Ahsan U, Liu Q, Fang L, Wang K (2020) NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks. bioRxiv. https://doi.org/10.1101/2019.12.29.890418
Akarsu A, Stoilov I, Yilmaz E, Sayil B, Sarfarazi M (1996) Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet 5:945–952. https://doi.org/10.1093/hmg/5.7.945
Article
CAS
PubMed
Google Scholar
Akçimen F, Ross JP, Bourassa CV, Liao C, Rochefort D, Gama MTD et al (2019) Investigation of the RFC1 repeat expansion in a Canadian and a Brazilian ataxia cohort: identification of novel conformations. Front Genet 10:1219. https://doi.org/10.3389/fgene.2019.01219
Article
CAS
PubMed
PubMed Central
Google Scholar
Akimoto C, Volk AE, Van Blitterswijk M, Van Den Broeck M, Leblond CS, Lumbroso S et al (2014) A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories. J Med Genet 51:419–424. https://doi.org/10.1136/jmedgenet-2014-102360
Article
CAS
PubMed
Google Scholar
Al-Mahdawi S, Ging H, Bayot A, Cavalcanti F, La Cognata V, Cavallaro S et al (2018) Large interruptions of GAA repeat expansion mutations in Friedreich ataxia are very rare. Front Cell Neurosci 12:443–443. https://doi.org/10.3389/fncel.2018.00443
Article
CAS
PubMed
PubMed Central
Google Scholar
Almaguer-Mederos LE, Mesa JML, González-Zaldívar Y, Almaguer-Gotay D, Cuello-Almarales D, Aguilera-Rodríguez R et al (2018) Factors associated with ATXN2 CAG/CAA repeat intergenerational instability in spinocerebellar ataxia type 2. Clin Genet 94:346–350. https://doi.org/10.1111/cge.13380
Article
CAS
PubMed
Google Scholar
Amiel J, Laudier B, Attié-Bitach T, Trang H, de Pontual L, Gener B et al (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33:459–461. https://doi.org/10.1038/ng1130
Article
CAS
PubMed
Google Scholar
Aydin G, Dekomien G, Hoffjan S, Gerding WM, Epplen JT, Arning L (2018) Frequency of SCA8, SCA10, SCA12, SCA36, FXTAS and C9orf72 repeat expansions in SCA patients negative for the most common SCA subtypes. BMC Neurol 18:3. https://doi.org/10.1186/s12883-017-1009-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Ballester-Lopez A, Koehorst E, Almendrote M, Martínez-Piñeiro A, Lucente G, Linares-Pardo I et al (2020) A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum Mutat 41:420–431. https://doi.org/10.1002/humu.23932
Article
CAS
PubMed
Google Scholar
Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60:201–214. https://doi.org/10.1016/j.neuron.2008.10.004
Article
CAS
PubMed
PubMed Central
Google Scholar
Beecroft SJ, Cortese A, Sullivan R, Yau WY, Dyer Z, Wu TY et al (2020) A Māori specific RFC1 pathogenic repeat configuration in CANVAS, likely due to a founder allele. Brain 143:2673–2680. https://doi.org/10.1093/brain/awaa203
Article
PubMed
PubMed Central
Google Scholar
Bird TD (2019) Hereditary ataxia overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Bird TD (1993) Myotonic dystrophy type 1. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Bourinaris T, Houlden H (2018) C9orf72 and its relevance in parkinsonism and movement disorders: a comprehensive review of the literature. Mov Disord Clin Pract 5:575–585. https://doi.org/10.1002/mdc3.12677
Article
PubMed
PubMed Central
Google Scholar
Brais B, Bouchard J-P, Xie Y-G, Rochefort DL, Chrétien N, Tomé FM et al (1998) Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet 18:164–167. https://doi.org/10.1038/ng0298-164
Article
CAS
PubMed
Google Scholar
Bram E, Javanmardi K, Nicholson K, Culp K, Thibert JR, Kemppainen J et al (2019) Comprehensive genotyping of the C9orf72 hexanucleotide repeat region in 2095 ALS samples from the NINDS collection using a two-mode, long-read PCR assay. Amyotroph Lateral Scler Frontotemporal Degener 20:107–114. https://doi.org/10.1080/21678421.2018.1522353
Article
CAS
PubMed
Google Scholar
Brown LY, Odent S, David V, Blayau M, Dubourg C, Apacik C et al (2001) Holoprosencephaly due to mutations in ZIC2: alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet 10:791–796. https://doi.org/10.1093/hmg/10.8.791
Article
CAS
PubMed
Google Scholar
Cagnoli C, Stevanin G, Michielotto C, Gerbino Promis G, Brussino A, Pappi P et al (2006) Large pathogenic expansions in the SCA2 and SCA7 genes can be detected by fluorescent repeat-primed polymerase chain reaction assay. J Mol Diagn 8:128–132. https://doi.org/10.2353/jmoldx.2006.050043
Article
CAS
PubMed
PubMed Central
Google Scholar
Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427. https://doi.org/10.1126/science.271.5254.1423
Article
CAS
PubMed
Google Scholar
Caron NS, Wright GEB, Hayden MR (1993) Huntington disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Cazzato D, Bella ED, Dacci P, Mariotti C, Lauria G (2016) Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome: a slowly progressive disorder with stereotypical presentation. J Neurol 263:245–249. https://doi.org/10.1007/s00415-015-7951-9
Article
PubMed
Google Scholar
Cen Z, Jiang Z, Chen Y, Zheng X, Xie F, Yang X et al (2018) Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1. Brain 141:2280–2288. https://doi.org/10.1093/brain/awy160
Article
PubMed
