Abe K, Fujimura H, Toyooka K, Hazama T, Hirono N, Yorifuji S, Yanagihara T (1993) Single-photon emission computed tomographic investigation of patients with motor-neuron disease. Neurology 43:1569–1573. https://doi.org/10.1212/Wnl.43.8.1569
Article
CAS
PubMed
Google Scholar
Abe K, Fujimura H, Toyooka K, Sakoda S, Yorifuji S, Yanagihara T (1997) Cognitive function in amyotrophic lateral sclerosis. J Neurol Sci 148:95–100. https://doi.org/10.1016/s0022-510x(96)05338-5
Article
CAS
PubMed
Google Scholar
Achariyar TM, Li BM, Peng WG, Verghese PB, Shi Y, McConnell E, Benraiss A, Kasper T, Song W, Takano T et al (2016) Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation. Mol Neurodegener 11:74. https://doi.org/10.1186/s13024-016-0138-8
Article
CAS
PubMed Central
PubMed
Google Scholar
Ahmed RM, Newcombe RE, Piper AJ, Lewis SJ, Yee BJ, Kiernan MC, Grunstein RR (2016) Sleep disorders and respiratory function in amyotrophic lateral sclerosis. Sleep Med Rev 26:33–42. https://doi.org/10.1016/j.smrv.2015.05.007
Article
PubMed
Google Scholar
Ahn JH, Cho H, Kim JH, Kim SH, Ham JS, Park I, Suh SH, Hong SP, Song JH, Hong YK et al (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572:62–66. https://doi.org/10.1038/s41586-019-1419-5
Article
CAS
PubMed
Google Scholar
Akanuma S, Sakurai T, Tachikawa M, Kubo Y, Hosoya K (2015) Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS 12:11. https://doi.org/10.1186/s12987-015-0006-x
Article
CAS
PubMed Central
PubMed
Google Scholar
Albeck MJ, Skak C, Nielsen PR, Olsen KS, Borgesen SE, Gjerris F (1998) Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 89:275–278. https://doi.org/10.3171/jns.1998.89.2.0275
Article
CAS
PubMed
Google Scholar
Alonso A, Logroscino G, Jick SS, Hernan MA (2009) Incidence and lifetime risk of motor neuron disease in the United Kingdom: a population-based study. Eur J Neurol 16:745–751
Article
CAS
PubMed
PubMed Central
Google Scholar
Alrafiah AR (2018) From mouse models to human disease: an approach for amyotrophic lateral sclerosis. In Vivo 32:983–998. https://doi.org/10.21873/invivo.11339
Article
CAS
PubMed
Google Scholar
Annunziata P, Volpi N (1985) High levels of C3c in the cerebrospinal fluid from amyotrophic lateral sclerosis patients. Acta Neurol Scand 72:61–64. https://doi.org/10.1111/j.1600-0404.1985.tb01548.x
Article
CAS
PubMed
Google Scholar
Apostolski S, Nikolic J, Bugarski-Prokopljevic C, Miletic V, Pavlovic S, Filipovic S (1991) Serum and CSF immunological findings in ALS. Acta Neurol Scand 83:96–98. https://doi.org/10.1111/j.1600-0404.1991.tb04656.x
Article
CAS
PubMed
Google Scholar
Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. https://doi.org/10.1084/jem.20142290
Article
CAS
PubMed Central
PubMed
Google Scholar
Ayers JI, Cashman NR (2018) Prion-like mechanisms in amyotrophic lateral sclerosis. Handb Clin Neurol 153:337–354. https://doi.org/10.1016/B978-0-444-63945-5.00018-0
Article
PubMed
Google Scholar
Ayers JI, Fromholt S, Sinyavskaya O, Siemienski Z, Rosario AM, Li A, Crosby KW, Cruz PE, DiNunno NM, Janus C et al (2015) Widespread and efficient transduction of spinal cord and brain following neonatal AAV injection and potential disease modifying effect in ALS mice. Mol Therapy 23:53–62. https://doi.org/10.1038/mt.2014.180
Article
CAS
Google Scholar
Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417. https://doi.org/10.1038/nature02544
Article
CAS
PubMed
Google Scholar
Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14:544–558. https://doi.org/10.1038/s41582-018-0047-2
Article
CAS
PubMed Central
PubMed
Google Scholar
Barber SC, Wood-Allum CA, Sargsyan SA, Walsh T, Cox LE, Monk PN, Shaw PJ (2011) Contrasting effects of cerebrospinal fluid from motor neuron disease patients on the survival of primary motor neurons cultured with or without glia. Amyotroph Lateral Scler 12:257–263. https://doi.org/10.3109/17482968.2011.560672
Article
PubMed
Google Scholar
Barschke P, Oeckl P, Steinacker P, Ludolph A, Otto M (2017) Proteomic studies in the discovery of cerebrospinal fluid biomarkers for amyotrophic lateral sclerosis. Exp Rev Proteom 14:769–777. https://doi.org/10.1080/14789450.2017.1365602
Article
CAS
Google Scholar
Bataveljic D, Nikolic L, Milosevic M, Todorovic N, Andjus PR (2012) Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1G93A rat model. Glia 60:1991–2003. https://doi.org/10.1002/glia.22414
Article
PubMed
Google Scholar
Batra R, Lee CW (2017) Mouse models of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis/frontotemporal dementia. Front Cell Neurosci 11:196. https://doi.org/10.3389/fncel.2017.00196
Article
CAS
PubMed Central
PubMed
Google Scholar
Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2019) The glymphatic system and waste clearance with brain aging: a review. Gerontology 65:106–119. https://doi.org/10.1159/000490349
Article
PubMed
Google Scholar
Bertel O, Malessa S, Sluga E, Hornykiewicz O (1991) Amyotrophic-lateral-sclerosis - changes of noradrenergic and serotonergic transmitter systems in the spinal-cord. Brain Res 566:54–60. https://doi.org/10.1016/0006-8993(91)91680-Y
Article
CAS
PubMed
Google Scholar
Biceroglu H, Albayram S, Ogullar S, Hasiloglu ZI, Selcuk H, Yuksel O, Karaaslan B, Yildiz C, Kiris A (2012) Direct venous spinal reabsorption of cerebrospinal fluid: a new concept with serial magnetic resonance cisternography in rabbits. J Neurosurg Spine 16:394–401. https://doi.org/10.3171/2011.12.SPINE11108
Article
PubMed
Google Scholar
Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600
CAS
PubMed
Google Scholar
Blasco H, Corcia P, Moreau C, Veau S, Fournier C, Vourc’h P, Emond P, Gordon P, Pradat PF, Praline J et al (2010) H-1-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS ONE 5:e13223. https://doi.org/10.1371/journal.pone.0013223
Article
CAS
PubMed Central
PubMed
Google Scholar
Blasco H, Corcia P, Pradat PF, Bocca C, Gordon PH, Veyat-Durebex C, Mavel S, Nadal-Desbarats L, Moreau C, Devos D et al (2013) Metabolomics in cerebrospinal fluid of patients with amyotrophic lateral sclerosis: an untargeted approach via high-resolution mass spectrometry. J Proteome Res 12:3746–3754. https://doi.org/10.1021/pr400376e
Article
CAS
PubMed
Google Scholar
Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc’h P, Kouassi Nzoughet J, Lenaers G, Andres CR, Simard G, Corcia P et al (2017) Lipidomics reveals cerebrospinal-fluid signatures of ALS. Sci Rep 7:17652. https://doi.org/10.1038/s41598-017-17389-9
Article
CAS
PubMed Central
PubMed
Google Scholar
Boentert M (2019) Sleep disturbances in patients with amyotrophic lateral sclerosis: current perspectives. Nat Sci Sleep 11:97–111. https://doi.org/10.2147/Nss.S183504
Article
PubMed Central
PubMed
Google Scholar
