Alirezaei M, Fox HS, Flynn CT, Moore CS, Hebb AL, Frausto RF, Bhan V, Kiosses WB, Whitton JL, Robertson GS, Crocker SJ (2009) Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis. Autophagy 5:152–158.
Article
CAS
PubMed
Google Scholar
Barnett MH, Parratt JD, Cho ES, Prineas JW (2009) Immunoglobulins and complement in postmortem multiple sclerosis tissue. Ann Neurol 65:32–46. https://doi.org/10.1002/ana.21524.
Article
PubMed
Google Scholar
Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11:303–312. https://doi.org/10.1038/ni.1853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Besler HT, Comoglu S (2003) Lipoprotein oxidation, plasma total antioxidant capacity and homocysteine level in patients with multiple sclerosis. Nutr Neurosci 6:189–196. https://doi.org/10.1080/1028415031000115945.
Article
CAS
PubMed
Google Scholar
Bhattacharya A, Parillon X, Zeng S, Han S, Eissa NT (2014) Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 289:26525–26532. https://doi.org/10.1074/jbc.M114.575860.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bieghs V, Hendrikx T, van Gorp PJ, Verheyen F, Guichot YD, Walenbergh SM, Jeurissen ML, Gijbels M, Rensen SS, Bast A, Plat J, Kalhan SC, Koek GH, Leitersdorf E, Hofker MH, Lutjohann D, Shiri-Sverdlov R (2013) The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterol 144(167-178):e161. https://doi.org/10.1053/j.gastro.2012.09.062.
Article
CAS
Google Scholar
Bieghs V, Walenbergh SM, Hendrikx T, van Gorp PJ, Verheyen F, Olde Damink SW, Masclee AA, Koek GH, Hofker MH, Binder CJ, Shiri-Sverdlov R (2013) Trapping of oxidized LDL in lysosomes of Kupffer cells is a trigger for hepatic inflammation. Liver Int 33:1056–1061. https://doi.org/10.1111/liv.12170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bignami A, Ralston HJ 3rd (1969) The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain Res 13:444–461.
Article
CAS
PubMed
Google Scholar
Binder MD, Fox AD, Merlo D, Johnson LJ, Giuffrida L, Calvert SE, Akkermann R, Ma GZ, Anzgene PAA, Gresle MM, Laverick L, Foo G, Fabis-Pedrini MJ, Spelman T, Jordan MA, Baxter AG, Foote S, Butzkueven H, Kilpatrick TJ, Field J (2016) Common and Low Frequency Variants in MERTK Are Independently Associated with Multiple Sclerosis Susceptibility with Discordant Association Dependent upon HLA-DRB1*15:01 Status. PLoS Genet 12:e1005853. https://doi.org/10.1371/journal.pgen.1005853.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blom T, Back N, Mutka AL, Bittman R, Li Z, de Lera A, Kovanen PT, Diczfalusy U, Ikonen E (2010) FTY720 stimulates 27-hydroxycholesterol production and confers atheroprotective effects in human primary macrophages. Circ Res 106:720–729. https://doi.org/10.1161/CIRCRESAHA.109.204396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogie JF, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N, Hendriks JJ (2013) Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 1:43. https://doi.org/10.1186/2051-5960-1-43.
Article
PubMed
PubMed Central
Google Scholar
Bogie JF, Mailleux J, Wouters E, Jorissen W, Grajchen E, Vanmol J, Wouters K, Hellings N, Van Horsen J, Vanmierlo T, Hendriks JJ (2017) Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Sci Rep 7:44794. https://doi.org/10.1038/srep44794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogie JF, Stinissen P, Hellings N, Hendriks JJ (2011) Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflammation 8:85. https://doi.org/10.1186/1742-2094-8-85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128:191–213. https://doi.org/10.1007/s00401-014-1310-2.
Article
CAS
PubMed
Google Scholar
Bogie JF, Timmermans S, Huynh-Thu VA, Irrthum A, Smeets HJ, Gustafsson JA, Steffensen KR, Mulder M, Stinissen P, Hellings N, Hendriks JJ (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS One 7:e44998. https://doi.org/10.1371/journal.pone.0044998.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolton C, Smith PA (2018) The influence and impact of ageing and immunosenescence (ISC) on adaptive immunity during multiple sclerosis (MS) and the animal counterpart experimental autoimmune encephalomyelitis (EAE). Ageing Res Rev 41:64–81. https://doi.org/10.1016/j.arr.2017.10.005.