Google Scholar
Chen Y-C, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC, Strom TM et al (2015) Transcriptional regulator PRDM12 is essential for human pain perception. Nat Genet 47:803–808. https://doi.org/10.1038/ng.3308
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Z, Xu Z, Cheng Q, Tan YJ, Ong HL, Zhao Y et al (2020) Phenotypic bases of NOTCH2NLC GGC expansion positive neuronal intranuclear inclusion disease in a Southeast Asian cohort. Clin Genet 98:274–281. https://doi.org/10.1111/cge.13802
Article
CAS
PubMed
Google Scholar
Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK (2001) CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 10:2437–2446. https://doi.org/10.1093/hmg/10.21.2437
Article
CAS
PubMed
Google Scholar
Cleary EM, Pal S, Azam T, Moore DJ, Swingler R, Gorrie G et al (2016) Improved PCR based methods for detecting C9orf72 hexanucleotide repeat expansions. Mol Cell Probes 30:218–224. https://doi.org/10.1016/j.mcp.2016.06.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL et al (2019) Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun 10:4920. https://doi.org/10.1038/s41467-019-12671-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY et al (2019) Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet 51:649–658. https://doi.org/10.1038/s41588-019-0372-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortese A, Tozza S, Yau WY, Rossi S, Beecroft SJ, Jaunmuktane Z et al (2020) Cerebellar ataxia, neuropathy, vestibular areflexia syndrome due to RFC1 repeat expansion. Brain 143:480–490. https://doi.org/10.1093/brain/awz418
Article
PubMed
PubMed Central
Google Scholar
David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70. https://doi.org/10.1038/ng0997-65
Article
CAS
PubMed
Google Scholar
De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, Van Dongen J et al (2019) NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol. https://doi.org/10.1186/s13059-019-1856-3
Article
PubMed
PubMed Central
Google Scholar
Dejesus-Hernandez M, Bradley I, Baker M, Nicola AM et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9orf72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. https://doi.org/10.1016/j.neuron.2011.09.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaneau O, Zagury J-F, Robinson MR, Marchini JL, Dermitzakis ET (2019) Accurate, scalable and integrative haplotype estimation. Nat Commun 10:5436. https://doi.org/10.1038/s41467-019-13225-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng J, Gu M, Miao Y, Yao S, Zhu M, Fang P et al (2019) Long-read sequencing identified repeat expansions in the 5’UTR of the NOTCH2NLC gene from Chinese patients with neuronal intranuclear inclusion disease. J Med Genet 56:758–764. https://doi.org/10.1136/jmedgenet-2019-106268
Article
CAS
PubMed
Google Scholar
Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G et al (2017) Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 27:1895–1903. https://doi.org/10.1101/gr.225672.117
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbert MTW, Farrugia SL, Sens JP, Jansen-West K, Gendron TF, Prudencio M et al (2018) Long-read sequencing across the C9orf72 ‘GGGGCC’ repeat expansion: implications for clinical use and genetic discovery efforts in human disease. Mol Neurodegener 13:46. https://doi.org/10.1186/s13024-018-0274-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Estevez-Fraga C, Magrinelli F, Hensman Moss D, Mulroy E, Di Lazzaro G, Latorre A et al (2021) Expanding the spectrum of movement disorders associated With C9orf72 hexanucleotide expansions. Neurol Genet 7:e575. https://doi.org/10.1212/nxg.0000000000000575
Article
PubMed
PubMed Central
Google Scholar
Fang P, Yu Y, Yao S, Chen S, Zhu M, Chen Y et al (2020) Repeat expansion scanning of the NOTCH2NLC gene in patients with multiple system atrophy. Ann Clin Transl Neurol 7:517–526. https://doi.org/10.1002/acn3.51021
Article
CAS
PubMed
PubMed Central
Google Scholar
Findlay Black H, Wright GEB, Collins JA, Caron N, Kay C, Xia Q et al (2020) Frequency of the loss of CAA interruption in the HTT CAG tract and implications for Huntington disease in the reduced penetrance range. Genet Med 22:2108–2113. https://doi.org/10.1038/s41436-020-0917-z
Article
CAS
PubMed
PubMed Central
Google Scholar
Florian RT, Kraft F, Leitão E, Kaya S, Klebe S, Magnin E et al (2019) Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun 10:4919. https://doi.org/10.1038/s41467-019-12763-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Fondon JW, Hammock EAD, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31:328–334. https://doi.org/10.1016/j.tins.2008.03.006
Article
CAS
PubMed
Google Scholar
Fournier C, Barbier M, Camuzat A, Anquetil V, Lattante S, Clot F et al (2019) Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiol Aging 74:234.e231-234.e238. https://doi.org/10.1016/j.neurobiolaging.2018.09.010
Article
CAS
Google Scholar
Francastel C, Magdinier F (2019) DNA methylation in satellite repeats disorders. Essays Biochem 63:757–771. https://doi.org/10.1042/ebc20190028
Article