Bonini D, Filippini A, La Via L, Fiorentini C, Fumagalli F, Colombi M, Barbon A (2015) Chronic glutamate treatment selectively modulates AMPA RNA editing and ADAR expression and activity in primary cortical neurons. RNA Biol 12:43–53. https://doi.org/10.1080/15476286.2015.1008365
Article
PubMed Central
PubMed
Google Scholar
Bowen S, Ateh DD, Deinhardt K, Bird MM, Price KM, Baker CS, Robson JC, Swash M, Shamsuddin W, Kawar S et al (2007) The phagocytic capacity of neurones. Eur J Neurosci 25:2947–2955. https://doi.org/10.1111/j.1460-9568.2007.05554.x
Article
PubMed
Google Scholar
Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 76:1501–1513. https://doi.org/10.1172/JCI112130
Article
CAS
PubMed Central
PubMed
Google Scholar
Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis–a model of corticofugal axonal spread. Nat Rev Neurol 9:708–714. https://doi.org/10.1038/nrneurol.2013.221
Article
CAS
PubMed Central
PubMed
Google Scholar
Brauer S, Gunther R, Sterneckert J, Glass H, Hermann A (2020) Human spinal motor neurons are particularly vulnerable to cerebrospinal fluid of amyotrophic lateral sclerosis patients. Int J Mol Sci 21(10):3564. https://doi.org/10.3390/ijms21103564
Article
PubMed Central
Google Scholar
Brauer S, Zimyanin V, Hermann A (2018) Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. J Neural Transm (Vienna) 125:591–613. https://doi.org/10.1007/s00702-018-1851-y
Article
CAS
Google Scholar
Brooks BR, Zielger MG, Lake CR, Wood JH, Enna SJ, Engel WK (1980) Cerebrospinal-fluid norepinephrine and free gamma-aminobutyric acid in amyotrophic lateral sclerosis. Brain Res Bull 5:765–768. https://doi.org/10.1016/0361-9230(80)90126-4
Article
Google Scholar
Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471
Article
CAS
PubMed
Google Scholar
Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B, Heverin M, Jordan N, Kenna K, Lynch C et al (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240. https://doi.org/10.1016/S1474-4422(12)70014-5
Article
CAS
PubMed Central
PubMed
Google Scholar
Chancellor AM, Hendry A, Caird FI, Warlow CP, Weir AI (1993) Motor neuron disease: a disease of old age. Scott Med J 38:178–182. https://doi.org/10.1177/003693309303800606
Article
CAS
PubMed
Google Scholar
Chattopadhyay M, Durazo A, Sohn SH, Strong CD, Gralla EB, Whitelegge JP, Valentine JS (2008) Initiation and elongation in fibrillation of ALS-linked superoxide dismutase. Proc Natl Acad Sci USA 105:18663–18668. https://doi.org/10.1073/pnas.0807058105
Article
PubMed
PubMed Central
Google Scholar
Chio A, Pagani M, Agosta F, Calvo A, Cistaro A, Filippi M (2014) Neuroimaging in amyotrophic lateral sclerosis: insights into structural and functional changes. Lancet Neurol 13:1228–1240. https://doi.org/10.1016/S1474-4422(14)70167-X
Article
PubMed
Google Scholar
Chou SM, Norris FH (1993) Amyotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve 16:864–869. https://doi.org/10.1002/mus.880160810
Article
CAS
PubMed
Google Scholar
Cid C, Alvarez-Cermeno JC, Regidor I, Salinas M, Alcazar A (2003) Low concentrations of glutamate induce apoptosis in cultured neurons: implications for amyotrophic lateral sclerosis. J Neurol Sci 206:91–95. https://doi.org/10.1016/s0022-510x(02)00339-8
Article
CAS
PubMed
Google Scholar
Clark IA, Vissel B (2016) Excess cerebral TNF causing glutamate excitotoxicity rationalizes treatment of neurodegenerative diseases and neurogenic pain by anti-TNF agents. J Neuroinflammation 13:236. https://doi.org/10.1186/s12974-016-0708-2
Article
CAS
PubMed Central
PubMed
Google Scholar
Costa J, Streich L, Pinto S, Pronto-Laborinho A, Nimtz M, Conradt HS, de Carvalho M (2019) Exploring cerebrospinal fluid IgG N-glycosylation as potential biomarker for amyotrophic lateral sclerosis. Mol Neurobiol 56:5729–5739. https://doi.org/10.1007/s12035-019-1482-9
Article
CAS
PubMed
Google Scholar
Couratier P, Hugon J, Sindou P, Vallat JM, Dumas M (1993) Cell-culture evidence for neuronal degeneration in amyotrophic-lateral-sclerosis being linked to glutamate ampa kainate receptors. Lancet 341:265–268. https://doi.org/10.1016/0140-6736(93)92615-Z
Article
CAS
PubMed
Google Scholar
Da Mesquita S, Fu Z, Kipnis J (2018) The meningeal lymphatic system: a new player in neurophysiology. Neuron 100:375–388. https://doi.org/10.1016/j.neuron.2018.09.022
Article
CAS
PubMed Central
PubMed
Google Scholar
Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8
Article
CAS
PubMed Central
PubMed
Google Scholar
Dai J, Lin W, Zheng M, Liu Q, He B, Luo C, Lu X, Pei Z, Su H, Yao X (2017) Alterations in AQP4 expression and polarization in the course of motor neuron degeneration in SOD1G93A mice. Mol Med Rep 16:1739–1746. https://doi.org/10.3892/mmr.2017.6786
Article
CAS
PubMed Central
PubMed
Google Scholar
Demestre M, Pullen A, Orrell RW, Orth M (2005) ALS-IgG-induced selective motor neurone apoptosis in rat mixed primary spinal cord cultures. J Neurochem 94:268–275. https://doi.org/10.1111/j.1471-4159.2005.03184.x
Article
CAS
PubMed
Google Scholar
Desport JC, Torny F, Lacoste M, Preux PM, Couratier P (2005) Hypermetabolism in ALS: correlations with clinical and paraclinical parameters. Neurodegener Dis 2:202–207. https://doi.org/10.1159/000089626
Article
PubMed
Google Scholar
Dorst J, Kuhnlein P, Hendrich C, Kassubek J, Sperfeld AD, Ludolph AC (2011) Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J Neurol 258:613–617. https://doi.org/10.1007/s00415-010-5805-z
Article
CAS
PubMed
Google Scholar
Dreha-Kulaczewski S, Joseph AA, Merboldt KD, Ludwig HC, Gartner J, Frahm J (2015) Inspiration is the major regulator of human CSF flow. J Neurosci 35:2485–2491. https://doi.org/10.1523/jneurosci.3246-14.2015
Article
CAS
PubMed Central
PubMed
Google Scholar
Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin KP, Miller BL, Weiner MW, Schuff N (2006) Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology 67:1215–1220. https://doi.org/10.1212/01.wnl.0000238163.71349.78
Article
CAS
PubMed
Google Scholar
Dupuis L, Corcia P, Fergani A, De Aguilar JLG, Bonnefont-Rousselot D, Bittar R, Seilhean D, Hauw JJ, Lacomblez L, Loeffler JP et al (2008) Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology 70:1004–1009. https://doi.org/10.1212/01.wnl.0000285080.70324.27
Article
CAS
PubMed
Google Scholar
Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82. https://doi.org/10.1016/S1474-4422(10)70224-6
Article
CAS
PubMed
Google Scholar
Eide PK, Ringstad G (2019) Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cerebr Blood F Met 39:1355–1368. https://doi.org/10.1177/0271678x18760974
Article
Google Scholar
Eisen A, Kim S, Pant B (1992) Amyotrophic lateral sclerosis (ALS): a phylogenetic disease of the corticomotoneuron? Muscle Nerve 15:219–224. https://doi.org/10.1002/mus.880150215