Article
CAS
PubMed
Google Scholar
Bonilla DL, Bhattacharya A, Sha Y, Xu Y, Xiang Q, Kan A, Jagannath C, Komatsu M, Eissa NT (2013) Autophagy regulates phagocytosis by modulating the expression of scavenger receptors. Immunity 39:537–547. https://doi.org/10.1016/j.immuni.2013.08.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG, Aerts JM, Amor S, Nieuwenhuis EE, Laman JD (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129:517–526. https://doi.org/10.1093/brain/awh707.
Article
PubMed
Google Scholar
Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO (2009) Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 174:1097–1108. https://doi.org/10.2353/ajpath.2009.080431.
Article
PubMed
PubMed Central
Google Scholar
Breij EC, Brink BP, Veerhuis R, van den Berg C, Vloet R, Yan R, Dijkstra CD, van der Valk P, Bo L (2008) Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol 63:16–25. https://doi.org/10.1002/ana.21311.
Article
CAS
PubMed
Google Scholar
Brink BP, Veerhuis R, Breij EC, van der Valk P, Dijkstra CD, Bo L (2005) The pathology of multiple sclerosis is location-dependent: no significant complement activation is detected in purely cortical lesions. J Neuropathol Exp Neurol 64:147–155.
Article
CAS
PubMed
Google Scholar
Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, Aradhye S, Burtin P (2010) Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov 9:883–897. https://doi.org/10.1038/nrd3248.
Article
CAS
PubMed
Google Scholar
Bruck W, Friede RL (1990) Anti-macrophage CR3 antibody blocks myelin phagocytosis by macrophages in vitro. Acta Neuropathol 80:415–418.
Article
CAS
PubMed
Google Scholar
Burm SM, Peferoen LA, Zuiderwijk-Sick EA, Haanstra KG, t Hart BA, van der Valk P, Amor S, Bauer J, Bajramovic JJ (2016) Expression of IL-1beta in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation 13:138. https://doi.org/10.1186/s12974-016-0605-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caceres N, Tapia G, Ojanguren I, Altare F, Gil O, Pinto S, Vilaplana C, Cardona PJ (2009) Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb) 89:175–182. https://doi.org/10.1016/j.tube.2008.11.001.
Article
CAS
Google Scholar
Canton J, Neculai D, Grinstein S (2013) Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 13:621–634. https://doi.org/10.1038/nri3515.
Article
CAS
PubMed
Google Scholar
Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, Weil MT, Su M, Sen P, Ruhwedel T, Mitkovski M, Trendelenburg G, Lutjohann D, Mobius W, Simons M (2018) Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359:684–688. https://doi.org/10.1126/science.aan4183.
Article
CAS
PubMed
Google Scholar
Chakrabarty A, Danley MM, LeVine SM (2004) Immunohistochemical localization of phosphorylated protein kinase R and phosphorylated eukaryotic initiation factor-2 alpha in the central nervous system of SJL mice with experimental allergic encephalomyelitis. J Neurosci Res 76:822–833. https://doi.org/10.1002/jnr.20125.
Article
CAS
PubMed
Google Scholar
Chinetti-Gbaguidi G, Colin S, Staels B (2015) Macrophage subsets in atherosclerosis. Nat Rev Cardiol 12:10–17. https://doi.org/10.1038/nrcardio.2014.173.
Article
CAS
PubMed
Google Scholar
Chuang TY, Guo Y, Seki SM, Rosen AM, Johanson DM, Mandell JW, Lucchinetti CF, Gaultier A (2016) LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun 4:68. https://doi.org/10.1186/s40478-016-0343-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V (2015) B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Front Immunol 6:642. https://doi.org/10.3389/fimmu.2015.00642.
Article
CAS
PubMed
PubMed Central
Google Scholar
Comerford I, Harata-Lee Y, Bunting MD, Gregor C, Kara EE, McColl SR (2013) A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev 24:269–283. https://doi.org/10.1016/j.cytogfr.2013.03.001.
Article
CAS
PubMed
Google Scholar
Cox BE, Griffin EE, Ullery JC, Jerome WG (2007) Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J Lipid Res 48:1012–1021. https://doi.org/10.1194/jlr.M600390-JLR200.
