Akman BH, Can T, Elif Erson-Bensan A (2012) Estrogen-induced upregulation and 3′-UTR shortening of CDC6. Nucleic Acids Res 40:10679–10688. https://doi.org/10.1093/nar/gks855
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbieri I, Kouzarides T (2020) Role of RNA modifications in cancer. Nat Rev Cancer. https://doi.org/10.1038/s41568-020-0253-2
Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell. https://doi.org/10.1016/0092-8674(88)90253-X
Beier CP, Kumar P, Meyer K, Leukel P, Bruttel V, Aschenbrenner I et al (2012) The Cancer stem cell subtype determines immune infiltration of Glioblastoma. Stem Cells Dev 21:2753–2761. https://doi.org/10.1089/scd.2011.0660
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G et al (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 15:1914–1923. https://doi.org/10.1002/j.1460-2075.1996.tb00542.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J et al (2016) Stem cell function and stress response are controlled by protein synthesis. Nature. https://doi.org/10.1038/nature18282
Bludau I, Aebersold R (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-020-0231-2
Boccaletto P, MacHnicka MA, Purta E, Pitkowski P, Baginski B, Wirecki TK et al (2018) MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1030
Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F (1994) Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei: internal mRNA methylation requires a multisubunit complex. J Biol Chem 269:17697–17704
CAS
PubMed
Google Scholar
Brown KM, Gilmartin GM (2003) A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell. https://doi.org/10.1016/S1097-2765(03)00453-2
Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X et al (2011) The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq1028
Carmo-Fonseca M, Kirchhausen T (2014) The timing of pre-mRNA splicing visualized in real-time. Nucleus 5:11–14. https://doi.org/10.4161/nucl.28056
Article
PubMed
PubMed Central
Google Scholar
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse Glioma. Cell 164:550–563. https://doi.org/10.1016/j.cell.2015.12.028
Article
CAS
PubMed
PubMed Central
Google Scholar
Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E et al (2018) ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1257
Chai RC, Wu F, Wang Q-X, Zhang S, Zhang KN, Liu YQ et al (2019) m 6 A RNA methylation regulators contribute to malignant progression and have clinical prognostic impact in gliomas. Aging (Albany NY). https://doi.org/10.18632/aging.101829
Chandran UR, Luthra S, Santana-Santos L, Mao P, Kim S-H, Minata M et al (2015) Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells. Genomics Data 5:333–336. https://doi.org/10.1016/j.gdata.2015.07.007
Article
PubMed
PubMed Central
Google Scholar
Chen J, Sun Y, Xu X, Wang D, He J, Zhou H et al (2017) YTH domain family 2 orchestrates epithelial-mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell Cycle. https://doi.org/10.1080/15384101.2017.1380125
Chu Y, Elrod N, Wang C, Li L, Chen T, Routh A et al (2019) Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene. https://doi.org/10.1038/s41388-019-0714-9
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G et al (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of Glioblastoma stem cells. Cell Rep. https://doi.org/10.1016/j.celrep.2017.02.059
Dai Q, Fong R, Saikia M, Stephenson D, Yu YT, Pan T et al (2007) Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine. Nucleic Acids Res. https://doi.org/10.1093/nar/gkm657
Delaidelli A, Jan A, Herms J, Sorensen PH (2019) Translational control in brain pathologies: biological significance and therapeutic opportunities. Acta Neuropathol 137:535–555
Article
CAS
Google Scholar
Delaidelli A, Negri GL, Jan A, Jansonius B, El-Naggar A, Lim JKM et al (2017) MYCN amplified neuroblastoma requires the mRNA translation regulator eEF2 kinase to adapt to nutrient deprivation. Cell Death Differ. https://doi.org/10.1038/cdd.2017.79