Article
CAS
PubMed
Google Scholar
Engelborghs S, Vloeberghs E, Le Bastard N, Van Buggenhout M, Marien P, Somers N, Nagels G, Pickut BA, De Deyn PP (2008) The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia. Neurochem Int 52:1052–1060. https://doi.org/10.1016/j.neuint.2007.10.018
Article
CAS
PubMed
Google Scholar
Fagan AM, Holtzman DM, Munson G, Mathur T, Schneider D, Chang LK, Getz GS, Reardon CA, Lukens J, Shah JA et al (1999) Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice. J Biol Chem 274:30001–30007. https://doi.org/10.1074/jbc.274.42.30001
Article
CAS
PubMed
Google Scholar
Feiler MS, Strobel B, Freischmidt A, Helferich AM, Kappel J, Brewer BM, Li D, Thal DR, Walther P, Ludolph AC et al (2015) TDP-43 is intercellularly transmitted across axon terminals. J Cell Biol 211:897–911. https://doi.org/10.1083/jcb.201504057
Article
CAS
PubMed Central
PubMed
Google Scholar
Fernandez-Santiago R, Hoenig S, Lichtner P, Sperfeld AD, Sharma M, Berg D, Weichenrieder O, Illig T, Eger K, Meyer T et al (2009) Identification of novel Angiogenin (ANG) gene missense variants in German patients with amyotrophic lateral sclerosis. J Neurol 256:1337–1342. https://doi.org/10.1007/s00415-009-5124-4
Article
CAS
PubMed Central
PubMed
Google Scholar
Fiszman ML, Ricart KC, Latini A, Rodriguez G, Sica RE (2010) In vitro neurotoxic properties and excitatory aminoacids concentration in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Relationship with the degree of certainty of disease diagnoses. Acta Neurol Scand 121:120–126. https://doi.org/10.1111/j.1600-0404.2009.01200.x
Article
CAS
PubMed
Google Scholar
Franchi C, Bianchi E, Pupillo E, Poloni M, Nobili A, Fortino I, Bortolotti A, Merlino L, Beghi E (2016) Angiotensin-converting enzyme inhibitors and motor neuron disease: an unconfirmed association. Amyotroph Lat Scl Fr 17:385–388. https://doi.org/10.3109/21678421.2016.1143515
Article
CAS
Google Scholar
Fray AE, Ince PG, Banner SJ, Milton ID, Usher PA, Cookson MR, Shaw PJ (1998) The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study. Eur J Neurosci 10:2481–2489. https://doi.org/10.1046/j.1460-9568.1998.00273.x
Article
CAS
PubMed
Google Scholar
Funalot B, Desport JC, Sturtz F, Camu W, Couratier P (2009) High metabolic level in patients with familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 10:113–117. https://doi.org/10.1080/17482960802295192
Article
CAS
PubMed
Google Scholar
Gellera C, Colombrita C, Ticozzi N, Castellotti B, Bragato C, Ratti A, Taroni F, Silani V (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9:33–40. https://doi.org/10.1007/s10048-007-0111-3
Article
CAS
PubMed
Google Scholar
Gille B, De Schaepdryver M, Dedeene L, Goossens J, Claeys KG, Van Den Bosch L, Tournoy J, Van Damme P, Poesen K (2019) Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp-2018-319586
Article
PubMed
Google Scholar
Gomez-Pinedo U, Galan L, Yanez M, Matias-Guiu J, Valencia C, Guerrero-Sola A, Lopez-Sosa F, Brin JR, Benito-Martin MS, Leon-Espinosa G et al (2018) Histological changes in the rat brain and spinal cord following prolonged intracerebroventricular infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients are similar to those caused by the disease. Neurologia 33:211–223. https://doi.org/10.1016/j.nrl.2016.07.002
Article
CAS
PubMed
Google Scholar
Gray E, Larkin JR, Claridge TDW, Talbot K, Sibson NR, Turner MR (2015) The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotempor Degenerat 16:456–463. https://doi.org/10.3109/21678421.2015.1053490
Article
CAS
Google Scholar
Greenway MJ, Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C, Patterson V, Swingler R, Kieran D, Prehn J et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413. https://doi.org/10.1038/ng1742
Article
CAS
PubMed
Google Scholar
Ha JS, Lee CS, Maeng JS, Kwon KS, Park SS (2009) Chronic glutamate toxicity in mouse cortical neuron culture. Brain Res 1273:138–143. https://doi.org/10.1016/j.brainres.2009.03.050
Article
CAS
PubMed
Google Scholar
Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C (2016) Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 41:460–471. https://doi.org/10.1016/j.tibs.2016.02.003
Article
CAS
PubMed
Google Scholar
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primers 3:17085. https://doi.org/10.1038/nrdp.2017.85
Article
PubMed
Google Scholar
Hayashi N, Doi H, Kurata Y, Kagawa H, Atobe Y, Funakoshi K, Tada M, Katsumoto A, Tanaka K, Kunii M et al (2019) Proteomic analysis of exosome-enriched fractions derived from cerebrospinal fluid of amyotrophic lateral sclerosis patients. Neurosci Res. https://doi.org/10.1016/j.neures.2019.10.010
Article
PubMed
Google Scholar
Hladky SB, Barrand MA (2019) Metabolite clearance during wakefulness and sleep. Handb Exp Pharmacol 253:385–423. https://doi.org/10.1007/164_2017_37
Article
CAS
PubMed
Google Scholar
Hollinger SK, Okosun IS, Mitchell CS (2016) Antecedent disease and amyotrophic lateral sclerosis: what is protecting whom? Front Neurol 7:47. https://doi.org/10.3389/fneur.2016.00047
Article
PubMed Central
PubMed
Google Scholar
Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99:1604–1609. https://doi.org/10.1073/pnas.032539299
Article
CAS
PubMed
PubMed Central
Google Scholar
Iguchi Y, Eid L, Parent M, Soucy G, Bareil C, Riku Y, Kawai K, Takagi S, Yoshida M, Katsuno M et al (2016) Exosome secretion is a key pathway for clearance of pathological TDP-43. Brain 139:3187–3201. https://doi.org/10.1093/brain/aww237
Article
PubMed Central
PubMed
Google Scholar
Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33:18190–18199. https://doi.org/10.1523/JNEUROSCI.1592-13.2013
Article
CAS
PubMed Central
PubMed
Google Scholar
Iliff JJ, Wang MH, Liao YH, Plogg BA, Peng WG, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA et al (2012) A paravascular pathway facilitates CSF Flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748
Article
CAS
PubMed Central
PubMed
Google Scholar
Ilzecka J, Stelmasiak Z, Dobosz B (2002) Transforming growth factor-Beta 1 (tgf-Beta 1) in patients with amyotrophic lateral sclerosis. Cytokine 20:239–243. https://doi.org/10.1006/cyto.2002.2005
Article
CAS
PubMed
Google Scholar
Ishikawa T, Morita M, Nakano I (2007) Constant blood flow reduction in premotor frontal lobe regions in ALS with dementia - a SPECT study with 3D-SSP. Acta Neurol Scand 116:340–344. https://doi.org/10.1111/j.1600-0404.2007.00876.x
Article
CAS
PubMed
Google Scholar
Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H, Chen H, Mayo L et al (2016) RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353:603–608. https://doi.org/10.1126/science.aaf6803