Article
CAS
PubMed
Google Scholar
Cunnea P, Mhaille AN, McQuaid S, Farrell M, McMahon J, FitzGerald U (2011) Expression profiles of endoplasmic reticulum stress-related molecules in demyelinating lesions and multiple sclerosis. Multiple Scler 17:808–818. https://doi.org/10.1177/1352458511399114.
Article
Google Scholar
Cuzner ML, Davison AN (1973) Changes in cerebral lysosomal enzyme activity and lipids in multiple sclerosis. J Neurol Sci 19:29–36.
Article
CAS
PubMed
Google Scholar
da Costa CC, van der Laan LJ, Dijkstra CD, Bruck W (1997) The role of the mouse macrophage scavenger receptor in myelin phagocytosis. Eur J Neurosci 9:2650–2657.
Article
CAS
PubMed
Google Scholar
Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT (2011) Age-related alterations in the dynamic behavior of microglia. Aging cell 10:263–276. https://doi.org/10.1111/j.1474-9726.2010.00660.x.
Article
CAS
PubMed
Google Scholar
de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423.
Article
CAS
PubMed
Google Scholar
Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP (2012) Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. J Immunol 189:551–557. https://doi.org/10.4049/jimmunol.1103608.
Article
CAS
PubMed
Google Scholar
Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187:4788–4799. https://doi.org/10.4049/jimmunol.1004111.
Article
CAS
PubMed
Google Scholar
Devries-Seimon T, Li Y, Yao PM, Stone E, Wang Y, Davis RJ, Flavell R, Tabas I (2005) Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171:61–73. https://doi.org/10.1083/jcb.200502078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijkstra IM, de Haas AH, Brouwer N, Boddeke HW, Biber K (2006) Challenge with innate and protein antigens induces CCR7 expression by microglia in vitro and in vivo. Glia 54:861–872. https://doi.org/10.1002/glia.20426.
Article
CAS
PubMed
Google Scholar
Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361. https://doi.org/10.1038/nature08938.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727. https://doi.org/10.1002/glia.22298.
Article
PubMed
Google Scholar
Einstein ER, Csejtey J, Dalal KB, Adams CW, Bayliss OB, Hallpike JF (1972) Proteolytic activity and basic protein loss in and around multiple sclerosis plaques: combined biochemical and histochemical observations. J Neurochem 19:653–662.
Article
CAS
PubMed
Google Scholar
Emanuel R, Sergin I, Bhattacharya S, Turner JN, Epelman S, Settembre C, Diwan A, Ballabio A, Razani B (2014) Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler Thromb Vas Biol 34:1942–1952. https://doi.org/10.1161/ATVBAHA.114.303342.
Article
CAS
Google Scholar
Epstein LG, Prineas JW, Raine CS (1983) Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis. J Neurol Sci 61:341–348.
Article
CAS
PubMed
Google Scholar
Esposito M, Ruffini F, Bellone M, Gagliani N, Battaglia M, Martino G, Furlan R (2010) Rapamycin inhibits relapsing experimental autoimmune encephalomyelitis by both effector and regulatory T cells modulation. J Neuroimmunol 220:52–63. https://doi.org/10.1016/j.jneuroim.2010.01.001.
Article
CAS
PubMed
Google Scholar
Eto M, Yoshikawa H, Fujimura H, Naba I, Sumi-Akamaru H, Takayasu S, Itabe H, Sakoda S (2003) The role of CD36 in peripheral nerve remyelination after crush injury. Eur J Neurosci 17:2659–2666.
Article
PubMed
Google Scholar
Fabriek BO, Van Haastert ES, Galea I, Polfliet MM, Dopp ED, Van Den Heuvel MM, Van Den Berg TK, De Groot CJ, Van Der Valk P, Dijkstra CD (2005) CD163-positive perivascular macrophages in the human CNS express molecules for antigen recognition and presentation. Glia 51:297–305. https://doi.org/10.1002/glia.20208.
Article
PubMed
Google Scholar
Fabriek BO, Zwemmer JN, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, Castelijns JA (2005) In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J Neuroimmunol 161:190–194. https://doi.org/10.1016/j.jneuroim.2004.12.018.