Delaunay S, Frye M (2019) RNA modifications regulating cell fate in cancer. Nat Cell Biol 21:552–559
Article
CAS
Google Scholar
Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.71.10.3971
Dinescu S, Ignat S, Lazar A, Constantin C, Neagu M, Costache M (2019) Epitranscriptomic signatures in lncRNAs and their possible roles in Cancer. Genes (Basel) 10:52. https://doi.org/10.3390/genes10010052
Article
CAS
Google Scholar
Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G (2011) Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 32:1569–1577
Article
CAS
Google Scholar
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. https://doi.org/10.1038/nature11112
Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS et al (2016) The dynamic N1 -methyladenosine methylome in eukaryotic messenger RNA. Nature. https://doi.org/10.1038/nature16998
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M et al (2016) YTHDF2 destabilizes m 6 A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. https://doi.org/10.1038/ncomms12626
Erales J, Marchand V, Panthu B, Gillot S, Belin S, Ghayad SE et al (2017) Evidence for rRNA 2′-O-methylation plasticity: control of intrinsic translational capabilities of human ribosomes. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1707674114
Faustino NA (2003) Pre-mRNA splicing and human disease. Genes Dev 17:419–437. https://doi.org/10.1101/gad.1048803
Article
CAS
PubMed
Google Scholar
Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T (2016) RNA modifications: what have we learned and where are we headed? Nat Rev Genet 17:365–372
Article
CAS
Google Scholar
Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m 6 A RNA methylation. Nat Rev Genet. 15:293–306
Article
CAS
Google Scholar
Fu Y, Zhao X, Li Z, Wei J, Tian Y (2016) Splicing variants of ADAR2 and ADAR2-mediated RNA editing in glioma. Oncol Lett 12:788–792
Article
CAS
Google Scholar
Galeano F, Rossetti C, Tomaselli S, Cifaldi L, Lezzerini M, Pezzullo M et al (2013) ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene. https://doi.org/10.1038/onc.2012.125
Garcia-Blanco MA, Baraniak AP, Lasda EL (2004) Alternative splicing in disease and therapy. Nat Biotechnol 22:535–546. https://doi.org/10.1038/nbt964
Article
CAS
PubMed
Google Scholar
García-Recio EM, Pinto-Díez C, Pérez-Morgado MI, García-Hernández M, Fernández G, Martín ME et al (2016) Characterization of MNK1b DNA Aptamers that inhibit proliferation in MDA-MB231 breast cancer cells. Mol Ther - Nucleic Acids 5. https://doi.org/10.1038/mtna.2015.50
Di Giammartino DC, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative Polyadenylation. Mol Cell 43:853–866. https://doi.org/10.1016/j.molcel.2011.08.017
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong AH, Wei P, Zhang S, Yao J, Yuan Y, Zhou AD et al (2015) FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and tumorigenicity of glioblastoma stem-like cells. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-14-2800
Gruber AR, Martin G, Keller W, Zavolan M (2012) Cleavage factor I m is a key regulator of 3′ UTR length. RNA Biol. https://doi.org/10.4161/rna.22570
Grzmil M, Huber RM, Hess D, Frank S, Hynx D, Moncayo G et al (2014) MNK1 pathway activity maintains protein synthesis in rapalog-treated gliomas. J Clin Invest. https://doi.org/10.1172/JCI70198
Grzmil M, Morin P, Lino MM, Merlo A, Frank S, Wang Y et al (2011) MAP kinase-interacting kinase 1 regulates SMAD2-dependent TGF-β signaling pathway in human glioblastoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-10-3112
Guardia GDA, Correa BR, Araujo PR, Qiao M, Burns S, Penalva LOF et al (2020) Proneural and mesenchymal glioma stem cells display major differences in splicing and lncRNA profiles. Npj genomic med 5:2. https://doi.org/10.1038/s41525-019-0108-5
