10.1212/01.wnl.0000271883.45010.8a
PubMed
PubMed Central
Google Scholar
Scigliano G, Musicco M, Soliveri P, Piccolo I, Ronchetti G, Girotti F: Reduced risk factors for vascular disorders in parkinson disease patients a case–control study. Stroke 2006, 37(5):1184–1188. 10.1161/01.STR.0000217384.03237.9c
PubMed
Google Scholar
Huang X, Chen H, Miller WC, Mailman RB, Woodard JL, Chen PC, Xiang D, Murrow RW, Wang YZ, Poole C: Lower low‒density lipoprotein cholesterol levels are associated with parkinson's disease. Mov Disord 2007, 22(3):377–381. 10.1002/mds.21290
PubMed
PubMed Central
Google Scholar
Hu G, Antikainen R, Jousilahti P, Kivipelto M, Tuomilehto J: Total cholesterol and the risk of parkinson disease. Neurology 2008, 70(21):1972–1979. 10.1212/01.wnl.0000312511.62699.a8
CAS
PubMed
Google Scholar
Grandinetti A, Morens DM, Reed D, MacEachern D: Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson's disease. Am J Epidemiol 1994, 139(12):1129–1138.
CAS
PubMed
Google Scholar
Johnson C, Gorell J, Rybicki B, Sanders K, Peterson E: Adult nutrient intake as a risk factor for Parkinson's disease. Int J Epidemiol 1999, 28(6):1102–1109. 10.1093/ije/28.6.1102
CAS
PubMed
Google Scholar
Logroscino G, Marder K, Cote L, Tang MX, Shea S, Mayeux R: Dietary lipids and antioxidants in Parkinson's disease: a population‒based, case‒control study. Ann Neurol 1996, 39(1):89–94. 10.1002/ana.410390113
CAS
PubMed
Google Scholar
Anderson C, Checkoway H, Franklin GM, Beresford S, Smith‒Weller T, Swanson PD: Dietary factors in parkinson's disease: the role of food groups and specific foods. Mov Disord 1999, 14(1):21–27. 10.1002/1531-8257(199901)14:1<21::AID-MDS1006>3.0.CO;2-Y
CAS
PubMed
Google Scholar
de Lau L, Bornebroek M, Witteman J, Hofman A, Koudstaal P, Breteler M: Dietary fatty acids and the risk of parkinson disease the Rotterdam Study. Neurology 2005, 64(12):2040–2045. 10.1212/01.WNL.0000166038.67153.9F
CAS
PubMed
Google Scholar
Powers KM, Smith-Weller T, Franklin GM, Longstreth W Jr, Swanson PD, Checkoway H: Dietary fats, cholesterol and iron as risk factors for parkinson's disease. Parkinsonism Relat Disord 2009, 15(1):47–52. 10.1016/j.parkreldis.2008.03.002
PubMed
Google Scholar
Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H: Environmental, life-style, and physical precursors of clinical parkinson’s disease: recent findings from the Honolulu-Asia aging study. J Neurol 2003, 250(3):iii30-iii39.
PubMed
Google Scholar
Chen H, Zhang SM, Hernán MA, Willett WC, Ascherio A: Dietary intakes of fat and risk of parkinson’s disease. Am J Epidemiol 2003, 157(11):1007–1014.
PubMed
Google Scholar
Gudala K, Bansal D, Muthyala H: Role of serum cholesterol in Parkinson's disease: a meta-analysis of evidence. J Parkinson's Dis 2013, 3(3):363–370. doi:10.3233/JPD-130196
CAS
Google Scholar
Björkhem I, Meaney S: Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004, 24(5):806–815. 10.1161/01.ATV.0000120374.59826.1b
PubMed
Google Scholar
Björkhem I, Lütjohann D, Diczfalusy U, Ståhle L, Ahlborg G, Wahren J: Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 1998, 39(8):1594–1600.
PubMed
Google Scholar
Heverin M, Meaney S, Lütjohann D, Diczfalusy U, Wahren J, Björkhem I: Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 2005, 46(5):1047–1052. 10.1194/jlr.M500024-JLR200
CAS
PubMed
Google Scholar
Bosco DA, Fowler DM, Zhang Q, Nieva J, Powers ET, Wentworth P, Lerner RA, Kelly JW: Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrilization. Nat Chem Biol 2006, 2(5):249–253. 10.1038/nchembio782
CAS
PubMed
Google Scholar
Matthews RT, Yang L, Browne S, Baik M, Beal MF: Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci 1998, 95(15):8892–8897. 10.1073/pnas.95.15.8892
CAS
PubMed
PubMed Central
Google Scholar
Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J: Effects of coenzyme Q10 in early parkinson disease: evidence of slowing of the functional decline. Arch Neurol 2002, 59(10):1541. 10.1001/archneur.59.10.1541
PubMed
Google Scholar
Kaikkonen J, Nyyssonen K, Tuomainen TP, Ristonmaa U, Salonen JT: Determinants of plasma coenzyme Q10 in humans. FEBS Lett 1999, 443(2):163–166. 10.1016/S0014-5793(98)01712-8
CAS
PubMed
Google Scholar
Naini A, Lewis VJ, Hirano M, DiMauro S: Primary coenzyme Q10 deficiency and the brain. Biofactors 2003, 18(1–4):145–152.
CAS
PubMed
Google Scholar