Article
CAS
PubMed
Google Scholar
Fellows K, Uher T, Browne RW, Weinstock-Guttman B, Horakova D, Posova H, Vaneckova M, Seidl Z, Krasensky J, Tyblova M, Havrdova E, Zivadinov R, Ramanathan M (2015) Protective associations of HDL with blood-brain barrier injury in multiple sclerosis patients. J Lipid Res 56:2010–2018. https://doi.org/10.1194/jlr.M060970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I (2003) The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 5:781–792. https://doi.org/10.1038/ncb1035.
Article
CAS
PubMed
Google Scholar
Fraser I, Hughes D, Gordon S (1993) Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364:343–346. https://doi.org/10.1038/364343a0.
Article
CAS
PubMed
Google Scholar
Freigang S, Ampenberger F, Spohn G, Heer S, Shamshiev AT, Kisielow J, Hersberger M, Yamamoto M, Bachmann MF, Kopf M (2011) Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 41:2040–2051. https://doi.org/10.1002/eji.201041316.
Article
CAS
PubMed
Google Scholar
Gabrielescu E (1969) Contributions to enzyme histochemistry of the experimental demyelination. Revue roumaine de physiologie 6:45–54.
CAS
PubMed
Google Scholar
Gallardo-Soler A, Gomez-Nieto C, Campo ML, Marathe C, Tontonoz P, Castrillo A, Corraliza I (2008) Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-gamma/delta-mediated effect that links lipid metabolism and immunity. Mol Endocrinol 22:1394–1402. https://doi.org/10.1210/me.2007-0525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaultier A, Wu X, Le Moan N, Takimoto S, Mukandala G, Akassoglou K, Campana WM, Gonias SL (2009) Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci 122:1155–1162. https://doi.org/10.1242/jcs.040717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Girard S, Brough D, Lopez-Castejon G, Giles J, Rothwell NJ, Allan SM (2013) Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61:813–824. https://doi.org/10.1002/glia.22478.
Article
PubMed
PubMed Central
Google Scholar
Gitik M, Kleinhaus R, Hadas S, Reichert F, Rotshenker S (2014) Phagocytic receptors activate and immune inhibitory receptor SIRPalpha inhibits phagocytosis through paxillin and cofilin. Front Cell Neurosci 8:104. https://doi.org/10.3389/fncel.2014.00104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gitik M, Liraz-Zaltsman S, Oldenborg PA, Reichert F, Rotshenker S (2011) Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPalpha (signal regulatory protein-alpha) on phagocytes. J Neuroinflammation 8:24. https://doi.org/10.1186/1742-2094-8-24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giubilei F, Antonini G, Di Legge S, Sormani MP, Pantano P, Antonini R, Sepe-Monti M, Caramia F, Pozzilli C (2002) Blood cholesterol and MRI activity in first clinical episode suggestive of multiple sclerosis. Acta Neurol Scand 106:109–112.
Article
CAS
PubMed
Google Scholar
Glim JE, Vereyken EJ, Heijnen DA, Garcia Vallejo JJ, Dijkstra CD (2010) The release of cytokines by macrophages is not affected by myelin ingestion. Glia 58:1928–1936. https://doi.org/10.1002/glia.21062.
Article
CAS
PubMed
Google Scholar
Van der Goes A, Kortekaas M, Hoekstra K, Dijkstra CD, Amor S (1999) The role of anti-myelin (auto)-antibodies in the phagocytosis of myelin by macrophages. J Neuroimmunol 101:61–67.
Article
CAS
PubMed
Google Scholar
Goldenberg PZ, Troiano RA, Kwon EE, Prineas JW (1990) Sera from MS patients and normal controls opsonize myelin. Neurosci lett 109:353–356.
Article
CAS
PubMed
Google Scholar
Goldstein JL, Anderson RG, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685.
Article
CAS
PubMed
Google Scholar
GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439–444. https://doi.org/10.1038/35000226.
Article
CAS
PubMed
Google Scholar
Grau-Lopez L, Raich D, Ramo-Tello C, Naranjo-Gomez M, Davalos A, Pujol-Borrell R, Borras FE, Martinez-Caceres E (2009) Myelin peptides in multiple sclerosis. Autoimmun Rev 8:650–653. https://doi.org/10.1016/j.autrev.2009.02.013.