CAS
PubMed
Google Scholar
Fratta P, Collins T, Pemble S, Nethisinghe S, Devoy A, Giunti P et al (2014) Sequencing analysis of the spinal bulbar muscular atrophy CAG expansion reveals absence of repeat interruptions. Neurobiol Aging 35:443.e441-443.e443. https://doi.org/10.1016/j.neurobiolaging.2013.07.015
Article
CAS
Google Scholar
Gao R, Matsuura T, Coolbaugh M, Zühlke C, Nakamura K, Rasmussen A et al (2008) Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Med Genet 16:215–222. https://doi.org/10.1038/sj.ejhg.5201954
Article
CAS
Google Scholar
Giesselmann P, Brändl B, Raimondeau E, Bowen R, Rohrandt C, Tandon R et al (2019) Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat Biotechnol 37:1478–1481. https://doi.org/10.1038/s41587-019-0293-x
Article
CAS
PubMed
Google Scholar
Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Engelborghs S, De Bleecker J et al (2016) The C9orf72 repeat size correlates with onset age of disease, DNA methylation and transcriptional downregulation of the promoter. Mol Psychiatry 21:1112–1124. https://doi.org/10.1038/mp.2015.159
Article
CAS
PubMed
Google Scholar
Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A et al (2020) Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol 38:433–438. https://doi.org/10.1038/s41587-020-0407-5
Article
CAS
PubMed
PubMed Central
Google Scholar
Glasmacher SA, Wong C, Pearson IE, Pal S (2020) Survival and prognostic factors in C9orf72 repeat expansion carriers. JAMA Neurol 77:367. https://doi.org/10.1001/jamaneurol.2019.3924
Article
PubMed
Google Scholar
Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP et al (2000) Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet 67:197–202. https://doi.org/10.1086/302961
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouw LG, Castañeda MA, McKenna CK, Digre KB, Pulst SM, Perlman S et al (1998) Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 7:525–532. https://doi.org/10.1093/hmg/7.3.525
Article
CAS
PubMed
Google Scholar
Grewal RP, Karkera JD, Grewal RK, Detera-Wadleigh SD (1999) Mutation analysis of oculopharyngeal muscular dystrophy in hispanic American families. Arch Neurol 56:1378. https://doi.org/10.1001/archneur.56.11.1378
Article
CAS
PubMed
Google Scholar
Gu Y, Shen Y, Gibbs RA, Nelson DL (1996) Identification of FMR2, a novel gene associated with the FRAXE CCG repeat and CpG island. Nat Genet 13:109–113. https://doi.org/10.1038/ng0596-109
Article
CAS
PubMed
Google Scholar
Gusella JF, MacDonald ME, Lee JM (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29:1359–1365
Article
CAS
PubMed
Google Scholar
Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB, Moine H, Kooy RF et al (2017) Fragile X syndrome. Nat Rev Dis Primers 3:17065. https://doi.org/10.1038/nrdp.2017.65
Article
PubMed
Google Scholar
Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J et al (2001) Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57:127–130
Article
CAS
PubMed
Google Scholar
Halman A, Oshlack A (2020) Accuracy of short tandem repeats genotyping tools in whole exome sequencing data. F1000Research 9:200. https://doi.org/10.1101/2020.02.03.933002
Article
CAS
PubMed
PubMed Central
Google Scholar
Hannan AJ (2012) Tandem repeat polymorphisms. Springer, New York
Book
Google Scholar
Hannan AJ (2018) Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet 19:286–298. https://doi.org/10.1038/nrg.2017.115
Article
CAS
PubMed
Google Scholar
He F, Todd P (2011) Epigenetics in nucleotide repeat expansion disorders. Semin Neurol 31:470–483. https://doi.org/10.1055/s-0031-1299786
Article
PubMed
Google Scholar
Höijer I, Tsai Y-C, Clark TA, Kotturi P, Dahl N, Stattin E-L et al (2018) Detailed analysis of HTT repeat elements in human blood using targeted amplification-free long-read sequencing. Hum Mutat 39:1262–1272. https://doi.org/10.1002/humu.23580
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes SE, O’Hearn E, Rosenblatt A, Callahan C, Hwang HS, Ingersoll-Ashworth RG et al (2001) A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease–like 2. Nat Genet 29:377–378. https://doi.org/10.1038/ng760
Article
CAS
PubMed
Google Scholar
Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C et al (1999) Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 23:391–392. https://doi.org/10.1038/70493
Article
CAS
PubMed
Google Scholar
Hughes J, Piltz S, Rogers N, McAninch D, Rowley L, Thomas P (2013) Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for X-linked hypopituitarism. PLoS Genet 9:e1003290. https://doi.org/10.1371/journal.pgen.1003290
Article
CAS
PubMed
PubMed Central
Google Scholar
Iacoangeli A, Al Khleifat A, Jones AR, Sproviero W, Shatunov A, Opie-Martin S et al (2019) C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathol Commun 7:115. https://doi.org/10.1186/s40478-019-0724-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Ikeuchi T, Koide R, Tanaka H, Onodera O, Igarashi S, Takahashi H et al (1995) Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37:769–775. https://doi.org/10.1002/ana.410370610
Article
CAS
PubMed
Google Scholar
