Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172
CAS
Google Scholar
Miller B, Llibre Guerra JJ (2019) Frontotemporal dementia. Handb Clin Neurol 165:33–45
PubMed
Google Scholar
Abramzon YA, Fratta P, Traynor BJ, Chia R (2020) The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front Neurosci 14:42
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256
CAS
PubMed
PubMed Central
Google Scholar
Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268
CAS
PubMed
PubMed Central
Google Scholar
Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11(1):54–65
CAS
PubMed
Google Scholar
Todd TW, Petrucelli L (2016) Insights into the pathogenic mechanisms of chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 138(Suppl 1):145–162
CAS
PubMed
Google Scholar
Ji AL, Zhang X, Chen WW, Huang WJ (2017) Genetics insight into the amyotrophic lateral sclerosis/frontotemporal dementia spectrum. J Med Genet 54(3):145–154
CAS
PubMed
Google Scholar
Balendra R, Isaacs AM (2018) C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol 14(9):544–558
CAS
PubMed
PubMed Central
Google Scholar
Babic Leko M, Zupunski V, Kirincich J, Smilovic D, Hortobagyi T, Hof PR et al (2019) Molecular mechanisms of Neurodegeneration related to C9orf72 Hexanucleotide repeat expansion. Behav Neurol 2019:2909168
PubMed
PubMed Central
Google Scholar
Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S et al (2013) Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol 126(3):385–399
CAS
PubMed
PubMed Central
Google Scholar
Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339(6125):1335–1338
CAS
PubMed
Google Scholar
Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S et al (2013) RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80(2):415–428
CAS
PubMed
PubMed Central
Google Scholar
Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK et al (2013) Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol 126(6):895–905
CAS
PubMed
PubMed Central
Google Scholar
Fratta P, Poulter M, Lashley T, Rohrer JD, Polke JM, Beck J et al (2013) Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol 126(3):401–409
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92(6):981–989
CAS
PubMed
PubMed Central
Google Scholar
Waite AJ, Baumer D, East S, Neal J, Morris HR, Ansorge O et al (2014) Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging 35(7):1779.e5–1779e13
CAS
Google Scholar
van Blitterswijk M, Gendron TF, Baker MC, DeJesus-Hernandez M, Finch NA, Brown PH et al (2015) Novel clinical associations with specific C9ORF72 transcripts in patients with repeat expansions in C9ORF72. Acta Neuropathol 130(6):863–876
PubMed
PubMed Central
Google Scholar
Xiao S, MacNair L, McGoldrick P, McKeever PM, McLean JR, Zhang M et al (2015) Isoform-specific antibodies reveal distinct subcellular localizations of C9orf72 in amyotrophic lateral sclerosis. Ann Neurol 78(4):568–583
CAS
PubMed
Google Scholar
Rizzu P, Blauwendraat C, Heetveld S, Lynes EM, Castillo-Lizardo M, Dhingra A et al (2016) C9orf72 is differentially expressed in the central nervous system and myeloid cells and consistently reduced in C9orf72, MAPT and GRN mutation carriers. Acta Neuropathol Commun 4(1):37
PubMed
PubMed Central
Google Scholar
Shi Y, Lin S, Staats KA, Li Y, Chang WH, Hung ST et al (2018) Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat Med 24(3):313–325
CAS
PubMed
PubMed Central
Google Scholar
Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35(15):1656–1676
CAS
PubMed
PubMed Central
Google Scholar
Frick P, Sellier C, Mackenzie IRA, Cheng CY, Tahraoui-Bories J, Martinat C et al (2018) Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathol Commun. 6(1):72
PubMed
PubMed Central
Google Scholar