Article
CAS
PubMed
Google Scholar
Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M, Miller SD, Ting JP (2010) NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185:974–981. https://doi.org/10.4049/jimmunol.0904145.
Article
CAS
PubMed
Google Scholar
Hadas S, Spira M, Hanisch UK, Reichert F, Rotshenker S (2012) Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin. J Neuroinflammation 9:166. https://doi.org/10.1186/1742-2094-9-166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haile Y, Deng X, Ortiz-Sandoval C, Tahbaz N, Janowicz A, Lu JQ, Kerr BJ, Gutowski NJ, Holley JE, Eggleton P, Giuliani F, Simmen T (2017) Rab32 connects ER stress to mitochondrial defects in multiple sclerosis. J Neuroinflammation 14:19. https://doi.org/10.1186/s12974-016-0788-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halonen T, Kilpelainen H, Pitkanen A, Riekkinen PJ (1987) Lysosomal hydrolases in cerebrospinal fluid of multiple sclerosis patients. A follow-up study. J Neurol Sci 79:267–274.
Article
CAS
PubMed
Google Scholar
Han MH, Lundgren DH, Jaiswal S, Chao M, Graham KL, Garris CS, Axtell RC, Ho PP, Lock CB, Woodard JI, Brownell SE, Zoudilova M, Hunt JF, Baranzini SE, Butcher EC, Raine CS, Sobel RA, Han DK, Weissman I, Steinman L (2012) Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. J Exp Med 209:1325–1334. https://doi.org/10.1084/jem.20101974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Healy LM, Perron G, Won SY, Michell-Robinson MA, Rezk A, Ludwin SK, Moore CS, Hall JA, Bar-Or A, Antel JP (2016) MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. J Immunol 196:3375–3384. https://doi.org/10.4049/jimmunol.1502562.
Article
CAS
PubMed
Google Scholar
Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging cell 11:867–875. https://doi.org/10.1111/j.1474-9726.2012.00851.x.
Article
CAS
PubMed
Google Scholar
Hendrickx DA, Koning N, Schuurman KG, van Strien ME, van Eden CG, Hamann J, Huitinga I (2013) Selective upregulation of scavenger receptors in and around demyelinating areas in multiple sclerosis. J Neuropathol Exp Neurol 72:106–118. https://doi.org/10.1097/NEN.0b013e31827fd9e8.
Article
CAS
PubMed
Google Scholar
Hendrickx DA, Schuurman KG, van Draanen M, Hamann J, Huitinga I (2014) Enhanced uptake of multiple sclerosis-derived myelin by THP-1 macrophages and primary human microglia. J Neuroinflammation 11:64. https://doi.org/10.1186/1742-2094-11-64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendrikx T, Walenbergh SM, Hofker MH, Shiri-Sverdlov R (2014) Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev 15:424–433. https://doi.org/10.1111/obr.12159.
Article
CAS
PubMed
Google Scholar
Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678. https://doi.org/10.1038/nature11729.
Article
CAS
PubMed
Google Scholar
Herrero C, Marques L, Lloberas J, Celada A (2001) IFN-gamma-dependent transcription of MHC class II IA is impaired in macrophages from aged mice. J Clin Invest 107:485–493. https://doi.org/10.1172/JCI11696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hikawa N, Takenaka T (1996) Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell Mol Neurobiol 16:517–528.
Article
CAS
PubMed
Google Scholar
Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856. https://doi.org/10.1038/ni.1631.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Multiple Scler 10:482–487.
Article
CAS
Google Scholar
Huang Y, DiDonato JA, Levison BS, Schmitt D, Li L, Wu Y, Buffa J, Kim T, Gerstenecker GS, Gu X, Kadiyala CS, Wang Z, Culley MK, Hazen JE, Didonato AJ, Fu X, Berisha SZ, Peng D, Nguyen TT, Liang S, Chuang CC, Cho L, Plow EF, Fox PL, Gogonea V, Tang WH, Parks JS, Fisher EA, Smith JD, Hazen SL (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nature Med 20:193–203. https://doi.org/10.1038/nm.3459.
Article
CAS
PubMed
Google Scholar
Huitinga I, Damoiseaux JG, Dopp EA, Dijkstra CD (1993) Treatment with anti-CR3 antibodies ED7 and ED8 suppresses experimental allergic encephalomyelitis in Lewis rats. Eur J Immunol 23:709–715. https://doi.org/10.1002/eji.1830230321.