Ishige T, Sawai S, Itoga S, Sato K, Utsuno E, Beppu M et al (2012) Pentanucleotide repeat-primed PCR for genetic diagnosis of spinocerebellar ataxia type 31. J Hum Genet 57:807–808. https://doi.org/10.1038/jhg.2012.112
Article
CAS
PubMed
Google Scholar
Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A et al (2018) Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet 50:581–590. https://doi.org/10.1038/s41588-018-0067-2
Article
CAS
PubMed
Google Scholar
Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K et al (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51:1222–1232. https://doi.org/10.1038/s41588-019-0458-z
Article
CAS
PubMed
Google Scholar
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345. https://doi.org/10.1038/nbt.4060
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15:673–683. https://doi.org/10.1038/gim.2013.28
Article
CAS
PubMed
Google Scholar
Kang C, Liang C, Ahmad KE, Gu Y, Siow S-F, Colebatch JG et al (2019) High degree of genetic heterogeneity for hereditary cerebellar ataxias in Australia. Cerebellum 18:137–146. https://doi.org/10.1007/s12311-018-0969-7
Article
CAS
PubMed
Google Scholar
Kato M, Saitoh S, Kamei A, Shiraishi H, Ueda Y, Akasaka M et al (2007) A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 81:361–366. https://doi.org/10.1086/518903
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228
Article
CAS
PubMed
Google Scholar
Kebschull JM, Zador AM (2015) Sources of PCR-induced distortions in high-throughput sequencing data sets. Nucl Acids Res 43:e143–e143. https://doi.org/10.1093/nar/gkv717
Article
CAS
PubMed
PubMed Central
Google Scholar
Khristich AN, Mirkin SM (2020) On the wrong DNA track: molecular mechanisms of repeat-mediated genome instability. J Biol Chem 295:4134–4170. https://doi.org/10.1074/jbc.REV119.007678
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y et al (2011) Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet 89:121–130. https://doi.org/10.1016/j.ajhg.2011.05.015
Article
CAS
PubMed
PubMed Central
Google Scholar
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral–pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13. https://doi.org/10.1038/ng0194-9
Article
CAS
PubMed
Google Scholar
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW et al (1999) An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 21:379–384. https://doi.org/10.1038/7710
Article
CAS
PubMed
Google Scholar
Kovaka S, Fan Y, Ni B, Timp W, Schatz MC (2020) Targeted nanopore sequencing by real-time mapping of raw electrical signal with UNCALLED. Nat Biotechnol 39:431–441. https://doi.org/10.1038/s41587-020-0731-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Kratter IH, Finkbeiner S (2010) PolyQ disease: too many Qs, too much function? Neuron 67:897–899. https://doi.org/10.1016/j.neuron.2010.09.012
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhlenbäumer G, Kress W, Ringelstein EB, Stögbauer F (2001) Thirty-seven CAG repeats in the androgen receptor gene in two healthy individuals. J Neurol 248:23–26. https://doi.org/10.1007/s004150170265
Article
PubMed
Google Scholar
Kumar KR, Cortese A, Tomlinson SE, Efthymiou S, Ellis M, Zhu D et al (2020) RFC1 expansions can mimic hereditary sensory neuropathy with cough and Sjögren syndrome. Brain 143:e82. https://doi.org/10.1093/brain/awaa244
Article
PubMed
PubMed Central
Google Scholar
Kumar KR, Cowley MJ, Davis RL (2019) Next-generation sequencing and emerging technologies. Semin Thromb Hemost 45:661–673. https://doi.org/10.1055/s-0039-1688446
Article
CAS
PubMed
Google Scholar
Kuyumcu-Martinez NM, Cooper TA (2006) Misregulation of alternative splicing causes pathogenesis in myotonic dystrophy. Prog Mol Subcell Biol 44:133–159. https://doi.org/10.1007/978-3-540-34449-0_7
Article
CAS
PubMed
Google Scholar
LaCroix AJ, Stabley D, Sahraoui R, Adam MP, Mehaffey M, Kernan K et al (2019) GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in baratela-scott syndrome. Am J Hum Genet 104:35–44. https://doi.org/10.1016/j.ajhg.2018.11.005
Article
CAS
PubMed
Google Scholar
Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA et al (1997) Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386:847–851. https://doi.org/10.1038/386847a0
Article
CAS
PubMed
Google Scholar
Landrian I, McFarland KN, Liu J, Mulligan CJ, Rasmussen A, Ashizawa T (2017) Inheritance patterns of ATCCT repeat interruptions in spinocerebellar ataxia type 10 (SCA10) expansions. PLoS ONE 12:e0175958–e0175958. https://doi.org/10.1371/journal.pone.0175958
Article
CAS
PubMed
PubMed Central
Google Scholar
Laumonnier F, Ronce N, Hamel BC, Thomas P, Lespinasse J, Raynaud M et al (2002) Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet 71:1450–1455. https://doi.org/10.1086/344661
Article
CAS
PubMed
PubMed Central
Google Scholar
Leehey MA (2009) Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med 57:830–836. https://doi.org/10.2310/JIM.0b013e3181af59c4
Article
PubMed
PubMed Central
Google Scholar