Heckler MM, Zeleke TZ, Divekar SD, Fernandez AI, Tiek DM, Woodrick J et al (2016) Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. https://doi.org/10.18632/oncotarget.9719
Hegi ME, Diserens AC, Gorlia T, Hamou MF, De Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. https://doi.org/10.1056/NEJMoa043331
Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18:275–291. https://doi.org/10.1038/nrg.2016.169
Article
CAS
PubMed
Google Scholar
Hoskins AA, Moore MJ (2012) The spliceosome: a flexible, reversible macromolecular machine. Trends Biochem Sci 37:179–188. https://doi.org/10.1016/j.tibs.2012.02.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H et al (2002) Blockage of Ca 2+ − permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med. https://doi.org/10.1038/nm746
Ishiuchi S, Yoshida Y, Sugawara K, Aihara M, Ohtani T, Watanabe T et al (2007) Ca 2+ −permeable AMPA receptors regulate growth of human glioblastoma via Akt activation. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2180-07.2007
Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN et al (2017) The RNA m6A reader YTHDF2 is essential for the post-transcriptional regulation of the maternal Transcriptome and oocyte competence. Mol Cell. https://doi.org/10.1016/j.molcel.2017.08.003
Jan A, Jansonius B, Delaidelli A, Bhanshali F, An YA, Ferreira N et al (2018) Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-018-0554-9
Jesionek-Kupnicka D, Braun M, Trąbska-Kluch B, Czech J, Szybka M, Szymańska B et al (2019) MiR-21, miR-34a, miR-125b, miR-181d and miR-648 levels inversely correlate with MGMT and TP53 expression in primary glioblastoma patients. Arch Med Sci. https://doi.org/10.5114/aoms.2017.69374
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y et al (2011) N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. https://doi.org/10.1038/nchembio.687
Jin D-I, Lee SW, Han M-E, Kim H-J, Seo S-A, Hur G-Y et al (2012) Expression and roles of Wilms’ tumor 1-associating protein in glioblastoma. Cancer Sci 103:2102–2109. https://doi.org/10.1111/cas.12022
Article
CAS
PubMed
Google Scholar
Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T et al (2017) Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nat Med 23:1352–1361. https://doi.org/10.1038/nm.4415
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi S (2014) Mnk kinase pathway: cellular functions and biological outcomes. World J Biol Chem. https://doi.org/10.4331/wjbc.v5.i3.321
Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science (80). https://doi.org/10.1126/science.1138050
Kodama T, Ikeda E, Okada A, Ohtsuka T, Shimoda M, Shiomi T et al (2004) ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am J Pathol. https://doi.org/10.1016/S0002-9440(10)63429-3
Koul HK, Pal M, Koul S (2013) Role of p38 MAP kinase signal transduction in solid tumors. Genes Cancer 4:342–359. https://doi.org/10.1177/1947601913507951
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreth S, Limbeck E, Hinske LC, Schütz SV, Thon N, Hoefig K et al (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol. https://doi.org/10.1007/s00401-013-1081-1
Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612. https://doi.org/10.1038/nrm1172
Article
CAS
PubMed
Google Scholar
Leprivier G, Remke M, Rotblat B, Dubuc A, Mateo ARF, Kool M et al (2013) XThe eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell. https://doi.org/10.1016/j.cell.2013.04.055
Li F, Yi Y, Miao Y, Long W, Long T, Chen S et al (2019) N6-methyladenosine modulates nonsense-mediated mRNA decay in human Glioblastoma. Cancer Res. https://doi.org/10.1158/0008-5472.can-18-2868
Li F, Zhao D, Wu J, Shi Y (2014) Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res 24:1490–1492. https://doi.org/10.1038/cr.2014.153
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Zhao P, Xia Q (2019) Epigenetic methylations on N6-adenine and N6-adenosine with the same input but different output. Int J Mol Sci 20:2931. https://doi.org/10.3390/ijms20122931