Dickson DW, Baker MC, Jackson JL, DeJesus-Hernandez M, Finch NA, Tian S et al (2019) Extensive transcriptomic study emphasizes importance of vesicular transport in C9orf72 expansion carriers. Acta Neuropathol Commun. 7(1):150
PubMed
PubMed Central
Google Scholar
Liang C, Shao Q, Zhang W, Yang M, Chang Q, Chen R et al (2019) Smcr8 deficiency disrupts axonal transport-dependent lysosomal function and promotes axonal swellings and gain of toxicity in C9ALS/FTD mouse models. Hum Mol Genet 28(23):3940–3953
CAS
PubMed
Google Scholar
Amick J, Roczniak-Ferguson A, Ferguson SM (2016) C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 27(20):3040–3051
CAS
PubMed
PubMed Central
Google Scholar
Ciura S, Sellier C, Campanari ML, Charlet-Berguerand N, Kabashi E (2016) The most prevalent genetic cause of ALS-FTD, C9orf72 synergizes the toxicity of ATXN2 intermediate polyglutamine repeats through the autophagy pathway. Autophagy. 12(8):1406–1408
CAS
PubMed
PubMed Central
Google Scholar
Sullivan PM, Zhou X, Robins AM, Paushter DH, Kim D, Smolka MB et al (2016) The ALS/FTLD associated protein C9orf72 associates with SMCR8 and WDR41 to regulate the autophagy-lysosome pathway. Acta Neuropathol Commun. 4(1):51
PubMed
PubMed Central
Google Scholar
Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M et al (2016) Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO J 35(12):1276–1297
CAS
PubMed
PubMed Central
Google Scholar
Xiao S, MacNair L, McLean J, McGoldrick P, McKeever P, Soleimani S et al (1647) C9orf72 isoforms in amyotrophic lateral sclerosis and Frontotemporal lobar degeneration. Brain Res 2016:43–49
Google Scholar
Yang M, Liang C, Swaminathan K, Herrlinger S, Lai F, Shiekhattar R et al (2016) A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv 2(9):e1601167
PubMed
PubMed Central
Google Scholar
Ugolino J, Ji YJ, Conchina K, Chu J, Nirujogi RS, Pandey A et al (2016) Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB signaling. PLoS Genet 12(11):e1006443
Corbier C, Sellier C (2017) C9ORF72 is a GDP/GTP exchange factor for Rab8 and Rab39 and regulates autophagy. Small GTPases 8(3):181–186
CAS
PubMed
Google Scholar
Jung J, Nayak A, Schaeffer V, Starzetz T, Kirsch AK, Muller S et al (2017) Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. Elife 6:e23063
PubMed
PubMed Central
Google Scholar
Amick J, Tharkeshwar AK, Amaya C, Ferguson SM (2018) WDR41 supports lysosomal response to changes in amino acid availability. Mol Biol Cell 29(18):2213–2227
CAS
PubMed
PubMed Central
Google Scholar
Bi W, Yan J, Stankiewicz P, Park SS, Walz K, Boerkoel CF et al (2002) Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res 12(5):713–728
CAS
PubMed
PubMed Central
Google Scholar
Madduri N, Peters SU, Voigt RG, Llorente AM, Lupski JR, Potocki L (2006) Cognitive and adaptive behavior profiles in Smith-Magenis syndrome. J Dev Behav Pediatr 27(3):188–192
PubMed
Google Scholar
Jain BP, Pandey S (2018) WD40 repeat proteins: Signalling scaffold with diverse functions. Protein J 37(5):391–406
CAS
PubMed
Google Scholar
Stein JL, Hibar DP, Madsen SK, Khamis M, McMahon KL, de Zubicaray GI et al (2011) Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry 16(9):927–937 881
CAS
PubMed
PubMed Central
Google Scholar
Zhang D, Iyer LM, He F, Aravind L (2012) Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet 3:283
PubMed
PubMed Central
Google Scholar
Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics. 29(4):499–503
CAS
PubMed
PubMed Central
Google Scholar
Zhen Y, Stenmark H (2015) Cellular functions of Rab GTPases at a glance. J Cell Sci 128(17):3171–3176
CAS
PubMed
Google Scholar
Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V et al (2014) C9ORF72, implicated in amytrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet 23(13):3579–3595