Lehesjoki A, Kälviäinen R (2014) Unverricht-Lundborg disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Linhares SDC, Horta WG, Marques Júnior W (2006) Spinocerebellar ataxia type 7 (SCA7): family princeps’ history, genealogy and geographical distribution. Arch Neuropsychiatry 64:222–227. https://doi.org/10.1590/s0004-282x2006000200010
Article
Google Scholar
Liu Q, Tong Y, Wang K (2020) Genome-wide detection of short tandem repeat expansions by long-read sequencing. BMC Bioinform 21:542. https://doi.org/10.1186/s12859-020-03876-w
Article
CAS
Google Scholar
Lone WG, Khan IA, Poornima S, Shaik NA, Meena AK, Rao KP et al (2016) Exploration of CAG triplet repeat in nontranslated region of SCA12 gene. J Genet 95:427–432. https://doi.org/10.1007/s12041-016-0624-3
Article
CAS
PubMed
Google Scholar
Ma D, Tan YJ, Ng ASL, Ong HL, Sim W, Lim WK et al (2020) Association of NOTCH2NLC repeat expansions With parkinson disease. JAMA Neurol 77:1–5. https://doi.org/10.1001/jamaneurol.2020.3023
Article
PubMed Central
Google Scholar
MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983. https://doi.org/10.1016/0092-8674(93)90585-e
Article
Google Scholar
Maltecca F, Filla A, Castaldo I, Coppola G, Fragassi NA, Carella M et al (2003) Intergenerational instability and marked anticipation in SCA-17. Neurology 61:1441–1443. https://doi.org/10.1212/01.wnl.0000094123.09098.a0
Article
CAS
PubMed
Google Scholar
Mantere T, Kersten S, Hoischen A (2019) Long-read sequencing emerging in medical genetics. Front Genet 10:426. https://doi.org/10.3389/fgene.2019.00426
Article
CAS
PubMed
PubMed Central
Google Scholar
Matilla T, Volpini V, Genís D, Rosell J, Corral J, Dávalos A et al (1993) Presymptomatic analysis of spinocerebellar ataxia type 1 (SCA1) via the expansion of the SCA1 CAG-repeat in a large pedigree displaying anticipation and parental male bias. Hum Mol Genet 2:2123–2128. https://doi.org/10.1093/hmg/2.12.2123
Article
CAS
PubMed
Google Scholar
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K et al (2000) Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26:191–194. https://doi.org/10.1038/79911
Article
CAS
PubMed
Google Scholar
McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25:24–34. https://doi.org/10.1111/ene.13413
Article
CAS
PubMed
Google Scholar
McFarland KN, Liu J, Landrian I, Godiska R, Shanker S, Yu F et al (2015) SMRT sequencing of long tandem nucleotide repeats in SCA10 reveals unique insight of repeat expansion structure. PLoS ONE 10:e0135906. https://doi.org/10.1371/journal.pone.0135906
Article
CAS
PubMed
PubMed Central
Google Scholar
McFarland KN, Liu J, Landrian I, Zeng D, Raskin S, Moscovich M et al (2014) Repeat interruptions in spinocerebellar ataxia type 10 expansions are strongly associated with epileptic seizures. Neurogenetics 15:59–64. https://doi.org/10.1007/s10048-013-0385-6
Article
PubMed
Google Scholar
Meienberg J, Bruggmann R, Oexle K, Matyas G (2016) Clinical sequencing: is WGS the better WES? Hum Genet 135:359–362
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller DE, Sulovari A, Wang T, Loucks H, Hoekzema K, Munson KM et al (2020) Targeted long-read sequencing resolves complex structural variants and identifies missing disease-causing variants. bioRxiv. https://doi.org/10.1101/2020.11.03.365395
Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T, Adachi H et al (2019) Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. https://doi.org/10.1186/s13059-019-1667-6
Article
PubMed
PubMed Central
Google Scholar
Mizuguchi T, Toyota T, Adachi H, Miyake N, Matsumoto N, Miyatake S (2019) Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases. J Hum Genet 64:191–197. https://doi.org/10.1038/s10038-018-0551-7
Article
CAS
PubMed
Google Scholar
Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edström L et al (2001) Huntington disease phenocopy is a familial prion disease. Am J Hum Genet 69:1385–1388. https://doi.org/10.1086/324414
Article
CAS
PubMed
PubMed Central
Google Scholar
Mor-Shaked H, Eiges R (2018) Reevaluation of FMR1 hypermethylation timing in Fragile X syndrome. Front Mol Neurosci 11:31. https://doi.org/10.3389/fnmol.2018.00031
Article
CAS
PubMed
PubMed Central
Google Scholar
Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP (2000) SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 9:2125–2130. https://doi.org/10.1093/hmg/9.14.2125
Article
CAS
PubMed
Google Scholar
Moss DJH, Poulter M, Beck J, Hehir J, Polke JM, Campbell T et al (2014) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology 82:292–299
Article
Google Scholar
Mousavi N, Shleizer-Burko S, Yanicky R, Gymrek M (2019) Profiling the genome-wide landscape of tandem repeat expansions. Nucl Acids Res 47:e90–e90. https://doi.org/10.1093/nar/gkz501
Article
CAS
PubMed
PubMed Central
Google Scholar
Myers RH (2004) Huntington’s disease genetics. NeuroRx 1:255–262. https://doi.org/10.1602/neurorx.1.2.255
Article
PubMed
PubMed Central
Google Scholar
Nakamura H, Doi H, Mitsuhashi S, Miyatake S, Katoh K, Frith MC et al (2020) Long-read sequencing identifies the pathogenic nucleotide repeat expansion in RFC1 in a Japanese case of CANVAS. J Hum Genet 65:475–480. https://doi.org/10.1038/s10038-020-0733-y