Article
CAS
PubMed Central
Google Scholar
Lin J, Chang S-Y, Hsieh D-S, Lee C-F, Yu D-S (2005) Modulation of mitogen-activated protein kinase cascades by differentiation-1 protein: acquired drug resistance of hormone independent prostate cancer cells. J Urol 174:2022–2026. https://doi.org/10.1097/01.ju.0000176476.14572.39
Article
CAS
PubMed
Google Scholar
Liu C-A, Chang C-Y, Hsueh K-W, Su H-L, Chiou T-W, Lin S-Z et al (2018) Migration/invasion of malignant Gliomas and implications for therapeutic treatment. Int J Mol Sci. https://doi.org/10.3390/ijms19041115
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L et al (2014) A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. https://doi.org/10.1038/nchembio.1432
Liu N, Pan T (2016) N6-methyladenosine–encoded epitranscriptomics. Nat Struct Mol Biol 23:98–102. https://doi.org/10.1038/nsmb.3162
Article
CAS
PubMed
Google Scholar
Luo S, Tong L (2014) Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1412742111
Maas S, Melcher T, Herb A, Seeburg PH, Keller W, Krause S et al (1996) Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem. https://doi.org/10.1074/jbc.271.21.12221
Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.251531398
Maimon A, Mogilevsky M, Shilo A, Golan-Gerstl R, Obiedat A, Ben-Hur V et al (2014) Mnk2 alternative splicing modulates the p38-MAPK pathway and impacts Ras-induced transformation. Cell Rep. https://doi.org/10.1016/j.celrep.2014.03.041
Manini I, Caponnetto F, Bartolini A, Ius T, Mariuzzi L, Di Loreto C et al (2018) Role of microenvironment in Glioma invasion: what we learned from in vitro models. Int J Mol Sci 19:147. https://doi.org/10.3390/ijms19010147
Article
CAS
PubMed Central
Google Scholar
Mao P, Joshi K, Li J, Kim S-H, Li P, Santana-Santos L et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci 110:8644–8649. https://doi.org/10.1073/pnas.1221478110
Article
PubMed
Google Scholar
El Marabti E, Younis I (2018) The Cancer Spliceome: reprograming of alternative splicing in Cancer. Front Mol Biosci 5. https://doi.org/10.3389/fmolb.2018.00080
Marsollier A-C, Joubert R, Mariot V, Dumonceaux J (2018) Targeting the Polyadenylation signal of pre-mRNA: A new gene silencing approach for Facioscapulohumeral dystrophy. Int J Mol Sci 19:1347. https://doi.org/10.3390/ijms19051347
Article
CAS
PubMed Central
Google Scholar
Masamha CP, Wagner EJ (2018) The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis 39:2–10. https://doi.org/10.1093/carcin/bgx096
Article
CAS
PubMed
Google Scholar
Masamha CP, Xia Z, Yang J, Albrecht TR, Li M, Shyu A Bin, et al. (2014) CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. https://doi.org/10.1038/nature13261
Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and Polyadenylation activates oncogenes in Cancer cells. Cell. https://doi.org/10.1016/j.cell.2009.06.016
McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. https://doi.org/10.1038/nature07385
Meyer KD, Jaffrey SR (2014) The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15:313–326. https://doi.org/10.1038/nrm3785
Article
CAS
PubMed
PubMed Central
Google Scholar
Minton K (2014) Stabilizing stemness through m6A. Nat Rev Mol Cell Biol 15:77–77. https://doi.org/10.1038/nrm3745
Article
CAS
Google Scholar
Mogilevsky M, Shimshon O, Kumar S, Mogilevsky A, Keshet E, Yavin E et al (2018) Modulation of MKNK2 alternative splicing by splice-switching oligonucleotides as a novel approach for glioblastoma treatment. Nucleic Acids Res. https://doi.org/10.1093/nar/gky921
Nakayama K, Kataoka N (2019) Regulation of gene expression under hypoxic conditions. Int J Mol Sci 20. https://doi.org/10.3390/ijms20133278
Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–463. https://doi.org/10.1038/nature08909