Article
CAS
PubMed Central
PubMed
Google Scholar
Jayaprakash K, Glasmacher SA, Pang B, Beswick E, Mehta AR, Dakin R, Newton J, Chandran S, Pal S, Colville S et al (2020) Riluzole prescribing, uptake and treatment discontinuation in people with amyotrophic lateral sclerosis in Scotland. J Neurol 267:2459–2461. https://doi.org/10.1007/s00415-020-09919-9
Article
PubMed Central
PubMed
Google Scholar
Jawaid A, Salamone AR, Strutt AM, Murthy SB, Wheaton M, McDowell EJ, Simpson E, Appel SH, York MK, Schulz PE (2010) ALS disease onset may occur later in patients with pre-morbid diabetes mellitus. Eur J Neurol 17:733–739. https://doi.org/10.1111/j.1468-1331.2009.02923.x
Article
CAS
PubMed
Google Scholar
Jessen NA, Munk AS, Lundgaard I, Nedergaard M (2015) The glymphatic system: a beginner’s guide. Neurochem Res 40:2583–2599. https://doi.org/10.1007/s11064-015-1581-6
Article
CAS
PubMed Central
PubMed
Google Scholar
Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10. https://doi.org/10.1186/1743-8454-5-10
Article
CAS
PubMed Central
PubMed
Google Scholar
Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2. https://doi.org/10.1186/1743-8454-1-2
Article
PubMed Central
PubMed
Google Scholar
Kabuta T, Suzuki Y, Wada K (2006) Degradation of amyotrophic lateral sclerosis-linked mutant Cu, Zn-superoxide dismutase proteins by macroautophagy and the proteasome. J Biol Chem 281:30524–30533. https://doi.org/10.1074/jbc.M603337200
Article
CAS
PubMed
Google Scholar
Kanouchi T, Ohkubo T, Yokota T (2012) Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? J Neurol Neurosur Ps 83:739–745. https://doi.org/10.1136/jnnp-2011-301826
Article
Google Scholar
Kawahara Y, Ito K, Sun H, Aizawa H, Kanazawa I, Kwak S (2004) Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801. https://doi.org/10.1038/427801a
Article
CAS
PubMed
Google Scholar
King AE, Woodhouse A, Kirkcaldie MT, Vickers JC (2016) Excitotoxicity in ALS: overstimulation, or overreaction? Exp Neurol 275(Pt 1):162–171. https://doi.org/10.1016/j.expneurol.2015.09.019
Article
CAS
PubMed
Google Scholar
Kiviniemi V, Wang X, Korhonen V, Keinanen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang YF, Hennig J et al (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36:1033–1045. https://doi.org/10.1177/0271678x15622047
Article
CAS
PubMed
Google Scholar
Korner S, Kollewe K, Ilsemann J, Muller-Heine A, Dengler R, Krampfl K, Petri S (2013) Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur J Neurol 20:E647–E652. https://doi.org/10.1111/ene.12015
Article
Google Scholar
Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA et al (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76:845–861. https://doi.org/10.1002/ana.24271
Article
CAS
PubMed Central
PubMed
Google Scholar
Kuhnlein P, Gdynia HJ, Sperfeld AD, Lindner-Pfleghar B, Ludolph AC, Prosiegel M, Riecker A (2008) Diagnosis and treatment of bulbar symptoms in amyotrophic lateral sclerosis. Nat Clin Pract Neurol 4:366–374. https://doi.org/10.1038/ncpneuro0853
Article
PubMed
Google Scholar
Lacomblez L, Doppler V, Beucler I, Costes G, Salachas F, Raisonnier A, Le Forestier N, Pradat PF, Bruckert E, Meininger V (2002) APOE: a potential marker of disease progression in ALS. Neurology 58:1112–1114. https://doi.org/10.1212/Wnl.58.7.1112
Article
CAS
PubMed
Google Scholar
Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I et al (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34:383–394. https://doi.org/10.1038/ng1211
Article
CAS
PubMed
Google Scholar
Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35:11034–11044. https://doi.org/10.1523/JNEUROSCI.1625-15.2015
Article
CAS
PubMed Central
PubMed
Google Scholar
Lee KH, Zhang P, Kim HJ, Mitrea DM, Sarkar M, Freibaum BD, Cika J, Coughlin M, Messing J, Molliex A et al (2016) C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167(774–788):e717. https://doi.org/10.1016/j.cell.2016.10.002
Article
CAS
Google Scholar
Leibiger C, Deisel J, Aufschnaiter A, Ambros S, Tereshchenko M, Verheijen BM, Buttner S, Braun RJ (2018) Endolysosomal pathway activity protects cells from neurotoxic TDP-43. Microb Cell 5:212–214. https://doi.org/10.15698/mic2018.04.627
Article
CAS
PubMed Central
PubMed
Google Scholar
Leonardi A, Abbruzzese G, Arata L, Cocito L, Vische M (1984) Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J Neurol 231:75–78. https://doi.org/10.1007/bf00313720
Article
CAS
PubMed
Google Scholar
Lewerenz J, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence? Front Neurosci-Switz 9:469. https://doi.org/10.3389/fnins.2015.00469
Article
Google Scholar
Lilius TO, Blomqvist K, Hauglund NL, Liu G, Staeger FF, Baerentzen S, Du T, Ahlstrom F, Backman JT, Kalso EA et al (2019) Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J Control Release 304:29–38. https://doi.org/10.1016/j.jconrel.2019.05.005
Article
CAS
PubMed
Google Scholar
Lin FC, Tsai CP, Lee JKW, Wu MT, Lee CTC (2015) Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population-based case-control study. Jama Neurol 72:40–48. https://doi.org/10.1001/jamaneurol.2014.3367
Article
PubMed
Google Scholar
Liu G, Coyne AN, Pei F, Vaughan S, Chaung M, Zarnescu DC, Buchan JR (2017) Endocytosis regulates TDP-43 toxicity and turnover. Nat Commun 8:2092. https://doi.org/10.1038/s41467-017-02017-x
Article
CAS
PubMed Central
PubMed
Google Scholar
Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, Benn E, Beghi E (2010) Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 81:385–390. https://doi.org/10.1136/jnnp.2009.183525
Article
PubMed
Google Scholar
Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J (2017) Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127:3210–3219. https://doi.org/10.1172/JCI90603
Article
PubMed Central
PubMed
Google Scholar
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432
Article
CAS
PubMed Central
PubMed
Google Scholar
Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Nedergaard M (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124. https://doi.org/10.1177/0271678X16661202
Article
CAS
PubMed
Google Scholar
Lutjohann D, Breuer O, Ahlborg G, Nennesmo I, Siden A, Diczfalusy U, Bjorkhem I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804. https://doi.org/10.1073/pnas.93.18.9799
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma QL, Ineichen BV, Detmar M, Proulx ST (2017) Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 8:1434. https://doi.org/10.1038/s41467-017-01484-6
Article
CAS
PubMed Central
PubMed
Google Scholar
Macedo AC, Balouch S, Tabet N (2017) Is sleep disruption a risk factor for Alzheimer’s disease? J Alzheimers Dis 58:993–1002. https://doi.org/10.3233/jad-161287
Article
PubMed
Google Scholar
Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, Chio A, Restagno G, Nicolaou N, Simon-Sanchez J et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330. https://doi.org/10.1016/S1474-4422(12)70043-1
Article
CAS
PubMed Central
PubMed
Google Scholar
Majumder V, Gregory JM, Barria MA, Green A, Pal S (2018) TDP-43 as a potential biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis. BMC Neurol 18:90. https://doi.org/10.1186/s12883-018-1091-7
Article
CAS
PubMed Central
PubMed
Google Scholar
Mandrioli J, Ferri L, Fasano A, Zucchi E, Fini N, Moglia C, Lunetta C, Marinou K, Ticozzi N, Ferrante GD et al (2018) Cardiovascular diseases may play a negative role in the prognosis of amyotrophic lateral sclerosis. Eur J Neurol 25:861–868. https://doi.org/10.1111/ene.13620
Article
CAS
PubMed
Google Scholar
Manjaly ZR, Scott KM, Abhinav K, Wijesekera L, Ganesalingam J, Goldstein LH, Janssen A, Dougherty A, Willey E, Stanton BR et al (2010) The sex ratio in amyotrophic lateral sclerosis: a population based study. Amyotroph Lateral Scler 11:439–442. https://doi.org/10.3109/17482961003610853
Article
PubMed Central
PubMed
Google Scholar
Mariosa D, Kamel F, Bellocco R, Ye W, Fang F (2015) Association between diabetes and amyotrophic lateral sclerosis in Sweden. Eur J Neurol 22:1436–1442. https://doi.org/10.1111/ene.12632
Article
CAS
PubMed Central
PubMed
Google Scholar
Mehta AR, Walters R, Waldron FM, Pal S, Selvaraj BT, Macleod MR, Hardingham GE, Chandran S, Gregory JM (2019) Targeting mitochondrial dysfunction in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Brain Commun 1:fcz009. https://doi.org/10.1093/braincomms/fcz009
Article
PubMed Central
PubMed
Google Scholar
Meng Y, Abrahao A, Heyn CC, Bethune AJ, Huang Y, Pople CB, Aubert I, Hamani C, Zinman L, Hynynen K et al (2019) Glymphatics visualization after focused ultrasound-induced blood-brain barrier opening in humans. Ann Neurol 86:975–980. https://doi.org/10.1002/ana.25604
Article
CAS
PubMed
Google Scholar
Mestre H, Hablitz LM, Xavier ALR, Feng WX, Zou WY, Pu TL, Monai H, Murlidharan G, Rivera RMC, Simon MJ et al (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7:e40070. https://doi.org/10.7554/eLife.40070
Article
PubMed Central
PubMed
Google Scholar
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, Olveda G, Thomas JH, Nedergaard M, Kelley DH (2018) Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 9:4878. https://doi.org/10.1038/s41467-018-07318-3
Article
CAS
PubMed Central
PubMed
Google Scholar
Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, Andres PL, Mahoney K, Allred P, Alexander K et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442. https://doi.org/10.1016/S1474-4422(13)70061-9
Article
CAS
PubMed Central
PubMed
Google Scholar
Milosevic M, Milicevic K, Bozic I, Lavrnja I, Stevanovic I, Bijelic D, Dubaic M, Zivkovic I, Stevic Z, Giniatullin R et al (2017) Immunoglobulins G from sera of amyotrophic lateral sclerosis patients induce oxidative stress and upregulation of antioxidative system in BV-2 microglial cell line. Front Immunol 8:1619. https://doi.org/10.3389/fimmu.2017.01619
Article
CAS
PubMed Central
PubMed
Google Scholar
Mishra PS, Boutej H, Soucy G, Bareil C, Kumar S, Picher-Martel V, Dupre N, Kriz J, Julien JP (2020) Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun 8:65. https://doi.org/10.1186/s40478-020-00943-4
Article
CAS
PubMed Central
PubMed
Google Scholar
Mishra PS, Dhull DK, Nalini A, Vijayalakshmi K, Sathyaprabha TN, Alladi PA, Raju TR (2016) Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J Neuroinflammation 13:212. https://doi.org/10.1186/s12974-016-0698-0
Article
CAS
PubMed Central
PubMed
Google Scholar
Mishra PS, Vijayalakshmi K, Nalini A, Sathyaprabha TN, Kramer BW, Alladi PA, Raju TR (2017) Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J Neuroinflam 14:251. https://doi.org/10.1186/s12974-017-1028-x
Article
CAS
Google Scholar
Moglia C, Calvo A, Canosa A, Bertuzzo D, Cugnasco P, Solero L, Grassano M, Bersano E, Cammarosano S, Manera U et al (2017) Influence of arterial hypertension, type 2 diabetes and cardiovascular risk factors on ALS outcome: a population-based study. Amyotroph Lateral Scler Frontotempor Degenerat 18:590–597. https://doi.org/10.1080/21678421.2017.1336560
Article
Google Scholar
Moreau C, Brunaud-Danel V, Dallongeville J, Duhamel A, Laurier-Grymonprez L, de Reuck J, Wiart AC, Perez T, Richard F, Amouyel P et al (2012) Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13:194–201. https://doi.org/10.3109/17482968.2011.610110
Article
PubMed
Google Scholar
Moreau C, Devos D, Brunaud-Danel V, Defebvre L, Perez T, Destee A, Tonnel AB, Lassalle P, Just N (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960. https://doi.org/10.1212/01.wnl.0000188907.97339.76
Article
CAS
PubMed
Google Scholar
Mortensen KN, Sanggaard S, Mestre H, Lee H, Kostrikov S, Xavier ALR, Gjedde A, Benveniste H, Nedergaard M (2019) Impaired glymphatic transport in spontaneously hypertensive rats. J Neurosci 39:6365–6377. https://doi.org/10.1523/JNEUROSCI.1974-18.2019
Article
CAS
PubMed Central
PubMed
Google Scholar
Munch C, O’Brien J, Bertolotti A (2011) Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc Natl Acad Sci USA 108:3548–3553. https://doi.org/10.1073/pnas.1017275108
Article
PubMed
PubMed Central
Google Scholar
Murtha LA, Yang Q, Parsons MW, Levi CR, Beard DJ, Spratt NJ, McLeod DD (2014) Cerebrospinal fluid is drained primarily via the spinal canal and olfactory route in young and aged spontaneously hypertensive rats. Fluids Barriers CNS 11:12. https://doi.org/10.1186/2045-8118-11-12
Article
PubMed Central
PubMed
Google Scholar
Nedergaard M, Goldman SA, Desai S, Pulsinelli WA (1991) Acid-induced death in neurons and glia. J Neurosci 11:2489–2497
Article
CAS
PubMed
PubMed Central
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. https://doi.org/10.1126/science.1134108
Article
CAS
PubMed
Google Scholar
Ng Kee Kwong KC, Gregory JM, Pal S, Chandran S, Mehta AR, Cerebrospinal fluid cytotoxicity in amyotrophic lateral sclerosis: a systematic review of in vitro studies, Brain Communications, fcaa121. https://doi.org/10.1093/braincomms/fcaa12
Nicaise C, Soyfoo MS, Authelet M, De Decker R, Bataveljic D, Delporte C, Pochet R (2009) Aquaporin-4 overexpression in rat ALS model. Anat Rec (Hoboken) 292:207–213. https://doi.org/10.1002/ar.20838
Article
CAS
Google Scholar
Niccoli T, Partridge L, Isaacs AM (2017) Ageing as a risk factor for ALS/FTD. Hum Mol Genet 26:R105–R113. https://doi.org/10.1093/hmg/ddx247
Article
CAS
PubMed
Google Scholar
Nolan M, Talbot K, Ansorge O (2016) Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathol Commun 4:99. https://doi.org/10.1186/s40478-016-0358-8
Article