Article
CAS
PubMed
Google Scholar
Nakamura K, Jeong S-Y, Uchihara T, Anno M, Nagashima K, Nagashima T et al (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448. https://doi.org/10.1093/hmg/10.14.1441
Article
CAS
PubMed
Google Scholar
Nallathambi J, Moumné L, De Baere E, Beysen D, Usha K, Sundaresan P et al (2007) A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction. Hum Genet 121:107–112. https://doi.org/10.1007/s00439-006-0276-0
Article
CAS
PubMed
Google Scholar
Ng ASL, Lim WK, Xu Z, Ong HL, Tan YJ, Sim WY et al (2020) NOTCH2NLC GGC repeat expansions are associated with sporadic essential tremor: variable disease expressivity on long-term follow-up. Ann Neurol 88:614–618. https://doi.org/10.1002/ana.25803
Article
CAS
PubMed
Google Scholar
Ogasawara M, Iida A, Kumutpongpanich T, Ozaki A, Oya Y, Konishi H et al (2020) CGG expansion in NOTCH2NLC is associated with oculopharyngodistal myopathy with neurological manifestations. Acta Neuropathol Commun 8:204. https://doi.org/10.1186/s40478-020-01084-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Okubo M, Doi H, Fukai R, Fujita A, Mitsuhashi S, Hashiguchi S et al (2019) GGC repeat expansion of NOTCH2NLC in adult patients with leukoencephalopathy. Ann Neurol 86:962–968. https://doi.org/10.1002/ana.25586
Article
CAS
PubMed
Google Scholar
Orr HT, Chung M-y, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226
Article
CAS
PubMed
Google Scholar
Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da’as SI, Maroofian R, Donkervoort S et al (2021) An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain. https://doi.org/10.1093/brain/awaa420
Article
PubMed
PubMed Central
Google Scholar
Park H, Kim H-J, Jeon BS (2015) Parkinsonism in spinocerebellar ataxia. BioMed Res Int 2015:125273–125273. https://doi.org/10.1155/2015/125273
Article
PubMed
PubMed Central
Google Scholar
Paulson H (2018) Repeat expansion diseases. Handb Clin Neurol 147:105–123. https://doi.org/10.1016/B978-0-444-63233-3.00009-9
Article
PubMed
PubMed Central
Google Scholar
Payne A, Holmes N, Clarke T, Munro R, Debebe B, Loose M (2020) Nanopore adaptive sequencing for mixed samples, whole exome capture and targeted panels. bioRxiv. https://doi.org/10.1101/2020.02.03.926956
La Spada RA (1997) Trinucleotide repeat instability: genetic features and molecular mechanisms. Brain Pathol 7:943–963. https://doi.org/10.1111/j.1750-3639.1997.tb00895.x
Article
PubMed
Google Scholar
Rafehi H, Szmulewicz DJ, Bennett MF, Sobreira NLM, Pope K, Smith KR et al (2019) Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet 105:151–165. https://doi.org/10.1016/j.ajhg.2019.05.016
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranen NG, Stine OC, Abbott MH, Sherr M, Codori AM, Franz ML et al (1995) Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with Huntington disease. Am J Hum Genet 57:593–602
CAS
PubMed
PubMed Central
Google Scholar
Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genom Proteom Bioinform 13:278–289
Article
Google Scholar
Richard P, Trollet C, Stojkovic T, de Becdelievre A, Perie S, Pouget J et al (2017) Correlation between PABPN1 genotype and disease severity in oculopharyngeal muscular dystrophy. Neurology 88:359–365. https://doi.org/10.1212/WNL.0000000000003554
Article
CAS
PubMed
PubMed Central
Google Scholar
Ridley RM, Frith CD, Farrer LA, Conneally PM (1991) Patterns of inheritance of the symptoms of Huntington’s disease suggestive of an effect of genomic imprinting. J Med Genet 28:224–231. https://doi.org/10.1136/jmg.28.4.224
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801
Article
PubMed
Google Scholar
Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol 129:39–52. https://doi.org/10.1007/s00401-014-1365-0
Article
CAS
PubMed
Google Scholar
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284. https://doi.org/10.1038/ng1196-277
Article
CAS
PubMed
Google Scholar
Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T et al (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557. https://doi.org/10.1016/j.ajhg.2009.09.019
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider SA, Bird T (2016) Huntington’s disease, Huntington’s disease look-alikes, and benign hereditary chorea: what’s new? Mov Disord Clin Pract 3:342–354. https://doi.org/10.1002/mdc3.12312
Article
PubMed
PubMed Central
Google Scholar
Schöls L, Bauer I, Zühlke C, Schulte T, Kölmel C, Bürk K et al (2003) Do CTG expansions at the SCA8 locus cause ataxia? Ann Neurol 54:110–115. https://doi.org/10.1002/ana.10608
Article
CAS
PubMed
Google Scholar
Schüle B, McFarland KN, Lee K, Tsai Y-C, Nguyen K-D, Sun C et al (2017) Parkinson’s disease associated with pure ATXN10 repeat expansion. NPJ Parkinsons Dis 3:27. https://doi.org/10.1038/s41531-017-0029-x
Article
PubMed
PubMed Central
Google Scholar
Scriba CK, Beecroft SJ, Clayton JS, Cortese A, Sullivan R, Yau WY et al (2020) A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain 143:2904–2910. https://doi.org/10.1093/brain/awaa263
Article
PubMed