CAS
PubMed
PubMed Central
Google Scholar
Webster CP, Smith EF, Grierson AJ, De Vos KJ (2018) C9orf72 plays a central role in Rab GTPase-dependent regulation of autophagy. Small GTPases. 9(5):399–408
CAS
PubMed
Google Scholar
O'Rourke JG, Bogdanik L, Yanez A, Lall D, Wolf AJ, Muhammad AK et al (2016) C9orf72 is required for proper macrophage and microglial function in mice. Science 351(6279):1324–1329
CAS
PubMed
PubMed Central
Google Scholar
Aoki Y, Manzano R, Lee Y, Dafinca R, Aoki M, Douglas AGL et al (2017) C9orf72 and RAB7L1 regulate vesicle trafficking in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 140(4):887–897
PubMed
Google Scholar
Leskela S, Huber N, Rostalski H, Natunen T, Remes AM, Takalo M et al (2019) C9orf72 proteins regulate autophagy and undergo Autophagosomal or proteasomal degradation in a cell type-dependent manner. Cells 8(10):1233
PubMed Central
Google Scholar
Lai JD, Ichida JK (2019) C9ORF72 protein function and immune dysregulation in amyotrophic lateral sclerosis. Neurosci Lett 713:134523
CAS
PubMed
Google Scholar
Corrionero A, Horvitz HR (2018) A C9orf72 ALS/FTD ortholog acts in endolysosomal degradation and lysosomal homeostasis. Curr Biol 28(10):1522–35.e5
CAS
PubMed
Google Scholar
Amick J, Tharkeshwar AK, Talaia G, Ferguson SM (2020) PQLC2 recruits the C9orf72 complex to lysosomes in response to cationic amino acid starvation. J Cell Biol 219(1):e201906076
Sivadasan R, Hornburg D, Drepper C, Frank N, Jablonka S, Hansel A et al (2016) C9ORF72 interaction with cofilin modulates actin dynamics in motor neurons. Nat Neurosci 19(12):1610–1618
CAS
PubMed
Google Scholar
Selvaraj BT, Livesey MR, Zhao C, Gregory JM, James OT, Cleary EM et al (2018) C9ORF72 repeat expansion causes vulnerability of motor neurons to Ca(2+)-permeable AMPA receptor-mediated excitotoxicity. Nat Commun 9(1):347
PubMed
PubMed Central
Google Scholar
Staats KA, Seah C, Sahimi A, Wang Y, Koutsodendris N, Lin S, et al. Small molecule inhibition of PIKFYVE kinase rescues gain- and loss-of-function C9ORF72 ALS/FTD disease processes in vivo. bioRxiv. 2019. https://doi.org/10.1101/685800
Xiao S, McKeever PM, Lau A, Robertson J (2019) Synaptic localization of C9orf72 regulates post-synaptic glutamate receptor 1 levels. Acta Neuropathol Commun. 7(1):161
PubMed
PubMed Central
Google Scholar
Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A et al (2013) Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol 74(2):180–187
CAS
PubMed
Google Scholar
Therrien M, Rouleau GA, Dion PA, Parker JA (2013) Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One 8(12):e83450
PubMed
PubMed Central
Google Scholar
Shao Q, Yang M, Liang C, Ma L, Zhang W, Jiang Z et al (2019) C9orf72 and Smcr8 mutant mice reveal MTORC1 activation due to impaired lysosomal degradation and exocytosis. Autophagy:1–16
Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li H-R et al (2013) Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A 110(47):E4530–E4539
CAS
PubMed
PubMed Central
Google Scholar
Koppers M, Blokhuis AM, Westeneng HJ, Terpstra ML, Zundel CA (2015) Vieira de Sa R, et al. C9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits. Ann Neurol 78(3):426–438
CAS
PubMed
PubMed Central
Google Scholar
Atanasio A, Decman V, White D, Ramos M, Ikiz B, Lee HC et al (2016) C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci Rep 6:23204
CAS
PubMed
PubMed Central
Google Scholar
Burberry A, Suzuki N, Wang JY, Moccia R, Mordes DA, Stewart MH et al (2016) Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci Transl Med 8(347):347ra93
PubMed
PubMed Central
Google Scholar
Sudria-Lopez E, Koppers M, de Wit M, van der Meer C, Westeneng HJ, Zundel CA et al (2016) Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol 132(1):145–147