CAS
PubMed Central
PubMed
Google Scholar
Nomura T, Watanabe S, Kaneko K, Yamanaka K, Nukina N, Furukawa Y (2014) Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289:1192–1202. https://doi.org/10.1074/jbc.M113.516492
Article
CAS
PubMed
Google Scholar
Obal I, Jakab JS, Siklos L, Engelhardt JI (2001) Recruitment of activated microglia cells in the spinal cord of mice by ALS IgG. NeuroReport 12:2449–2452. https://doi.org/10.1097/00001756-200108080-00032
Article
CAS
PubMed
Google Scholar
Obal I, Klausz G, Mandi Y, Deli M, Siklos L, Engelhardt JI (2016) Intraperitoneally administered IgG from patients with amyotrophic lateral sclerosis or from an immune-mediated goat model increase the levels of TNF-alpha, IL-6, and IL-10 in the spinal cord and serum of mice. J Neuroinflamm 13:121. https://doi.org/10.1186/s12974-016-0586-7
Article
CAS
Google Scholar
Oh KW, Moon C, Kim HY, Oh SI, Park J, Lee JH, Chang IY, Kim KS, Kim SH (2015) Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med 4:590–597. https://doi.org/10.5966/sctm.2014-0212
Article
CAS
PubMed Central
PubMed
Google Scholar
Oh KW, Noh MY, Kwon MS, Kim HY, Oh SI, Park J, Kim HJ, Ki CS, Kim SH (2018) Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol 84:361–373. https://doi.org/10.1002/ana.25302
Article
CAS
PubMed Central
PubMed
Google Scholar
Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28:131–138. https://doi.org/10.1038/88842
Article
CAS
PubMed
Google Scholar
Patel P, Kriz J, Gravel M, Soucy G, Bareil C, Gravel C, Julien JP (2014) Adeno-associated virus-mediated delivery of a recombinant single-chain antibody against misfolded superoxide dismutase for treatment of amyotrophic lateral sclerosis. Mol Therapy 22:498–510. https://doi.org/10.1038/mt.2013.239
Article
CAS
Google Scholar
Paubel A, Violette J, Amy M, Praline J, Meininger V, Camu W, Corcia P, Andres CR, Vourc’h P, French Amyotrophic Lateral Sclerosis Study G (2008) Mutations of the ANG gene in French patients with sporadic amyotrophic lateral sclerosis. Arch Neurol 65:1333–1336. https://doi.org/10.1001/archneur.65.10.1333
Article
PubMed
Google Scholar
Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB, Lim KO (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887. https://doi.org/10.1001/archneur.1994.00540210046012
Article
CAS
PubMed
Google Scholar
Philips T, Rothstein JD (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol 262:111–120. https://doi.org/10.1016/j.expneurol.2014.05.015
Article
CAS
PubMed
Google Scholar
Plog BA, Mestre H, Olveda GE, Sweeney AM, Kenney HM, Cove A, Dholakia KY, Tithof J, Nevins TD, Lundgaard I et al (2018) Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight. https://doi.org/10.1172/jci.insight.126138
Article
PubMed Central
PubMed
Google Scholar
Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol Mech 13:379–394. https://doi.org/10.1146/annurev-pathol-051217-111018
Article
CAS
Google Scholar
Pokrishevsky E, Grad L, Cashman N (2015) Misfolded wild-type SOD1 induced by pathological FUS or TDP-43 transmits intercellularly and is propagation-competent. Prion 9:S7–S8
Google Scholar
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK (2019) Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 12:25. https://doi.org/10.3389/fnmol.2019.00025
Article
CAS
PubMed Central
PubMed
Google Scholar
Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Techn 52:31–37. https://doi.org/10.1002/1097-0029(20010101)52:1%3c31:AID-JEMT5%3e3.0.CO;2-T
Article
CAS
Google Scholar
Pullen AH, Demestre M, Howard RS, Orrell RW (2004) Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2 + enhancement. Acta Neuropathol 107:35–46. https://doi.org/10.1007/s00401-003-0777-z
Article
CAS
PubMed
Google Scholar
Pullen AH, Humphreys P (2000) Ultrastructural analysis of spinal motoneurones from mice treated with IgG from ALS patients, healthy individuals, or disease controls. J Neurol Sci 180:35–45. https://doi.org/10.1016/s0022-510x(00)00427-5
Article
CAS
PubMed
Google Scholar
Quaranta VN, Carratu P, Damiani MF, Dragonieri S, Capozzolo A, Cassano A, Resta O (2017) The prognostic role of obstructive sleep apnea at the onset of amyotrophic lateral sclerosis. Neurodegener Dis 17:14–21. https://doi.org/10.1159/000447560
Article
CAS
PubMed
Google Scholar
Ramamohan PY, Gourie-Devi M, Nalini A, Shobha K, Ramamohan Y, Joshi P, Raju TR (2007) Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord. Amyotroph Lateral Scler 8:79–82. https://doi.org/10.1080/08037060601145489
Article
CAS
PubMed
Google Scholar
Rangroo Thrane V, Thrane AS, Plog BA, Thiyagarajan M, Iliff JJ, Deane R, Nagelhus EA, Nedergaard M (2013) Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep 3:2582. https://doi.org/10.1038/srep02582
Article
PubMed
Google Scholar
Rao MS, Devi MG, Nalini A, Shahani N, Raju TR (1995) Neurofilament phosphorylation is increased in ventral horn neurons of neonatal rat spinal cord exposed to cerebrospinal fluid from patients with amyotrophic lateral sclerosis. Neurodegeneration 4:397–401. https://doi.org/10.1006/neur.1995.0048
Article
CAS
PubMed
Google Scholar
Ravits JM, La Spada AR (2009) ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 73:805–811. https://doi.org/10.1212/WNL.0b013e3181b6bbbd
Article
PubMed Central
PubMed
Google Scholar
Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a paravascular fluid circulation in the mammalian central nervous-system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63. https://doi.org/10.1016/0006-8993(85)91383-6
Article
CAS
PubMed
Google Scholar
Ringstad G, Vatnehol SAS, Eide PK (2017) Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140:2691–2705. https://doi.org/10.1093/brain/awx191
Article
PubMed Central
PubMed
Google Scholar
Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84. https://doi.org/10.1002/ana.410380114
Article
CAS
PubMed
Google Scholar
Sankaranarayani R, Nalini A, Laxmi TR, Raju TR (2010) Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients. Behav Brain Res 206:109–119. https://doi.org/10.1016/j.bbr.2009.09.009
Article
CAS
PubMed
Google Scholar
Sartoretti T, Wyss M, Sartoretti E, Reischauer C, Hainc N, Graf N, Binkert C, Najafi A, Sartoretti-Schefer S (2019) Sex and age dependencies of aqueductal cerebrospinal fluid dynamics parameters in healthy subjects. Front Aging Neurosci 11:199. https://doi.org/10.3389/fnagi.2019.00199
Article
PubMed Central
PubMed
Google Scholar
Sasaki S, Komori T, Iwata M (2000) Excitatory amino acid transporter 1 and 2 immunoreactivity in the spinal cord in amyotrophic lateral sclerosis. Acta Neuropathol 100:138–144. https://doi.org/10.1007/s004019900159
Article
CAS
PubMed
Google Scholar