Article
CAS
PubMed
Google Scholar
Inoue M, Williams KL, Gunn MD, Shinohara ML (2012) NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 109:10480–10485. https://doi.org/10.1073/pnas.1201836109.
Article
PubMed
PubMed Central
Google Scholar
International Multiple Sclerosis Genetics C, Wellcome Trust Case Control C, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D'Alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D'Hooghe MB, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppa V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Ruckert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sorensen PS, Sondergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvanen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219. https://doi.org/10.1038/nature10251.
Article
CAS
Google Scholar
Ioannou GN, Haigh WG, Thorning D, Savard C (2013) Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res 54:1326–1334. https://doi.org/10.1194/jlr.M034876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii T, Itoh K, Ruiz E, Leake DS, Unoki H, Yamamoto M, Mann GE (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94:609–616. https://doi.org/10.1161/01.RES.0000119171.44657.45.
Article
CAS
PubMed
Google Scholar
Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957. https://doi.org/10.1084/jem.20031389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jelinek D, Patrick SM, Kitt KN, Chan T, Francis GA, Garver WS (2009) Physiological and coordinate downregulation of the NPC1 and NPC2 genes are associated with the sequestration of LDL-derived cholesterol within endocytic compartments. J Cell Biochem 108:1102–1116. https://doi.org/10.1002/jcb.22339.
Article
CAS
PubMed
Google Scholar
Jerome WG, Cox BE, Griffin EE, Ullery JC (2008) Lysosomal cholesterol accumulation inhibits subsequent hydrolysis of lipoprotein cholesteryl ester. Microsc Microanal 14:138–149. https://doi.org/10.1017/S1431927608080069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP (2010) The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 30:15811–15820. https://doi.org/10.1523/JNEUROSCI.4088-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson LA, Jackson DG (2013) The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. J Cell Sci 126:5259–5270. https://doi.org/10.1242/jcs.135343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jorissen W, Wouters E, Bogie JF, Vanmierlo T, Noben JP, Sviridov D, Hellings N, Somers V, Valcke R, Vanwijmeersch B, Stinissen P, Mulder MT, Remaley AT, Hendriks JJ (2017) Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci Rep 7:43410. https://doi.org/10.1038/srep43410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Junker A, Krumbholz M, Eisele S, Mohan H, Augstein F, Bittner R, Lassmann H, Wekerle H, Hohlfeld R, Meinl E (2009) MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132:3342–3352. https://doi.org/10.1093/brain/awp300.
Article
PubMed
Google Scholar
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. https://doi.org/10.1161/CIRCRESAHA.109.215715.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalayoglu MV, Byrne GI (1998) Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis 177:725–729.
Article
CAS
PubMed
Google Scholar
Kapellos TS, Taylor L, Lee H, Cowley SA, James WS, Iqbal AJ, Greaves DR (2016) A novel real time imaging platform to quantify macrophage phagocytosis. Biochem Pharmacol 116:107–119. https://doi.org/10.1016/j.bcp.2016.07.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidani Y, Bensinger SJ (2012) Liver X receptor and peroxisome proliferator-activated receptor as integrators of lipid homeostasis and immunity. Immunol Rev 249:72–83. https://doi.org/10.1111/j.1600-065X.2012.01153.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. https://doi.org/10.1038/nn.3318.
Article
CAS
PubMed
Google Scholar
Kim OH, Kim H, Kang J, Yang D, Kang YH, Lee DH, Cheon GJ, Park SC, Oh BC (2017) Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice. BMB Rep 50:43–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohlschutter A (2013) Lysosomal leukodystrophies: Krabbe disease and metachromatic leukodystrophy. Handb Clin Neurol 113:1611–1618. https://doi.org/10.1016/B978-0-444-59565-2.00029-0.
Article
PubMed
Google Scholar
Kontush A, Lhomme M, Chapman MJ (2013) Unraveling the complexities of the HDL lipidome. J Lipid Res 54:2950–2963. https://doi.org/10.1194/jlr.R036095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kooi EJ, van Horssen J, Witte ME, Amor S, Bo L, Dijkstra CD, van der Valk P, Geurts JJ (2009) Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol Appl Neurobiol 35:283–295. https://doi.org/10.1111/j.1365-2990.2008.00986.x.
Article
CAS
PubMed
Google Scholar
Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332. https://doi.org/10.1523/JNEUROSCI.2615-05.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotter MR, Zhao C, van Rooijen N, Franklin RJ (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175. https://doi.org/10.1016/j.nbd.2004.09.019.
Article
CAS
PubMed
Google Scholar
Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, Roodman DG, Windle JJ, Zhang X, Lu B (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152. https://doi.org/10.1038/cdd.2011.78.
Article
CAS
PubMed
Google Scholar
Krivit W, Shapiro EG, Peters C, Wagner JE, Cornu G, Kurtzberg J, Wenger DA, Kolodny EH, Vanier MT, Loes DJ, Dusenbery K, Lockman LA (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 338:1119–1126. https://doi.org/10.1056/NEJM199804163381605.
Article
CAS
PubMed
Google Scholar
Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S (2014) TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 83:1098–1116. https://doi.org/10.1016/j.neuron.2014.07.027.
Article
CAS
PubMed
Google Scholar
Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H (2017) An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol 133:13–24. https://doi.org/10.1007/s00401-016-1653-y.
Article
CAS
PubMed
Google Scholar
Kuhlmann T, Wendling U, Nolte C, Zipp F, Maruschak B, Stadelmann C, Siebert H, Bruck W (2002) Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. J Neurosci Res 67:185–190. https://doi.org/10.1002/jnr.10104.
Article
CAS
PubMed
Google Scholar
Lampron A, Larochelle A, Laflamme N, Prefontaine P, Plante MM, Sanchez MG, Yong VW, Stys PK, Tremblay ME, Rivest S (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212:481–495. https://doi.org/10.1084/jem.20141656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemke G, Burstyn-Cohen T (2010) TAM receptors and the clearance of apoptotic cells. Ann N Y Acad Sci 1209:23–29. https://doi.org/10.1111/j.1749-6632.2010.05744.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levy-Barazany H, Frenkel D (2012) Expression of scavenger receptor A on antigen presenting cells is important for CD4+ T-cells proliferation in EAE mouse model. J Neuroinflammation 9:120. https://doi.org/10.1186/1742-2094-9-120.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Yuan XM, Olsson AG, Brunk UT (1998) Uptake of oxidized LDL by macrophages results in partial lysosomal enzyme inactivation and relocation. Arterioscler Thromb Vasc Biol 18:177–184.
Article
CAS
PubMed
Google Scholar
Li X, Kimberly RP (2014) Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets 18:335–350. https://doi.org/10.1517/14728222.2014.877891.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I (2012) Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 15:545–553. https://doi.org/10.1016/j.cmet.2012.01.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim RS, Suhalim JL, Miyazaki-Anzai S, Miyazaki M, Levi M, Potma EO, Tromberg BJ (2011) Identification of cholesterol crystals in plaques of atherosclerotic mice using hyperspectral CARS imaging. J Lipid Res 52:2177–2186. https://doi.org/10.1194/jlr.M018077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11. https://doi.org/10.1038/cdd.2012.63.
Article
CAS
PubMed
Google Scholar
Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K (2006) Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 26:12904–12913. https://doi.org/10.1523/JNEUROSCI.2531-06.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Locatelli G, Wortge S, Buch T, Ingold B, Frommer F, Sobottka B, Kruger M, Karram K, Buhlmann C, Bechmann I, Heppner FL, Waisman A, Becher B (2012) Primary oligodendrocyte death does not elicit anti-CNS immunity. Nature neuroscience 15:543–550. https://doi.org/10.1038/nn.3062.
Article
CAS
PubMed
Google Scholar
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loveless S, Neal JW, Howell OW, Harding KE, Sarkies P, Evans R, Bevan RJ, Hakobyan S, Harris CL, Robertson NP, Morgan BP (2017) Tissue microarray methodology identifies complement pathway activation and dysregulation in progressive multiple sclerosis. Brain Pathol. https://doi.org/10.1111/bpa.12546.
Article
PubMed
PubMed Central
Google Scholar
Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75:209–219. https://doi.org/10.1002/ana.24070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mailleux J, Vanmierlo T, Bogie JF, Wouters E, Lutjohann D, Hendriks JJ, van Horssen J (2018) Active liver X receptor signaling in phagocytes in multiple sclerosis lesions. Multiple Scler 24:279–289. https://doi.org/10.1177/1352458517696595.
Article
CAS
Google Scholar
Mandoj C, Renna R, Plantone D, Sperduti I, Cigliana G, Conti L, Koudriavtseva T (2015) Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci Lett 606:156–160. https://doi.org/10.1016/j.neulet.2015.08.054.
Article
CAS
PubMed
Google Scholar
McKeown SR, Allen IV (1979) The fragility of cerebral lysosomes in multiple sclerosis. Neuropathol Appl Neurobiol 5:405–415.
Article
CAS
PubMed
Google Scholar
McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med 11:335–339. https://doi.org/10.1038/nm1202.
Article
CAS
PubMed
Google Scholar
McMahon JM, McQuaid S, Reynolds R, FitzGerald UF (2012) Increased expression of ER stress- and hypoxia-associated molecules in grey matter lesions in multiple sclerosis. Multiple Scler 18:1437–1447. https://doi.org/10.1177/1352458512438455.
Article
CAS
Google Scholar
Meares GP, Liu Y, Rajbhandari R, Qin H, Nozell SE, Mobley JA, Corbett JA, Benveniste EN (2014) PERK-dependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol Cell Biol 34:3911–3925. https://doi.org/10.1128/MCB.00980-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meller J, Chen Z, Dudiki T, Cull RM, Murtazina R, Bal SK, Pluskota E, Stefl S, Plow EF, Trapp BD, Byzova TV (2017) Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight 2. https://doi.org/10.1172/jci.insight.93002.
Meyers L, Groover CJ, Douglas J, Lee S, Brand D, Levin MC, Gardner LA (2014) A role for Apolipoprotein A-I in the pathogenesis of multiple sclerosis. J Neuroimmunol 277:176–185. https://doi.org/10.1016/j.jneuroim.2014.10.010.
Article
CAS
PubMed
Google Scholar
Mhaille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, FitzGerald U (2008) Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 67:200–211. https://doi.org/10.1097/NEN.0b013e318165b239.
Article
CAS
PubMed
Google Scholar
Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9:A387–A394. https://doi.org/10.1016/j.autrev.2009.11.010.
Article
CAS
PubMed
Google Scholar
Ming X, Li W, Maeda Y, Blumberg B, Raval S, Cook SD, Dowling PC (2002) Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J Neurol Sci 197:9–18.
Article
CAS
PubMed
Google Scholar
Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, Ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nature Neurosci. https://doi.org/10.1038/nn.3469.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moore KJ, Freeman MW (2006) Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol 26:1702–1711. https://doi.org/10.1161/01.ATV.0000229218.97976.43.
Article
CAS
PubMed
Google Scholar
Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. https://doi.org/10.1038/nri3520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosley K, Cuzner ML (1996) Receptor-mediated phagocytosis of myelin by macrophages and microglia: effect of opsonization and receptor blocking agents. Neurochem Res 21:481–487.
Article
CAS
PubMed
Google Scholar
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B (2018) High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immun 48:599. https://doi.org/10.1016/j.immuni.2018.02.014.
Article
CAS
Google Scholar
Mukundan L, Odegaard JI, Morel CR, Heredia JE, Mwangi JW, Ricardo-Gonzalez RR, Goh YP, Eagle AR, Dunn SE, Awakuni JU, Nguyen KD, Steinman L, Michie SA, Chawla A (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15:1266–1272. https://doi.org/10.1038/nm.2048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mycko MP, Papoian R, Boschert U, Raine CS, Selmaj KW (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin Neurol Neurosurg 106:223–229. https://doi.org/10.1016/j.clineuro.2004.02.019.
Article
PubMed
Google Scholar
Myoishi M, Hao H, Minamino T, Watanabe K, Nishihira K, Hatakeyama K, Asada Y, Okada K, Ishibashi-Ueda H, Gabbiani G, Bochaton-Piallat ML, Mochizuki N, Kitakaze M (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circ 116:1226–1233. https://doi.org/10.1161/CIRCULATIONAHA.106.682054.
Article
Google Scholar
N AG, Bensinger SJ, Hong C, Beceiro S, