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Abstract
Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of 
studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free 
DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have 
altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are 
common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor 
understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic 
analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), 
by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) 
revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with 
fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, 
uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in 
GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different 
mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF 
metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers 
in patients with GBM.
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Introduction
Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype 
(GBM) is a highly aggressive brain tumor with poor prog-
nosis and limited treatment options. A major challenge 
in the treatment of patients with GBM is the lack of reli-
able, non-invasive diagnostic and prognostic biomarkers 
for early detection, monitoring, and therapy selection. 
Cerebrospinal fluid (CSF) is in direct contact with the 
central nervous system (CNS) and CSF metabolites have 
the potential to reflect the metabolic alterations asso-
ciated with tumor presence and progression [42, 46]. 
Analysis of CSF metabolites is less invasive than tissue 
biopsy and allows for serial collection at different time-
points over the course of disease. Yet, CSF biomarkers 
remain underutilized in patients with GBM and have not 
yet been incorporated into routine clinical practice due 
to technical challenges and the need for more studies to 
understand CSF metabolic changes.

Metabolomic analysis has revealed differences in 
metabolites between viable tumor, necrotic regions, 
and non-neoplastic regions in GBM tissue samples [12, 
18]. Several studies have explored differences in plasma 
metabolites between GBM patients and controls [1, 14, 
33, 38]. Machine learning analysis has also demonstrated 
changes in blood metabolites before surgery, after sur-
gery, and following chemo-radiation in GBM patients [1]. 
Another study identified seven plasma molecules, asso-
ciated with energy metabolism and signaling pathways 
catalyzing tumor proliferation and invasion, to be bio-
markers that are elevated in GBM patients [14].

Although studies of CSF metabolites from GBM 
patients are limited, metabolomic analysis of CSF has 
shown promise in the characterization of CNS tumors. 
For example, differences in CSF metabolites between 
high-grade gliomas and healthy controls have been iden-
tified [34, 46]. Moreover, we have previously identified 
differences in CSF biomarkers in patients with diffuse 
gliomas based on IDH1 mutation status, and in the CSF 
of patients with different types of CNS germ cell tumors 
[2, 17, 52]. Also, analysis of metabolites in CSF has been 
shown to predict malignant transformation and lepto-
meningeal metastasis in glioma patients [22].

In addition to the studies above, associating changes 
in CSF metabolites to brain tumors, studies suggest that 
gut microbiome-derived metabolites can influence the 
blood brain barrier [43, 50, 59]. Imbalances in the relative 
abundance of gut microbes (dysbiosis) can lead to disease 
in the CNS [3]. Studies have found differences in the gut 
microbiome of patients with multiple sclerosis (MS) ver-
sus healthy controls [10, 41]. In addition, gut dysbiosis 
have been described in the setting of brain tumors [13, 
32]. In particular, alterations in gut levels of Akkerman-
sia sp. have been associated with the presence of gliomas 

in humans and mice models, and metabolites of bacterial 
origin have been associated with neurotoxicity [41, 44].

In this study, we explored the metabolic profile of CSF 
in patients with GBM and investigated the correlation 
between CSF metabolites and genomic alterations. Our 
objective was to identify metabolic signatures in CSF that 
are associated with tumor presence, and to understand 
how these metabolites could serve as biomarkers for the 
diagnosis and monitoring of GBM patients.

Methods
Patients
CSF samples from 44 patients were included in the study: 
n = 31 from GBM patients and n = 13 from patients with-
out a history of cancer (controls). Samples were collected 
via lumbar puncture (n = 18), sulcus sampling during 
resection (n = 17), ventricular catheter (n = 7), reservoir/
shunt (n = 1), or cisterna magna (n = 1) (Fig. 1A).

CSF processing
CSF samples were processed within 3 h of collection and 
centrifuged twice at 1,000 × g for 10 min at 4 °C. The cell 
pellet was discarded, and the supernatant was immedi-
ately stored at -80  °C until the time of analysis. 100 µL 
of each CSF sample were used for metabolomics analysis. 
CSF via lumbar puncture was collected utilizing the adult 
LP tray (Cat. 4306 C, CareFusion, IL, USA).