Sass LR, Khani M, Romm J, Schmid Daners M, McCain K, Freeman T, Carter GT, Weeks DL, Petersen B, Aldred J et al (2020) Non-invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients. Fluids Barriers CNS 17:4. https://doi.org/10.1186/s12987-019-0164-3
Article
PubMed Central
PubMed
Google Scholar
Sato K, Morimoto N, Matsuura T, Ohta Y, Tsunoda M, Ikeda Y, Abe K (2012) CSF flow dynamics in motor neuron disease. Neurol Res 34:512–517. https://doi.org/10.1179/1743132812Y.0000000043
Article
PubMed
Google Scholar
Schmid Daners M, Knobloch V, Soellinger M, Boesiger P, Seifert B, Guzzella L, Kurtcuoglu V (2012) Age-specific characteristics and coupling of cerebral arterial inflow and cerebrospinal fluid dynamics. PLoS ONE 7:e37502. https://doi.org/10.1371/journal.pone.0037502
Article
CAS
PubMed Central
PubMed
Google Scholar
Sekiguchi T, Kanouchi T, Shibuya K, Noto Y, Yagi Y, Inaba A, Abe K, Misawa S, Orimo S, Kobayashi T et al (2014) Spreading of amyotrophic lateral sclerosis lesions–multifocal hits and local propagation? J Neurol Neurosurg Psychiatry 85:85–91. https://doi.org/10.1136/jnnp-2013-305617
Article
PubMed
Google Scholar
Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC (1998) Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci 154:194–199. https://doi.org/10.1016/s0022-510x(97)00228-1
Article
CAS
PubMed
Google Scholar
Shanmukha S, Narayanappa G, Nalini A, Alladi PA, Raju TR (2018) Sporadic amyotrophic lateral sclerosis (SALS)—skeletal muscle response to cerebrospinal fluid from SALS patients in a rat model. Dis Model Mech. https://doi.org/10.1242/dmm.031997
Article
PubMed Central
PubMed
Google Scholar
Shantanu S, Vijayalakshmi K, Shruthi S, Sagar BKC, Sathyaprabha TN, Nalini A, Raju TR, Alladi PA (2017) VEGF alleviates ALS-CSF induced cytoplasmic accumulations of TDP-43 and FUS/TLS in NSC-34 cells. J Chem Neuroanat 81:48–52. https://doi.org/10.1016/j.jchemneu.2017.01.007
Article
CAS
PubMed
Google Scholar
Sharma A, Varghese AM, Vijaylakshmi K, Sumitha R, Prasanna VK, Shruthi S, Sagar BKC, Datta KK, Gowda H, Nalini A et al (2016) Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces mitochondrial and lysosomal dysfunction. Neurochem Res 41:965–984. https://doi.org/10.1007/s11064-015-1779-7
Article
CAS
PubMed
Google Scholar
Shaw PJ (2002) Toxicity of CSF in motor neurone disease: a potential route to neuroprotection. Brain 125:693–694. https://doi.org/10.1093/brain/awf138
Article
PubMed
Google Scholar
Shen D, Hou B, Xu Y, Cui B, Peng P, Li X, Tai H, Zhang K, Liu S, Fu H et al (2018) Brain structural and perfusion signature of amyotrophic lateral sclerosis with varying levels of cognitive deficit. Front Neurol 9:364. https://doi.org/10.3389/fneur.2018.00364
Article
PubMed Central
PubMed
Google Scholar
Shim HG, Jang SS, Kim SH, Hwang EM, Min JO, Kim HY, Kim YS, Ryu C, Chung G, Kim Y et al (2018) TNF-alpha increases the intrinsic excitability of cerebellar Purkinje cells through elevating glutamate release in Bergmann Glia. Sci Rep UK 8:11589. https://doi.org/10.1038/s41598-018-29786-9
Article
CAS
Google Scholar
Shobha K, Vijayalakshmi K, Alladi PA, Nalini A, Sathyaprabha TN, Raju TR (2007) Altered in vitro and in vivo expression of glial glutamate transporter-1 following exposure to cerebrospinal fluid of amyotrophic lateral sclerosis patients. J Neurol Sci 254:9–16. https://doi.org/10.1016/j.jns.2006.12.004
Article
CAS
PubMed
Google Scholar
Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C et al (2018) beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci USA 115:4483–4488. https://doi.org/10.1073/pnas.1721694115
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith AJ, Yao XM, Dix JA, Jin BJ, Verkman AS (2017) Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. https://doi.org/10.7554/elife.27679
Article
PubMed Central
PubMed
Google Scholar
Smith R, Myers K, Ravits J, Bowser R (2015) Amyotrophic lateral sclerosis: is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 85:576–583. https://doi.org/10.1016/j.mehy.2015.07.014
Article
PubMed
Google Scholar
Smith RG, Henry YK, Mattson MP, Appel SH (1998) Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 44:696–699. https://doi.org/10.1002/ana.410440419
Article
CAS
PubMed
Google Scholar
Sorensen TT, Horvath-Puho E, Norgaard M, Ehrenstein V, Henderson VW (2019) Risk of amyotrophic lateral sclerosis and other motor neuron disease among men with benign prostatic hyperplasia: a population-based cohort study. BMJ Open. https://doi.org/10.1136/bmjopen-2019-030015
Article
PubMed Central
PubMed
Google Scholar
Spreux-Varoquaux O, Bensimon G, Lacomblez L, Salachas F, Pradat PF, Le Forestier N, Marouan A, Dib M, Meininger V (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients. J Neurol Sci 193:73–78. https://doi.org/10.1016/s0022-510x(01)00661-x
Article
CAS
PubMed
Google Scholar
Staff NP, Madigan NN, Morris J, Jentoft M, Sorenson EJ, Butler G, Gastineau D, Dietz A, Windebank AJ (2016) Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology 87:2230–2234. https://doi.org/10.1212/WNL.0000000000003359
Article
CAS
PubMed Central
PubMed
Google Scholar
Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92. https://doi.org/10.1038/nn1360
Article
CAS
PubMed
Google Scholar
Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, Mollenhauer B, Schneider A (2016) Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139:481–494. https://doi.org/10.1093/brain/awv346
Article
PubMed
Google Scholar
Sumitha R, Manjunatha VM, Sabitha RK, Alladi PA, Nalini A, Rao LT, Chandrasekhar Sagar BK, Steinbusch HWM, Kramer BW, Sathyaprabha TN et al (2019) Cerebrospinal fluid from patients with sporadic amyotrophic lateral sclerosis induces degeneration of motor neurons derived from human embryonic stem cells. Mol Neurobiol 56:1014–1034. https://doi.org/10.1007/s12035-018-1149-y
Article
CAS
PubMed
Google Scholar
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119
Article
CAS
PubMed Central
PubMed
Google Scholar
Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C (1999) Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 46:129–131. https://doi.org/10.1002/1531-8249(199907)46:1%3c129:aid-ana21%3e3.0.co;2-y
Article
CAS
PubMed
Google Scholar
Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP (2006) Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9:108–118. https://doi.org/10.1038/nn1603
Article
CAS
PubMed
Google Scholar
Van Damme P, Robberecht W (2014) Developments in treatments for amyotrophic lateral sclerosis via intracerebroventricular or intrathecal delivery. Exp Opin Inv Drug 23:955–963. https://doi.org/10.1517/13543784.2014.912275
Article
CAS
Google Scholar
Van den Bosch L, Van Damme P, Bogaert E, Robberecht W (2006) The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis. BBA Mol Basis Dis 1762:1068–1082. https://doi.org/10.1016/j.bbadis.2006.05.002