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishikura K (2010) Functions and regulation of RNA editing by ADAR Deaminases. Annu Rev Biochem. https://doi.org/10.1146/annurev-biochem-060208-105251
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. https://doi.org/10.1074/jbc.%20M117.779868
Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology. https://doi.org/10.1093/neuonc/noz150
Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389–396. https://doi.org/10.1038/nrg1327
Article
CAS
PubMed
Google Scholar
Pagliarini V, Naro C, Sette C (2015) Splicing regulation: A molecular device to enhance Cancer cell adaptation. Biomed Res Int 2015:1–13. https://doi.org/10.1155/2015/543067
Article
CAS
Google Scholar
Perry RP, Kelley DE (1974) Existence of methylated messenger RNA in mouse L cells. Cell. https://doi.org/10.1016/0092-8674(74)90153-6
Picardi E, Manzari C, Mastropasqua F, Aiello I, D’Erchia AM, Pesole G (2015) Profiling RNA editing in human tissues: towards the inosinome atlas. Sci Rep. https://doi.org/10.1038/srep14941
Robichaud N, Hsu BE, Istomine R, Alvarez F, Blagih J, Ma EH et al (2018) Translational control in the tumor microenvironment promotes lung metastasis: phosphorylation of eIF4E in neutrophils. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1717439115
Rottman F, Shatkin AJ, Perry RP (1974) Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell 3:197–199. https://doi.org/10.1016/0092-8674(74)90131-7
Article
CAS
PubMed
Google Scholar
Roundtree IA, Evans ME, Pan T, He C (2017) Dynamic RNA modifications in gene expression regulation. Cell 169:1187–1200. https://doi.org/10.1016/j.cell.2017.05.045
Article
CAS
PubMed
PubMed Central
Google Scholar
Rueter SM, Dawson TR, Emeson RB (1999) Regulation of alternative splicing by RNA editing. Nature. https://doi.org/10.1038/19992
Sakurai M, Yano T, Kawabata H, Ueda H, Suzuki T (2010) Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat Chem Biol. https://doi.org/10.1038/nchembio.434
Schapira M (2016) Chemical inhibition of protein Methyltransferases. Cell Chem Biol 23:1067–1076. https://doi.org/10.1016/j.chembiol.2016.07.014
Article
CAS
PubMed
Google Scholar
Schiera G, Di Liegro C, Di Liegro I (2017) Molecular determinants of malignant brain cancers: from intracellular alterations to invasion mediated by extracellular vesicles. Int J Mol Sci 18:2774. https://doi.org/10.3390/ijms18122774
Article
CAS
PubMed Central
Google Scholar
Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2:494–503. https://doi.org/10.1038/ncpneuro0289
Article
PubMed
Google Scholar
Segerman A, Niklasson M, Haglund C, Bergström T, Jarvius M, Xie Y et al (2016) Clonal variation in drug and radiation response among Glioma-initiating cells is linked to proneural-Mesenchymal transition. Cell Rep 17:2994–3009. https://doi.org/10.1016/j.celrep.2016.11.056
Article
CAS
PubMed
Google Scholar
Seufferlein T, Seckl MJ, Schwarz E, Beil M, Wichert GV, Baust H et al (2002) Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br J Cancer 86:1188–1196. https://doi.org/10.1038/sj.bjc.6600186
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng H, Li Z, Su S, Sun W, Zhang X, Li L et al (2019) YTH domain family 2 promotes lung cancer cell growth by facilitating 6-phosphogluconate dehydrogenase mRNA translation. Carcinogenesis. https://doi.org/10.1093/carcin/bgz152
Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L et al (2019) YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. https://doi.org/10.1038/s41467-019-12801-6
Silvestris DA, Picardi E, Cesarini V, Fosso B, Mangraviti N, Massimi L et al (2019) Dynamic inosinome profiles reveal novel patient stratification and gender-specific differences in glioblastoma. Genome Biol. https://doi.org/10.1186/s13059-019-1647-x
Singh M (2013) Dysregulated A to I RNA editing and non-coding RNAs in neurodegeneration. Front Genet:3. https://doi.org/10.3389/fgene.2012.00326
Śledź P, Jinek M (2016) Structural insights into the molecular mechanism of the m6A writer complex. Elife 5. https://doi.org/10.7554/eLife.18434
Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67:11–19. https://doi.org/10.1016/0092-8674(91)90568-J
Article
CAS
PubMed
Google Scholar
Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR et al (2018) The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131:2661–2669. https://doi.org/10.1182/blood-2017-12-818948
Article
CAS
PubMed
PubMed Central
Google Scholar
Stupp R, Hegi ME, Mason WP, van den Bent M, Taphoorn M, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7
Article
CAS
Google Scholar
Sun L, Hui A-M, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al (2006) Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9:287–300. https://doi.org/10.1016/j.ccr.2006.03.003
Article
CAS
PubMed
Google Scholar
Sun M, Ding J, Li D, Yang G, Cheng Z, Zhu Q (2017) NUDT21 regulates 3′-UTR length and microRNA-mediated gene silencing in hepatocellular carcinoma. Cancer Lett. https://doi.org/10.1016/j.canlet.2017.09.026
Suzuki H, Kumar SA, Shuai S, Diaz-Navarro A, Gutierrez-Fernandez A, De Antonellis P et al (2019) Recurrent non-coding U1-snRNA mutations drive cryptic splicing in Shh medulloblastoma. Nature. https://doi.org/10.1038/s41586-019-1650-0
Synhaeve NE, van den Bent MJ, French PJ, Dinjens WNM, Atmodimedjo PN, Kros JM et al (2018) Clinical evaluation of a dedicated next generation sequencing panel for routine glioma diagnostics. Acta Neuropathol Commun. https://doi.org/10.1186/s40478-018-0633-y
Tazi J, Bakkour N, Stamm S (2009) Alternative splicing and disease : an overview. Biochim Biophys Acta - Rev Cancer 1792:14–26. https://doi.org/10.1016/j.bbadis.2008.09.017.Alternative
Article
CAS
Google Scholar
Theler D, Dominguez C, Blatter M, Boudet J, Allain FHT (2014) Solution structure of the YTH domain in complex with N6-methyladenosine RNA: A reader of methylated RNA. Nucleic Acids Res. https://doi.org/10.1093/nar/gku1116
Thorne AH, Cavenee WK, Furnari FB (2015) Alternative RNA splicing in the pathogenesis of GBM. Med Res Arch. https://doi.org/10.18103/mra.v0i1.11
Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. https://doi.org/10.1093/nar/gki158
Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18:18–30. https://doi.org/10.1038/nrm.2016.116
Article
CAS
PubMed
Google Scholar
Tiek DM, Khatib SA, Trepicchio CJ, Heckler MM, Divekar SD, Sarkaria JN et al (2019) Estrogen-related receptor β activation and isoform shifting by cdc2-like kinase inhibition restricts migration and intracranial tumor growth in glioblastoma. FASEB J. https://doi.org/10.1096/fj.201901075r
Tomaselli S, Locatelli F, Gallo A (2014) The RNA editing enzymes ADARs: mechanism of action and human disease. Cell Tissue Res 356:527–532. https://doi.org/10.1007/s00441-014-1863-3
Article
CAS
PubMed
Google Scholar
Venables JP (2004) Aberrant and alternative splicing in Cancer. Cancer Res 64:7647–7654. https://doi.org/10.1158/0008-5472.CAN-04-1910
Article
CAS
PubMed
Google Scholar
Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of Glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020
Article
CAS
PubMed
PubMed Central
Google Scholar
Visvanathan A, Patil V, Abdulla S, Hoheisel JD, Somasundaram K (2019) N 6 -Methyladenosine landscape of glioma stem-like cells: METTL3 is essential for the expression of actively transcribed genes and sustenance of the oncogenic signaling. Genes (Basel). https://doi.org/10.3390/genes10020141
Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V et al (2018) Essential role of METTL3-mediated m 6 A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. https://doi.org/10.1038/onc.2017.351
Wang P, Doxtader KA, Nam Y (2016) Structural basis for cooperative function of Mettl3 and Mettl14 Methyltransferases. Mol Cell. https://doi.org/10.1016/j.molcel.2016.05.041
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D et al (2014) N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature. https://doi.org/10.1038/nature12730
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H et al (2015) N6-methyladenosine modulates messenger RNA translation efficiency. Cell. https://doi.org/10.1016/j.cell.2015.05.014
Wang Y, Ji L, Huang B, Xu Y-M, Li J, Huang L-F et al (2015) Mechanism of alternative splicing and its regulation. Biomed Reports. https://doi.org/10.3892/br.2014.407
Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM et al (2015) Glioma. Nat Rev Dis Prim 1:15017. https://doi.org/10.1038/nrdp.2015.17
Article
PubMed
Google Scholar
Wright A, Vissel B (2012) The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain. Front Mol Neurosci 5. https://doi.org/10.3389/fnmol.2012.00034
Wu J, Suzuki H, Akhand AA, Zhou YW, Hossain K, Nakashima I (2002) Modes of activation of mitogen-activated protein kinases and their roles in cepharanthine-induced apoptosis in human leukemia cells. Cell Signal 14:509–515. https://doi.org/10.1016/S0898-6568(01)00278-9
Article
CAS
PubMed
Google Scholar
Xi Z, Wang P, Xue Y, Shang C, Liu X, Ma J et al (2017) Overexpression of miR-29a reduces the oncogenic properties of glioblastoma stem cells by downregulating quaking gene isoform 6. Oncotarget. https://doi.org/10.18632/oncotarget.15327
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF et al (2016) Nuclear m6A reader YTHDC1 regulates mRNA splicing. Mol Cell. https://doi.org/10.1016/j.molcel.2016.01.012
Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y et al (2014) Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. https://doi.org/10.1038/nchembio.1654
Yablonovitch AL, Deng P, Jacobson D, Li JB (2017) The evolution and adaptation of A-to-I RNA editing. PLoS Genet 13:e1007064. https://doi.org/10.1371/journal.pgen.1007064
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang JH, Sklar P, Axel R, Maniatis T (1997) Purification and characterization of a human RNA adenosine deaminase for glutamate receptor B pre-mRNA editing. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.94.9.4354
Yang Z, Li J, Feng G, Gao S, Wang Y, Zhang S et al (2017) MicroRNA-145 modulates N6-methyladenosine levels by targeting the 3′-untranslated mRNA region of the N6-Methyladenosine binding YTH domain family 2 protein. J Biol Chem. https://doi.org/10.1074/jbc.%20M116.749689
Yue Y, Liu J, He C (2015) RNA N 6 -methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355. https://doi.org/10.1101/gad.262766.115
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Fu J, Zhou Y (2019) A review in research Progress concerning m6A methylation and Immunoregulation. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.00922
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I et al (2016) Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m 6 A-demethylation of NANOG mRNA. Proc Natl Acad Sci 113:E2047–E2056. https://doi.org/10.1073/pnas.1602883113
Article
CAS
PubMed
Google Scholar
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z et al (2017) m6A Demethylase ALKBH5 maintains Tumorigenicity of Glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. https://doi.org/10.1016/j.ccell.2017.02.013
Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18:31–42. https://doi.org/10.1038/nrm.2016.132
Article
CAS
PubMed
Google Scholar
Zhao Z, Meng F, Wang W, Wang Z, Zhang C, Jiang T (2017) Comprehensive RNA-seq transcriptomic profiling in the malignant progression of gliomas. Sci Data. https://doi.org/10.1038/sdata.2017.24
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ et al (2013) ALKBH5 is a mammalian RNA Demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. https://doi.org/10.1016/j.molcel.2012.10.015
Zhu Y, Wang X, Forouzmand E, Jeong J, Qiao F, Sowd GA et al (2018) Molecular mechanisms for CFIm-mediated regulation of mRNA alternative Polyadenylation. Mol Cell. https://doi.org/10.1016/j.molcel.2017.11.031