Targeted metabolomics
Liquid chromatography-mass spectrometry (LC-MS) 
Single Reaction Monitoring (SRM) was used to charac-
terize metabolites in CSF. Metabolites were measured 
using three different chromatographic methods. For each 
method, metabolites were normalized against the spiked 
internal standards and the data were log2-transformed 
(see Sup. Material 6 for details).

Statistical analysis
The relative abundance of 125 metabolites was mea-
sured as part of a targeted metabolite profiling analy-
sis. The resulting counts were normalized to an internal 
standard and log2-transformed. The data were addition-
ally z-transformed for each metabolite across all sam-
ples for heatmap generation. Welch’s t-test was used for 
comparisons of metabolite levels between two groups. 
Kruskal-Wallis test with post hoc Dunn’s test for multiple 
comparisons was used for comparisons of metabolite lev-
els between 3 groups. All analyses were performed using 
Python 3.8 and R Statistical Software (v4.2.2; R Core 
Team 2021). Significance calculations were performed 
using the Python library scikit-learn [45]. The Univer-
sity of Texas MD Anderson Cancer Center Department 
of Bioinformatics next-generation clustered heat map 
(NGCHM) software in R was used to generate heatmaps 



Page 3 of 13Wang et al. Acta Neuropathologica Communications           (2024) 12:13 

[6]. Sparse partial least squares-discriminant analysis 
(sPLS-DA) plots were generated using the mixOmics R 
toolkit [47]. Boxplots were generated using the R pack-
age ggpubr [28] and volcano plots using Matplotlib [21] 
in Python. Kaplan-Meier plots were generated using the 
kaplanmeier Python library [53], and cutoff values for 
determining high and low groups were found using the 
function get.cutoff() from the CutoffFinder R file [7].

Mutation analysis
A subset of matched tumor samples was analyzed for 
genomic alterations by a targeted next-generation 
sequencing (NGS) panel interrogating 205 cancer-related 
genes for mutations and 26 genes for rearrangements 
(FoundationOne; Foundation Medicine, Inc.). This infor-
mation was obtained from the patient’s electronical med-
ical record.

Results
Patients and CSF samples
This study included CSF from 31 patients with IDH-wild-
type glioblastoma (GBM), 23 men and 8 women, rang-
ing in age from 18 to 76 years. Thirteen (13) patients had 

CSF samples collected pre-treatment, while 18 patients 
had CSF samples collected post-treatment (Fig. 1A, 1B). 
Somatic mutation analysis of tumor tissue was only avail-
able for the 18 patients with post-treatment CSF samples 
(Fig. 1B). In addition, CSF from 13 patients, (4 male and 
9 female), ranging in age from 25 to 77 years, with non-
neoplastic CNS diseases (i.e., hydrocephalus, stroke, 
aqueduct stenosis, migraine, arachnoid cyst, colloid cyst, 
and trauma) was used as control (Fig. 1A). The survival 
and event timeline of GBM patients in the study are illus-
trated in Sup. Material 1.

Differences in metabolites between pre-treatment GBM 
and post-treatment GBM samples
125 metabolites were identified in CSF as part of the 
targeted metabolic analysis. Statistical comparisons of 
metabolite levels were performed between GBM pre-
treatment (GBM pre-tx) and control patients, as well 
as between GBM pre-treatment and post-treatment 
samples. sPLS-DA demonstrated differences between 
pre-treatment and control, as well as between pre-treat-
ment and post-treatment GBM CSF samples (Fig.  2A), 

Fig. 1 Patient characteristics. CSF samples were collected from patients with GBM (n = 31) and individuals without a history of cancer as controls (n = 13). 
(A) Characteristics of patients with CSF collected pre-treatment (n = 13) and controls (n = 13). Four patients (patients 5, 6, 7, and 10) received no additional 
treatment (i.e., no chemotherapy or radiation). (B) Characteristics of patients for which tumor mutation information was available (n = 18). All patients 
with mutation information had CSF collected post-treatment. (C) Legend for panels A and B. Overall survival (OS) spans from 2 to 73 months. Treatments 
included chemotherapy, radiation therapy (RT), tumor-treating field (TTF), or was not applicable for control patients. All GBM patients underwent surgery. 
CSF was collected via lumbar puncture (LP) (n = 18), sulcus sampling (n = 17), ventricular sampling (n = 7), reservoir/shunt (n = 1), or cisterna magna (n = 1)
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(Fig.  2B). Therefore, pre- and post-treatment CSF sam-
ples were analyzed separately.

Differences in CSF metabolites based on sex
There is a difference in the proportion of male and female 
patients between the pre- and post-treatment GBM 
cohorts, with a near-even split (46% female) in the pre-
treatment cohort and disproportionately more male 
patients (11% female) in the post-treatment cohort. To 
confirm that the metabolic differences between pre- and 
post-treatment CSF samples are not due to differences in 
the proportion of female patients, we performed signifi-
cance and fold change calculations on the GBM cohort 
based on sex. We identified a small number of metabo-
lites (2-methylbutyrylcarnitine, methyl methoxyacetate, 
2-hydroxyglutarate, cytosine, cholesterol sulfate, meth-
ylparaben) that are present at different levels between 
male and female patients in the GBM cohort (pre- and 
post-treatment samples) (Sup. Material  2A). Similarly, 
we identified a small number of metabolites (2-methyl-
butyrylcarnitine, 2-hydroxyglutarate, allantoin, glycine) 
that are different between male and female patients in 

the pre-treatment GBM cohort (Sup. Material  2B). To 
exclude variability due to patient’s sex, we compared pre-
treatment and post-treatment CSF from male patients 
only, and we identified several metabolites that are signif-
icantly different between male pre- and post-treatment 
GBM CSF (3-Hydroxy-3-methylglutaric acid, stearic acid, 
uridine, spaglumic acid, hydroxyisocaproic acid, myristo-
leic acid, methyl hippurate, aminobutanal, alanine, kyn-
urenine, s-ribosyl-L-homocysteine, alpha-ketoglutarate) 
(Sup. Material  2C). Therefore, the differences in CSF 
metabolites between pre-treatment and post-treatment 
GBM samples are not due only to sex.

Differences in metabolites between pre-treatment GBM 
and control CSF samples
sPLS-DA demonstrated differences in CSF metabo-
lites between GBM (pre-treatment) and control samples 
(Fig. 2C). Supervised hierarchical clustering based on the 
squared Euclidean distance (Ward’s method) revealed 
differences in overall metabolite abundance between 
GBM pre-tx and controls (Fig.  2D). Volcano plots illus-
trated fold-change and probability values for each 

Fig. 2 CSF metabolites differ between patients with GBM and controls. (A) sPLS-DA plot with the 31 GBM samples shows that GBM samples collected 
pre-treatment and post-treatment cluster in separate groups. (B) Volcano plot comparing CSF metabolites in CSF from GBM pre-treatment vs. GBM 
post-treatment. Colored points represent metabolites that are present at significantly different levels and fold change (-log10(p-value) > 1.3, log2(Post/
Pre) > + 1 or < -1) in CSF samples from GBM pre-treatment vs. GBM post-treatment. Several CSF metabolites are present at significantly different levels 
in GBM pre-treatment compared to GBM post-treatment. P-value and fold change for differentially abundant metabolites are listed in Supplementary 
Material 5. (C) sPLS-DA plot with the GBM pre-treatment (n = 13) and control (n = 13) CSF samples shows that GBM and control samples cluster in separate 
groups. (D) Supervised heat map of metabolite levels (n = 125) in CSF samples from patients with GBM (n = 31) and controls (n = 13). GBM patients either 
had CSF collected pre-treatment (n = 13) or post-treatment (n = 18). (E) Volcano plot comparing CSF metabolites in CSF from GBM vs. controls. Colored 
points represent metabolites that are present at significantly different levels and fold change (-log10(p-value) > 1.3, log2(GBM/Control) > + 1 or < -1) be-
tween GBM and control CSF samples. Seven metabolites are present at significantly higher levels in the CSF of GBM patients
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identified metabolite and highlighted differentially abun-
dant metabolites. Several metabolites showed statistically 
significantly different levels between GBM pre-tx and 
control CSF (Fig.  2E). In particular, carnitine, 2-meth-
ylbutyrylcarnitine, shikimate, aminobutanal, uridine, 
N-acetylputrescine, and farnesyl diphosphate were pres-
ent at significantly higher levels in the CSF of GBM pre-
tx patients compared to controls (Fig. 3).

Correlation between CSF metabolite levels and somatic 
mutations in GBM
Somatic mutation analysis of tumor tissue was available 
for the 18 GBM patients with CSF collected post-treat-
ment (Fig.  1B). The most common mutations identified 
were TERT promoter (TERTp), CDKN2A/B, NF1, PTEN, 
TP53, and EGFR. Global analysis of metabolites shows a 
statistically significant difference in CSF metabolite levels 
between patients with TP53-wildtype and TP53-mutant 
GBM (Fig. 4), as well as PTEN-mutant and PTEN-wild-
type GBM (Fig.  5). Only minor significant differences 
in metabolites were identified according to TERTp, 
CDKN2A/B, NF1 or EGFR mutation status.

Analysis of the levels of carnitine compounds revealed 
lower levels of these metabolites (i.e., carnitine, propi-
onylcarnitine, 2-methylbutyrylcarnitine, isobutyryl-L-
carnitine, and deoxycarnitine) in CSF from patients with 
TP53-mutant versus TP53-wildtype GBM (Fig. 6). When 
compared to the control CSF, TP53-mutant samples did 
not show significantly different levels for four of the five 

carnitine compounds (exception: 2-methylbutyrylcar-
nitine). In contrast, the level of all carnitine compounds 
in the CSF from patients with TP53-wildtype GBM was 
significantly higher across the board, compared to that in 
CSF from control patients or TP53-mutant GBM patients 
(Fig. 6).

We next analyzed the levels of clinically-relevant 
metabolites that are routinely measured by magnetic 
resonance spectroscopy (MRS) in patients with GBM, 
including lactate, γ-aminobutyric acid (GABA), and cho-
line. The data showed significantly lower levels of lactate, 
GABA and choline in CSF from patients with TP53-
mutant GBM compared to TP53-wildtype. The data also 
showed higher levels of lactate, GABA, and choline in the 
CSF of patients with PTEN-mutant GBM compared to 
PTEN-wildtype GBM (Fig. 7).

Correlation between CSF metabolites and survival in 
patients with GBM
We analyzed the correlation between metabolite levels 
in CSF and overall survival (OS) for the 9 pre-treatment 
GBM samples (Sup. Material 4). To evaluate if metabo-
lites levels correlate with overall survival, we separated 
patients into “high” or “low” groups for each metabolite 
based on the cutoff value calculated from CutoffFinder’s 
fit of mixture model [7]. Kaplan-Meier plots were gen-
erated for each metabolite. OS was compared between 
patients with “high” or “low” levels for each of the 125 
metabolites measured in the study. Three metabolites 

Fig. 3 CSF from GBM patients exhibits significantly higher levels of (A) carnitine, (B) 2-methylbutyrylcarnitine, (C) shikimate, (D) aminobutanal, € uridine, 
(F) N-acetylputrescine, and (G) farnesyl diphosphate than control CSF. Each colored dot represents a patient, small black dot indicates samples that are 
1.5 times the interquartile range above the upper quartile or below the lower quartile
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Fig. 5 CSF metabolite levels differ with PTEN mutation status. (A) Supervised heat map based on PTEN status (mutant vs. wildtype). (B) Volcano plot of 
metabolites comparing CSF samples from patients with GBM-PTEN-mutant vs. GBM-PTEN-wildtype. (C) sPLS-DA plot shows clear separation between 
GBM-PTEN-mutant and GBM-PTEN-wildtype CSF samples

 

Fig. 4 CSF metabolite levels differ with TP53 mutation status. (A) Supervised heat map of metabolites (n = 125) with CSF samples grouped based on TP53 
status (mutant vs. wildtype). (B) Volcano plot of metabolites comparing GBM-TP53-mutant vs. GBM-TP53-wildtype. Colored points represent metabolites 
that are present at significantly different levels (-log10(p-value) > 1.3, log2(Mut/WT) > + 1.5 or < -1.5) between GBM-TP53-wildtype and GBM-TP53-mutant 
samples. Five carnitine compounds, choline, and γ-aminobutyric acid (GABA) are highly abundant in CSF from TP53-wildtype patients. (C) sPLS-DA plot 
of CSF metabolites status shows clear separation between TP53-mutant vs. TP53-wildtype samples
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showed a statistically significant association with OS in 
patients with GBM (2-methylbutyrylcarnitine, aminobu-
tanal, and acetylcholine) (Fig. 8).

Metabolites and age
We performed a linear regression analysis between age 
and metabolite levels, for each metabolite, for the entire 
cohort of glioblastoma samples (pre- and post-treatment) 
and no significant correlation was observed (R^2 value 
ranged from 0.15 to 0.000055). We performed the same 
analysis with the pre-treatment samples and did not 
observe a significant correlation between age and metab-
olite levels for any of the metabolites analyzed (R^2 value 
ranged from 0.52 to 8.12E-07). We also performed the 
same analysis with the post-treatment cohort and did not 
observe a significant correlation between age and metab-
olite levels for any of the metabolites analyzed (R^2 value 
ranged from 0.30 to 1.76E-06).

Discussion
Our results in this study and previous studies demon-
strate differences in CSF metabolites between patients 
with diffuse gliomas and individuals without brain can-
cer [2, 22, 34]. Differences in levels of CSF metabolites 
may be due to the metabolic activity of cancer cells and/

or the effect of tumor cells on overall brain activity [40, 
42]. In this study, we found several metabolites that are 
present at significantly different levels in CSF of patients 
with GBM compared to controls. The data also show that 
GBM mutations may influence the levels of metabolites 
in CSF, including metabolites that are routinely analyzed 
by MRS with advanced brain MRI scans. Moreover, our 
current and previous data show that a metabolite consid-
ered to be of bacterial origin is significantly altered in the 
CSF of patients with GBM [2].

Carnitine association between GBM and lipid metabolism
Carnitine and 2-methylbutyrylcarnitine were found to 
be present at significantly higher levels in the CSF of 
GBM patients compared to controls (Fig. 3A, 3B). GBM 
cells have been shown to exhibit elevated levels of carni-
tine [15], and although this was found in our study, it is 
unclear what role the GBM size, GBM location, and other 
factors may play. Carnitine and acyl-carnitines are crucial 
components of the carnitine shuttle system (CSS), which 
facilitates the transport of fatty acids into the mitochon-
dria for fatty acid oxidation (FAO) (Sup. Material  3A) 
[8, 20, 35]. Recent studies have implicated FAO as an 
important energy production pathway in GBM as well 
as a key mediator of GBM plasticity and adaptability [26, 

Fig. 6 Pairwise comparisons of carnitine compound levels in CSF of control, GBM-TP53-mutant, and GBM-TP53-wildtype patients. (A) carnitine, (B) pro-
pionylcarnitine, (C) 2-methylbutyrylcarnitine, (D) isobutyryl-L-carnitine, and (E) deoxycarnitine. The abundance of carnitine compounds was not signifi-
cantly different between control and GBM-TP53-mutant groups except for 2-methylbutyrylcarnitine (C). Metabolite abundance was significantly different 
between control and GBM-TP53-wildtype samples for all 5 carnitine compounds
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31, 49]. An increase in the CSF levels of carnitine found 
in this study may indicate increased reliance on lipid 
metabolism in GBM. Organic cation transporter OCTN2 
(SLC22A5) is the primary transporter of dietary carnitine 
throughout the body, and OCTN2 is highly expressed in 
the brain of GBM patients compared to healthy brains 
[15, 24, 29]. Consequently, the higher carnitine levels 
observed in the CSF of the GBM patients evaluated here 
may be facilitated by upregulation of OCTN2, which in 

turn could potentially be a response to greater demand 
for carnitine by enhanced fatty acid oxidation in GBM.

Shikimate levels and the gut microbiome
In our previous study of CSF metabolites, we found an 
association between higher CSF levels of shikimate and 
IDH-wildtype gliomas compared to controls [2], a find-
ing recapitulated in Fig.  3C. CSF shikimate levels have 
also been found to be elevated in patients with autism 
spectrum disorder [5]. Shikimate is an intermediate in 

Fig. 8 Kaplan-Meier plots showing survival probability for 9 GBM, IDH-wildtype patients divided into “high” (in red) and “low” (in blue) metabolite level 
groups. A patient is classified as “high” if the individual metabolite level is above the cutoff value calculated by CutoffFinder and classified as “low” if below 
the cutoff. CSF levels of 2-methylbutyrylcarnitine, aminobutanal, and acetylcholine are all inversely associated with survival. (A) 2-methylbutyrylcarnitine 
(p = 0.046); median survival in days (High = 681, Low = N/A). (B) Aminobutanal (p = 0.022); median survival in days (High = 382, Low = N/A). (C) Acetylcho-
line (p = 0.022); median survival in days (High = 382, Low = N/A)

 

Fig. 7 Levels of metabolites measured by MRS (Lactate, γ-aminobutyric acid (GABA), and choline) are influenced by tumor mutations. CSF samples from 
GBM TP53-wildtype patients show significantly elevated levels of (A) lactate, (B) GABA, and (C) choline. CSF samples from GBM PTEN-mutant patients 
show elevated levels of (D) GABA, (E) lactate, and (F) choline. Each colored dot represents a patient, small black dot indicates samples that are 1.5 times 
the interquartile range above the upper quartile or below the lower quartile
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the shikimate pathway. This pathway is not present in 
animals but it is used by plants, bacteria, algae, and other 
microorganisms in the biosynthesis of aromatic com-
pounds (Sup. Material  3B) [19]. While the shikimate 
pathway is active in some bacteria present in the human 
gut microbiome, transcriptome analysis shows that most 
gut bacteria do not possess a complete shikimate path-
way [36]. However, computational modeling reveals that 
the gut bacteria Akkermansia muciniphila expresses all 
the genes encoding the necessary enzymes in the shiki-
mate pathway and accounts for a significant portion of 
the gene expression associated with the shikimate path-
way in the human gut microbiome. These data suggest 
that A. muciniphila could be responsible for a signifi-
cant amount of total shikimate produced by human gut 
microbiome [36]. We have previously identified higher 
levels of the Akkermansia genus in the gut microbiome of 
glioma patients and a glioma mouse model, compared to 
controls [44]. Therefore, the elevated CSF levels of shiki-
mate in GBM patients identified in the current study may 
be influenced by the gut microbiome, in particular Akker-
mansia sp., suggesting a possible relationship between 
the gut-brain axis and CSF metabolites. Additionally, 
recent studies demonstrate unique microbial signatures 
within cancer types, including GBM [39]. To determine 
the source of the CSF shikimate identified in this study, 
future studies could determine whether shikimate-pro-
ducing bacteria are present in human GBM tissue [39]. In 
order to detect remnants of shikimate-producing bacteria 
in the CSF, metagenomic sequencing could be employed, 
in a manner similar to but more specific than that used 
clinically in patients with meningitis or encephalitis [58].

Uridine levels correlate with tumor samples
We found uridine CSF levels to be greater in pre-treat-
ment GBM samples compared to control samples. Uri-
dine is a pyrimidine molecule that is an intermediate in 
nucleoside synthesis, particularly in the catabolism of 
L-glutamine to B-alanine (Sup. Material  3C) [62]. Con-
sistent with our results, uridine concentration was found 
to be higher in tissue samples of GBM, IDH-wildtype 
tumors compared to controls [25].

Tumor mutations influence CSF metabolite levels
Previous studies have demonstrated differences in the 
levels of metabolites based on genetic alterations in 
tumors. For example, diffuse gliomas have been shown 
to exhibit distinct tissue metabolite profiles depending 
on IDH1 mutation status [55]. Moreover, our previous 
study revealed higher levels of D-2-hydroxyglutarate in 
the CSF of patients with IDH-mutant gliomas compared 
to patients with IDH-wildtype gliomas [17]. In the cur-
rent study, we have identified novel differences in CSF 
metabolites between patients with TP53-mutant and 

TP53-wildtype GBM. CSF from patients with TP53-wild-
type GBM contained higher levels of several metabolites 
including lactate, GABA, choline, carnitine, and carni-
tine derivates. In contrast, the levels of lactate, GABA, 
and choline were increased in the CSF of patients with 
GBM-PTEN-mutant, compared to GBM-PTEN-wildtype 
(Fig. 5).

Carnitine and derived compounds are more abundant in 
CSF from patients with TP53-wildtype GBM
We identified carnitine and carnitine derivatives as key 
metabolic biomarkers in the CSF of patients with GBM. 
Carnitine and its acyl derivatives emerged as significant 
factors in our dataset, with increased abundance in the 
CSF of GBM patients, particularly those with TP53-
wildtype status. Carnitine, acylcarnitines 2-methylbutyr-
ylcarnitine, propionylcarnitine, isobutyryl-L-carnitine, 
and deoxycarnitine were significantly more abundant 
in TP53-wildtype, compared to TP53-mutant, GBM 
patients (Fig.  6). In GBM patients, TP53 potentially 
plays an indirect yet critical role in regulating FAO and 
may subsequently affect carnitine and acylcarnitine lev-
els in CSF. More specifically, p53-responsive elements 
have been identified in the first intron of the carnitine 
palmitoyltransferase IC (CPT1C) gene; studies in cell 
lines have shown that p53 can regulate CPT1C expres-
sion [48]. The effects of increased CPT1C expression on 
tumor progression and FAO activity is well-documented 
in the literature [11, 57, 60, 63]. While the exact mecha-
nism for reduced levels of carnitine compounds in the 
CSF of patients with TP53-mutant GBM remains to be 
elucidated, impaired TP53 regulation of CPT1C expres-
sion in TP53-mutant GBM may be a contributing factor. 
When the TP53 mutations occur, FAO is reduced [48], 
and the tumor cells’ ability to use FAO as an alternative 
energy production pathway might be affected. This may 
result in a reduced demand for carnitine in TP53-mutant 
GBM and lower concentrations of carnitine and carnitine 
derivatives in the CSF. The present findings support this 
hypothesis, as the relative levels of carnitine, propionyl-
carnitine, and isobutyryl-L-carnitine were significantly 
increased in TP53-wildtype GBM but were not signifi-
cantly different from control patients or patients with 
TP53-mutant GBM (Fig. 6).

MRS biomarkers for TP53 and PTEN mutation status
The metabolites lactate, GABA, and choline are clinically 
relevant because they are measured in imaging studies 
through magnetic resonance spectroscopy (MRS) [56]. 
Some studies show that tumor mutation status can poten-
tially influence MRS results [30]. Our results reveal that 
the levels of these metabolites can be influenced by the 
mutations present in the tumor (Fig. 7). Lactate, GABA, 
and choline were present at significantly lower levels in 
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the CSF of TP53-mutant GBM patients when compared 
to that of TP53-wildtype GBM patients (Fig. 7A and 7C). 
On the contrary, the relative values of each of the three 
MRS-measurable metabolites were significantly higher 
in the CSF of PTEN-mutant GBM patients compared to 
that of PTEN-wildtype GBM patients (with the exception 
of lactate, which follows a similar trend) (Fig. 7D and 7F). 
Absence of p53 has been associated with downregula-
tion of choline levels in human embryonic stem cells [65], 
suggesting a potential link between choline metabolism 
and p53.

TP53 and the warburg effect
In addition, TP53 is known to regulate glycolysis and 
influence the Warburg effect by negatively regulating lac-
tate dehydrogenase [64]. Similarly, it has been proposed 
that mutant TP53 can stimulate the Warburg effect in 
cultured cells [61]. Interestingly, we observed lower lac-
tate levels in the CSF of patients with mutant TP53. The 
relationship between lower lactate levels in CSF and the 
predicted effects of mutant TP53 in regulating the War-
burg effect is unclear and requires further investigation. 
Given that the levels of lactate, GABA, and choline lev-
els appear to be influenced by GBM mutations, it may be 
important to consider tumor mutations when interpret-
ing MRS results. To evaluate this further, it would be nec-
essary to correlate the CSF metabolite findings with MRS 
imaging and perform receiver-operator curve analysis to 
detect the sensitivity and specificity of a given cut-off on 
MRS that reliably predicts TP53 and PTEN mutation sta-
tus when GBM tissue is not available.

Metabolites associated with sex
Differences between male and female patients with glio-
blastoma have been described. For example, the inci-
dence of glioblastoma is 1.6 times higher in men than 
women [51]. Also, men have worse OS than women. 
Although differences in the proportion of MGMT pro-
moter methylation between male and female and female 
with glioblastoma have been proposed [9], it appears that 
the difference is not statistically significant [16]. In addi-
tion, studies have shown differences in the expression of 
glycolytic genes between males and females, with poten-
tial association to overall survival [23]. In our analysis, we 
identified some CSF metabolites that were significantly 
different between male and patients, consistent with the 
idea that physiological and hormonal differences associ-
ated with sex can influence the levels of metabolites in 
CSF in patients with GBM. This is important when trying 
to identify metabolites that can serve as GBM biomark-
ers, because it might be required to use different cutoffs 
for males and females, when using a CSF metabolite as 
biomarker to identify patients with GBM.

Metabolites associated with overall survival
We identified four metabolites that showed a statistically 
significant association with OS (Fig.  8). Increased lev-
els of 2-methylbutyrylcarnitine and aminobutanal were 
found to be associated with the presence of GBM, and 
higher levels were associated with worse OS (Figs.  3B 
and 3D and 8A and 8B). Aminobutanal is involved in 
the synthesis of the neurotransmitter GABA [27] and 
GABA metabolism has been linked to GBM survival 
[4]. Higher levels of acetylcholine in CSF were found to 
be associated with worse OS (Fig.  8C). Acetylcholine is 
a well-defined neurotransmitter with a wide variety of 
roles in the CNS [37]. GBM invasion was found to be 
significantly enhanced in brain regions with activation 
of acetylcholine receptors, and it has been suggested that 
acetylcholine autocrine signaling facilitates GBM inva-
sion through brain tissue [54]. The same study also found 
that increased acetylcholine receptor expression in GBM 
correlated with worse OS.

Limitations
One limitation of this study is that only CSF samples 
acquired post-treatment have tumor mutation data 
available for analysis. Another limitation is the small 
number of female patients in the post-treatment group. 
Although, the lower proportion of female patients in the 
post-treatment GBM group is a limitation, comparison of 
only the male GBM patients before and after treatment 
showed significant differences in CSF metabolites. This 
supports the result that there are differences between the 
pre- and post-treatment GBM samples that are not due 
to differences in the number of female patients between 
the groups. Additional studies with a larger number of 
patients, including CSF samples acquired before ther-
apy, will provide further confirmation for some of our 
results. Also, how the time between treatment and CSF 
collection influences the levels of CSF metabolites is 
unknown. Despite these limitations, the results of this 
study increase our understanding of CSF metabolites in 
GBM patients.

Conclusion
This study demonstrates differences in CSF metabolites 
between GBM patients and controls. In particular, the 
elevated levels of carnitine and 2-methylbutyrylcarnitine 
point to the role of lipid metabolism in GBM biology. 
Moreover, the elevated CSF shikimate levels suggest a 
potentially novel link between GBM and the gut micro-
biome. In addition, the findings highlight the influence 
of tumor mutations on CSF metabolite levels, including 
those that can be independently assessed with non-inva-
sive magnetic resonance spectroscopy.
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