Article
CAS
Google Scholar
van Es MA, Schelhaas HJ, van Vught PW, Ticozzi N, Andersen PM, Groen EJ, Schulte C, Blauw HM, Koppers M, Diekstra FP et al (2011) Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Ann Neurol 70:964–973. https://doi.org/10.1002/ana.22611
Article
CAS
PubMed Central
PubMed
Google Scholar
Vijayalakshmi K, Alladi PA, Ghosh S, Prasanna VK, Sagar BC, Nalini A, Sathyaprabha TN, Raju TR (2011) Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiol Dis 41:695–705. https://doi.org/10.1016/j.nbd.2010.12.005
Article
CAS
PubMed
Google Scholar
Vijayalakshmi K, Alladi PA, Sathyaprabha TN, Subramaniam JR, Nalini A, Raju TR (2009) Cerebrospinal fluid from sporadic amyotrophic lateral sclerosis patients induces degeneration of a cultured motor neuron cell line. Brain Res 1263:122–133. https://doi.org/10.1016/j.brainres.2009.01.041
Article
CAS
PubMed
Google Scholar
Vijayalakshmi K, Ostwal P, Sumitha R, Shruthi S, Varghese AM, Mishra P, Manohari SG, Sagar BC, Sathyaprabha TN, Nalini A et al (2015) Role of VEGF and VEGFR2 receptor in reversal of ALS-CSF induced degeneration of NSC-34 motor neuron cell line. Mol Neurobiol 51:995–1007. https://doi.org/10.1007/s12035-014-8757-y
Article
CAS
PubMed
Google Scholar
Waldemar G, Vorstrup S, Jensen TS, Johnsen A, Boysen G (1992) Focal reductions of cerebral blood flow in amyotrophic lateral sclerosis: a [99mTc]-d, l-HMPAO SPECT study. J Neurol Sci 107:19–28. https://doi.org/10.1016/0022-510x(92)90204-x
Article
CAS
PubMed
Google Scholar
Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, Guo Y, Brown RH Jr, Gao G, Xu Z (2014) Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet 23:668–681. https://doi.org/10.1093/hmg/ddt454
Article
CAS
PubMed
Google Scholar
Wang Y, Balaji V, Kaniyappan S, Kruger L, Irsen S, Tepper K, Chandupatla R, Maetzler W, Schneider A, Mandelkow E et al (2017) The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener 12:5. https://doi.org/10.1186/s13024-016-0143-y
Article
CAS
PubMed Central
PubMed
Google Scholar
Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, Doubal FN, Brown R, Ramirez J, MacIntosh BJ et al (2020) Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. https://doi.org/10.1038/s41582-020-0312-z
Article
PubMed
Google Scholar
Warita H, Manabe Y, Murakami T, Shiote M, Shiro Y, Hayashi T, Nagano I, Shoji M, Abe K (2002) Tardive decrease of astrocytic glutamate transporter protein in transgenic mice with ALS-linked mutant SOD1. Neurol Res 24:577–581. https://doi.org/10.1179/016164102101200384
Article
CAS
PubMed
Google Scholar
Watanabe-Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, Yasui M, Misawa H (2018) Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res 133:48–57. https://doi.org/10.1016/j.neures.2017.11.001
Article
CAS
PubMed
Google Scholar
Westergard T, Jensen BK, Wen XM, Cai JL, Kropf E, Iacovitti L, Pasinelli P, Trotti D (2016) Cell-to-cell transmission of dipeptide repeat proteins linked to C9orf72-ALS/FTD. Cell Rep 17:645–652. https://doi.org/10.1016/j.celrep.2016.09.032
Article
CAS
PubMed Central
PubMed
Google Scholar
Wolak DJ, Thorne RG (2013) Diffusion of macromolecules in the brain: implications for drug delivery. Mol Pharm 10:1492–1504. https://doi.org/10.1021/mp300495e
Article
CAS
PubMed Central
PubMed
Google Scholar
Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS ONE. https://doi.org/10.1371/journal.pone.0017947
Article
PubMed Central
PubMed
Google Scholar
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. https://doi.org/10.1126/science.1241224
Article
CAS
PubMed
Google Scholar
Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW, Huang Y (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994. https://doi.org/10.1523/JNEUROSCI.5476-05.2006
Article
CAS
PubMed Central
PubMed
Google Scholar
Xu ZW, Henderson RD, David M, McCombe PA (2016) Neurofilaments as biomarkers for amyotrophic lateral sclerosis: a systematic review and meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0164625
Article
PubMed Central
PubMed
Google Scholar
Yamada S, Miyazaki M, Yamashita Y, Ouyang C, Yui M, Nakahashi M, Shimizu S, Aoki I, Morohoshi Y, McComb JG (2013) Influence of respiration on cerebrospinal fluid movement using magnetic resonance spin labeling. Fluids Barriers CNS 10:36. https://doi.org/10.1186/2045-8118-10-36
Article
PubMed Central
PubMed
Google Scholar
Yung C, Sha D, Li L, Chin LS (2016) Parkin protects against misfolded SOD1 Toxicity By Promoting Its Aggresome Formation And Autophagic Clearance. Mol Neurobiol 53:6270–6287. https://doi.org/10.1007/s12035-015-9537-z
Article
CAS
PubMed
Google Scholar
Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, Sasaguri H, Caulfield T, Hubbard J, Daughrity L et al (2014) Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 128:505–524. https://doi.org/10.1007/s00401-014-1336-5
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhao C, Devlin AC, Chouhan AK, Selvaraj BT, Stavrou M, Burr K, Brivio V, He X, Mehta AR, Story D et al (2019) Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia. https://doi.org/10.1002/glia.23761
Article
PubMed Central
PubMed
Google Scholar
Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, Stojanovic K, Sagare A, Boillee S, Cleveland DW et al (2008) ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11:420–422. https://doi.org/10.1038/nn2073
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhou Y, Cai J, Zhang W, Gong X, Yan S, Zhang K, Luo Z, Sun J, Jiang Q, Lou M (2020) Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann Neurol 87:357–369. https://doi.org/10.1002/ana.25670
Article
CAS
PubMed
Google Scholar
Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738. https://doi.org/10.1038/nrn3114
Article
CAS
PubMed Central
PubMed
Google Scholar
Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034:11–24. https://doi.org/10.1016/j.brainres.2004.11.014
Article
CAS
PubMed
Google Scholar
Zou S, Lan YL, Wang HJ, Zhang B, Sun YG (2019) The potential roles of aquaporin 4 in amyotrophic lateral sclerosis. Neurol Sci 40:1541–1549. https://doi.org/10.1007/s10072-019-03877-5
Article
PubMed
Google Scholar
Zou W, Pu T, Feng W, Lu M, Zheng Y, Du R, Xiao M, Hu G (2019) Blocking meningeal lymphatic drainage aggravates Parkinson’s disease-like pathology in mice overexpressing mutated alpha-synuclein. Transl Neurodegener 8:7. https://doi.org/10.1186/s40035-019-0147-y
Article
PubMed Central
PubMed
Google Scholar
Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP (2017) Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosur Psychiatry 88:540–549. https://doi.org/10.1136/jnnp-2016-315018
Article
Google Scholar