PubMed
PubMed Central
Google Scholar
Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M, Seelman A et al (2016) Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90(3):535–550
CAS
PubMed
PubMed Central
Google Scholar
McAlpine W, Sun L, Wang KW, Liu A, Jain R, San Miguel M et al (2018) Excessive endosomal TLR signaling causes inflammatory disease in mice with defective SMCR8-WDR41-C9ORF72 complex function. Proc Natl Acad Sci U S A 115(49):E11523–E11e31
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Burberry A, Wang JY, Sandoe J, Ghosh S, Udeshi ND et al (2018) The C9orf72-interacting protein Smcr8 is a negative regulator of autoimmunity and lysosomal exocytosis. Genes Dev 32(13–14):929–943
CAS
PubMed
PubMed Central
Google Scholar
Harms MB, Cady J, Zaidman C, Cooper P, Bali T, Allred P et al (2013) Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in amyotrophic lateral sclerosis. Neurobiol Aging 34(9):2234.e13–2234.e19
CAS
Google Scholar
Henderson MJ, Russell AJ, Hird S, Munoz M, Clancy JL, Lehrbach GM et al (2002) EDD, the human hyperplastic discs protein, has a role in progesterone receptor coactivation and potential involvement in DNA damage response. J Biol Chem 277(29):26468–26478
CAS
PubMed
Google Scholar
Zhang YJ, Gendron TF, Grima JC, Sasaguri H, Jansen-West K, Xu YF et al (2016) C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci 19(5):668–677
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Baldie G, Periz G, Wang J (2014) RNA-processing protein TDP-43 regulates FOXO-dependent protein quality control in stress response. PLoS Genet 10(10):e1004693
PubMed
PubMed Central
Google Scholar
Bergink S, Salomons FA, Hoogstraten D, Groothuis TA, de Waard H, Wu J et al (2006) DNA damage triggers nucleotide excision repair-dependent monoubiquitylation of histone H2A. Genes Dev 20(10):1343–1352
CAS
PubMed
PubMed Central
Google Scholar
Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, Lee YI et al (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci U S A 106(8):2897–2902
CAS
PubMed
PubMed Central
Google Scholar
Agrawal P, Chen YT, Schilling B, Gibson BW, Hughes RE (2012) Ubiquitin-specific peptidase 9, X-linked (USP9X) modulates activity of mammalian target of rapamycin (mTOR). J Biol Chem 287(25):21164–21175
CAS
PubMed
PubMed Central
Google Scholar
Hulme AE, Bogerd HP, Cullen BR, Moran JV (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene. 390(1):199–205
CAS
PubMed
Google Scholar
Batra R, Hutt K, Vu A, Rabin SJ, Baughn MW, Libby RT et al (2016) Gene expression signatures of sporadic ALS motor neuron populations. bioRxiv. https://doi.org/10.1101/038448
Goodier JL, Cheung LE, Kazazian HH (2013) Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 41(15):7401–7419
CAS
PubMed
PubMed Central
Google Scholar
Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH (2015) The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet 11(5):e1005252
Stoecklin G, Mayo T, Anderson P (2006) ARE-mRNA degradation requires the 5′-3′ decay pathway. EMBO Rep 7(1):72–77
CAS
PubMed
Google Scholar
Rodić N, Sharma R, Sharma R, Zampella J, Dai L, Taylor MS et al (2014) Long interspersed element-1 protein expression is a hallmark of many human cancers. Am J Pathol 184(5):1280–1286
PubMed
PubMed Central
Google Scholar
Laflamme C, McKeever PM, Kumar R, Schwartz J, Kolahdouzan M, Chen CX et al (2019) Implementation of an antibody characterization procedure and application to the major ALS/FTD disease gene C9ORF72. eLife 8:e48363
CAS
PubMed
PubMed Central
Google Scholar
Eystathioy T, Chan EK, Takeuchi K, Mahler M, Luft LM, Zochodne DW et al (2003) Clinical and serological associations of autoantibodies to GW bodies and a novel cytoplasmic autoantigen GW182. J Mol Med (Berl) 81(12):811–818
CAS
Google Scholar
Goodier JL, Zhang L, Vetter MR, Kazazian HH (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27(18):6469–6483
CAS
PubMed
PubMed Central
Google Scholar
Goodier JL, Mandal PK, Zhang L, Kazazian HH (2010) Discrete subcellular partitioning of human retrotransposon RNAs despite a common mechanism of genome insertion. Hum Mol Genet 19(9):1712–1725
CAS
PubMed
PubMed Central
Google Scholar
Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57
PubMed
Google Scholar
Jin Y, Tam OH, Paniagua E, Hammell M (2015) TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 31(22):3593–3599
CAS
PubMed
PubMed Central
Google Scholar
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldan A, Choi JA, Planet E et al (2018) Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 9:35
CAS
PubMed
PubMed Central
Google Scholar
Radivojac P, Vacic V, Haynes C, Cocklin RR, Mohan A, Heyen JW et al (2010) Identification, analysis, and prediction of protein ubiquitination sites. Proteins. 78(2):365–380
CAS
PubMed
PubMed Central
Google Scholar
Blokhuis AM, Koppers M, Groen EJN, van den Heuvel DMA, Dini Modigliani S, Anink JJ et al (2016) Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol 132(2):175–196
CAS
PubMed
PubMed Central
Google Scholar
Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G, Savard A et al (2018) A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat Commun 9(1):2794
PubMed
PubMed Central
Google Scholar
Tang D, Sheng J, Xu L, Zhan X, Liu J, Jiang H et al (2020) Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a. Proc Natl Acad Sci U S A 117(18):9876–9883
CAS
PubMed
Google Scholar
Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530
CAS
PubMed
Google Scholar
Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–156
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Qian SB (2011) Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol Biol Cell 22(18):3277–3288
CAS
PubMed
PubMed Central
Google Scholar
Bentmann E, Haass C, Dormann D (2013) Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J 280(18):4348–4370
CAS
PubMed
Google Scholar
Fernandes N, Eshleman N, Buchan JR (2018) Stress granules and ALS: a case of causation or correlation? Adv Neurobiol 20:173–212
PubMed
Google Scholar
Baradaran-Heravi Y, Van Broeckhoven C, van der Zee J (2020) Stress granule mediated protein aggregation and underlying gene defects in the FTD-ALS spectrum. Neurobiol Dis 134:104639
CAS
PubMed
Google Scholar
Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808
CAS
PubMed
PubMed Central
Google Scholar
Kwon S, Zhang Y, Matthias P (2007) The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev 21(24):3381–3394
CAS
PubMed
PubMed Central
Google Scholar
Maharjan N, Kunzli C, Buthey K, Saxena S (2017) C9ORF72 regulates stress granule formation and its deficiency impairs stress granule assembly, hypersensitizing cells to stress. Mol Neurobiol 54(4):3062–3077
CAS
PubMed
Google Scholar
Souquere S, Mollet S, Kress M, Dautry F, Pierron G, Weil D (2009) Unravelling the ultrastructure of stress granules and associated P-bodies in human cells. J Cell Sci 122(Pt 20):3619–3626
CAS
PubMed
Google Scholar
Kawakami I, Arai T, Hasegawa M (2019) The basis of clinicopathological heterogeneity in TDP-43 proteinopathy. Acta Neuropathol 138(5):751–770
CAS
PubMed
PubMed Central
Google Scholar
Freibaum BD, Taylor JP (2017) The role of dipeptide repeats in C9ORF72-related ALS-FTD. Front Mol Neurosci 10:35
PubMed
PubMed Central
Google Scholar
Nunes C, Mestre I, Marcelo A, Koppenol R, Matos CA, Nobrega C (2019) MSGP: the first database of the protein components of the mammalian stress granules. Database (Oxford) 2019:baz031
Lan Y, Sullivan PM, Hu F (2019) SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis. Autophagy 15(5):871–885
CAS
PubMed
PubMed Central
Google Scholar
Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675
CAS
PubMed
PubMed Central
Google Scholar
Grumati P, Dikic I (2018) Ubiquitin signaling and autophagy. J Biol Chem 293(15):5404–5413
CAS
PubMed
Google Scholar
Chen RH, Chen YH, Huang TY (2019) Ubiquitin-mediated regulation of autophagy. J Biomed Sci 26(1):80
PubMed
PubMed Central
Google Scholar
Rao L, Sha Y, Eissa NT (2017) The E3 ubiquitin ligase STUB1 regulates autophagy and mitochondrial biogenesis by modulating TFEB activity. Mol Cell Oncol 4(6):e1372867
PubMed
PubMed Central
Google Scholar
Wan W, You Z, Zhou L, Xu Y, Peng C, Zhou T et al (2018) mTORC1-regulated and HUWE1-mediated WIPI2 degradation controls autophagy flux. Mol Cell 72(2):303–15.e6
CAS
PubMed
Google Scholar
Amick J, Ferguson SM (2017) C9orf72: at the intersection of lysosome cell biology and neurodegenerative disease. Traffic 18(5):267–276
CAS
PubMed
PubMed Central
Google Scholar
Jung J, Behrends C (2020) Multifaceted role of SMCR8 as autophagy regulator. Small GTPases 11(1):53–61
CAS
PubMed
Google Scholar
Mazroui R, Di Marco S, Kaufman RJ, Gallouzi IE (2007) Inhibition of the ubiquitin-proteasome system induces stress granule formation. Mol Biol Cell 18(7):2603–2618
CAS
PubMed
PubMed Central
Google Scholar
Mateju D, Franzmann TM, Patel A, Kopach A, Boczek EE, Maharana S et al (2017) An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO J 36(12):1669–1687
CAS
PubMed
PubMed Central
Google Scholar
Xie X, Matsumoto S, Endo A, Fukushima T, Kawahara H, Saeki Y et al (2018) Deubiquitylases USP5 and USP13 are recruited to and regulate heat-induced stress granules through their deubiquitylating activities. J Cell Sci 131(8):jcs210856
Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A et al (2014) Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 21(12):1838–1851
CAS
PubMed
PubMed Central
Google Scholar
Monahan Z, Shewmaker F, Pandey UB (2016) Stress granules at the intersection of autophagy and ALS. Brain Res 1649(Pt B):189–200
CAS
PubMed
PubMed Central
Google Scholar
Vu LT, Bowser R (2017) Fluid-based biomarkers for amyotrophic lateral sclerosis. Neurotherapeutics. 14(1):119–134
CAS
PubMed
Google Scholar
van der Ende EL, Meeter LH, Stingl C, van Rooij JGJ, Stoop MP, Nijholt DAT et al (2019) Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann Clin Transl Neurol 6(4):698–707
PubMed
PubMed Central
Google Scholar
Beck J, Poulter M, Hensman D, Rohrer JD, Mahoney CJ, Adamson G et al (2013) Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92(3):345–353
CAS
PubMed
PubMed Central
Google Scholar
Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T et al (2014) C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology. 82(4):292–299
CAS
PubMed
PubMed Central
Google Scholar
Bourinaris T, Houlden H (2018) C9orf72 and its relevance in parkinsonism and movement disorders: a comprehensive review of the literature. Mov Disord Clin Pract 5(6):575–585
PubMed
PubMed Central
Google Scholar
Devenney EM, Ahmed RM, Halliday G, Piguet O, Kiernan MC, Hodges JR (2018) Psychiatric disorders in C9orf72 kindreds: study of 1,414 family members. Neurology 91(16):e1498–ee507
PubMed
Google Scholar
Silverman HE, Goldman JS, Huey ED (2019) Links between the C9orf72 repeat expansion and psychiatric symptoms. Curr Neurol Neurosci Rep 19(12):93
CAS
PubMed
Google Scholar
Marogianni C, Rikos D, Provatas A, Dadouli K, Ntellas P, Tsitsi P et al (2019) The role of C9orf72 in neurodegenerative disorders: a systematic review, an updated meta-analysis, and the creation of an online database. Neurobiol Aging 84:238.e25–238.e34
CAS
Google Scholar