PubMed Central
Google Scholar
Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL et al (2017) A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet 101:87–103. https://doi.org/10.1016/j.ajhg.2017.06.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Semaka A, Kay C, Doty C, Collins JA, Bijlsma EK, Richards F et al (2013) CAG size-specific risk estimates for intermediate allele repeat instability in Huntington disease. J Med Genet 50:696–703. https://doi.org/10.1136/jmedgenet-2013-101796
Article
CAS
PubMed
Google Scholar
Sequeiros J, Seneca S, Martindale J (2010) Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet 18:1188–1195. https://doi.org/10.1038/ejhg.2010.10
Article
PubMed
PubMed Central
Google Scholar
Shin JH, Park H, Ehm GH, Lee WW, Yun JY, Kim YE et al (2015) The pathogenic role of low range repeats in SCA17. PLoS ONE 10:e0135275. https://doi.org/10.1371/journal.pone.0135275
Article
CAS
PubMed
PubMed Central
Google Scholar
Shortt JA, Ruggiero RP, Cox C, Wacholder AC, Pollock DD (2020) Finding and extending ancient simple sequence repeat-derived regions in the human genome. Mob DNA 11:11. https://doi.org/10.1186/s13100-020-00206-y
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SS, Laayoun A, Lingeman RG, Baker DJ, Riley J (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-Ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J Mol Biol 243:143–151. https://doi.org/10.1006/jmbi.1994.1640
Article
CAS
PubMed
Google Scholar
Sobczak K, Krzyzosiak WJ (2005) CAG repeats containing CAA interruptions form branched hairpin structures in spinocerebellar ataxia type 2 transcripts. J Biol Chem 280:3898–3910. https://doi.org/10.1074/jbc.M409984200
Article
CAS
PubMed
Google Scholar
Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K et al (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51:1215–1221. https://doi.org/10.1038/s41588-019-0459-y
Article
CAS
PubMed
Google Scholar
Spada ARL, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79. https://doi.org/10.1038/352077a0
Article
PubMed
Google Scholar
Sproviero W, Shatunov A, Stahl D, Shoai M, Van Rheenen W, Jones AR et al (2017) ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiol Aging 51:178.e171-178.e179. https://doi.org/10.1016/j.neurobiolaging.2016.11.010
Article
CAS
Google Scholar
Stevanin G, Herman A, Dürr A, Jodice C, Frontali M, Agid Y et al (2000) Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 24:213–213. https://doi.org/10.1038/73408
Article
CAS
PubMed
Google Scholar
Strømme P, Mangelsdorf ME, Shaw MA, Lower KM, Lewis SME, Bruyere H et al (2002) Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet 30:441–445. https://doi.org/10.1038/ng862
Article
CAS
PubMed
Google Scholar
Suh E, Grando K, Van Deerlin VM (2018) Validation of a long-read PCR assay for sensitive detection and sizing of C9orf72 hexanucleotide repeat expansions. J Mol Diagn 20:871–882. https://doi.org/10.1016/j.jmoldx.2018.07.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Suthiphosuwan S, Sasikumar S, Munoz DG, Chan DK, Montanera WJ, Bharatha A (2019) MRI diagnosis of neuronal intranuclear inclusion disease leukoencephalopathy. Neurol Clin Pract 9:497–499. https://doi.org/10.1212/cpj.0000000000000664
Article
PubMed
PubMed Central
Google Scholar
Svrzikapa N, Longo KA, Prasad N, Boyanapalli R, Brown JM, Dorset D et al (2020) Investigational assay for haplotype phasing of the Huntingtin gene. Mol Ther Methods Clin Dev 19:162–173. https://doi.org/10.1016/j.omtm.2020.09.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Swinnen B, Robberecht W, Van Den Bosch L (2019) RNA toxicity in non-coding repeat expansion disorders. EMBO J. https://doi.org/10.15252/embj.2018101112
Article
PubMed
PubMed Central
Google Scholar
Todd PK, Paulson HL (2010) RNA-mediated neurodegeneration in repeat expansion disorders. Ann Neurol 67:291–300. https://doi.org/10.1002/ana.21948
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomé S, Gourdon G (2020) Fast assays to detect interruptions in CTG.CAG repeat expansions. Methods Mol Biol 2056:11–23. https://doi.org/10.1007/978-1-4939-9784-8_2
Article
CAS
PubMed
Google Scholar
Tsai YC, Greenberg D, Powell J, Höijer I, Ameur A, Strahl M et al (2017) Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT sequencing of repeat-expansion disease causative genomic regions. BioRxiv. https://doi.org/10.1101/203919
Article
Google Scholar
Ummat A, Bashir A (2014) Resolving complex tandem repeats with long reads. Bioinformatics 30:3491–3498. https://doi.org/10.1093/bioinformatics/btu437
Article
CAS
PubMed
Google Scholar
Van Kuilenburg ABP, Tarailo-Graovac M, Richmond PA, Drögemöller BI, Pouladi MA, Leen R et al (2019) Glutaminase deficiency caused by short tandem repeat expansion in GLS. N Engl J Med 380:1433–1441. https://doi.org/10.1056/nejmoa1806627
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Mossevelde S, van der Zee J, Gijselinck I, Sleegers K, De Bleecker J, Sieben A et al (2017) Clinical evidence of disease anticipation in families segregating a C9orf72 repeat expansion. JAMA Neurol 74:445–452. https://doi.org/10.1001/jamaneurol.2016.4847
Article
PubMed
Google Scholar
Veneziano L, Frontali M (2016) DRPLA. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al (eds) GeneReviews. University of Washington, Seattle
Google Scholar
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu Y-H, Kuhl DP, Pizzuti A et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914. https://doi.org/10.1016/0092-8674(91)90397-h
Article
CAS
PubMed
Google Scholar
Wang B, Tseng E, Baybayan P, Eng K, Regulski M, Jiao Y et al (2020) Variant phasing and haplotypic expression from long-read sequencing in maize. Commun Biol 3:78. https://doi.org/10.1038/s42003-020-0805-8
Article
PubMed
PubMed Central
Google Scholar
Warren ST, Muragaki Y, Mundlos S, Upton J, Olsen BR (1997) Polyalanine expansion in synpolydactyly might result from unequal crossing-over of HOXD13. Science 275:408–409. https://doi.org/10.1126/science.275.5298.408
Article
CAS
PubMed
Google Scholar
Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT et al (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37:1155–1162. https://doi.org/10.1038/s41587-019-0217-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler VC, Persichetti F, McNeil SM, Mysore JS, Mysore SS, MacDonald ME et al (2007) Factors associated with HD CAG repeat instability in Huntington disease. J Med Genet 44:695–701. https://doi.org/10.1136/jmg.2007.050930
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieben ED, Aleff RA, Tosakulwong N, Butz ML, Highsmith WE, Edwards AO et al (2012) A common trinucleotide repeat expansion within the transcription factor 4 (TCF4, E2–2) gene predicts Fuchs corneal dystrophy. PLoS ONE 7:e49083–e49083. https://doi.org/10.1371/journal.pone.0049083
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilburn B, Rudnicki DD, Zhao J, Weitz TM, Cheng Y, Gu X et al (2011) An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 70:427–440. https://doi.org/10.1016/j.neuron.2011.03.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Worth PF, Houlden H, Giunti P, Davis MB, Wood NW (2000) Large, expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet 24:214–215. https://doi.org/10.1038/73411
Article
CAS
PubMed
Google Scholar
Wright GEB, Black HF, Collins JA, Gall-Duncan T, Caron NS, Pearson CE et al (2020) Interrupting sequence variants and age of onset in Huntington’s disease: clinical implications and emerging therapies. Lancet Neurol 19:930–939. https://doi.org/10.1016/s1474-4422(20)30343-4
Article
CAS
PubMed
Google Scholar
Wu TY, Taylor JM, Kilfoyle DH, Smith AD, McGuinness BJ, Simpson MP et al (2014) Autonomic dysfunction is a major feature of cerebellar ataxia, neuropathy, vestibular areflexia ‘CANVAS’ syndrome. Brain 137:2649–2656. https://doi.org/10.1093/brain/awu196
Article
PubMed
Google Scholar
Xi J, Wang X, Yue D, Dou T, Wu Q, Lu J et al (2020) 5’ UTR CGG repeat expansion in GIPC1 is associated with oculopharyngodistal myopathy. Brain 144(2):601–614. https://doi.org/10.1093/brain/awaa426
Article
Google Scholar
Xu P, Pan F, Roland C, Sagui C, Weninger K (2020) Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts. Nucl Acids Res 48:2232–2245. https://doi.org/10.1093/nar/gkaa036
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto H, Imai K (2019) An updated review of microsatellite instability in the era of next-generation sequencing and precision medicine. Semin Oncol 46:261–270. https://doi.org/10.1053/j.seminoncol.2019.08.003
Article
PubMed
Google Scholar
Yuan Y, Liu Z, Hou X, Li W, Ni J, Huang L et al (2020) Identification of GGC repeat expansion in the NOTCH2NLC gene in amyotrophic lateral sclerosis. Neurology 95(24):e3394–e3405. https://doi.org/10.1212/wnl.0000000000010945
Article
PubMed
Google Scholar
Yum K, Wang ET, Kalsotra A (2017) Myotonic dystrophy: disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr Opin Genet Dev 44:30–37. https://doi.org/10.1016/j.gde.2017.01.007
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaheer F, Fee D (2014) Spinocerebellar ataxia 7: a report of unaffected siblings who married into different SCA 7 families. Case Rep Neurol Med 2014:1–3. https://doi.org/10.1155/2014/514791
Article
Google Scholar
Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J (2004) Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 75:459–465. https://doi.org/10.1136/jnnp.2003.018895
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng S, Zhang M-Y, Wang X-J, Hu Z-M, Li J-C, Li N et al (2019) Long-read sequencing identified intronic repeat expansions in SAMD12 from Chinese pedigrees affected with familial cortical myoclonic tremor with epilepsy. J Med Genet 56:265–270. https://doi.org/10.1136/jmedgenet-2018-105484
Article
CAS
PubMed
Google Scholar
Zhang N, Ashizawa T (2017) RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev 44:17–29. https://doi.org/10.1016/j.gde.2017.01.005
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α 1A-voltage-dependent calcium channel. Nat Genet 15:62–69. https://doi.org/10.1038/ng0197-62
Article
CAS
PubMed
Google Scholar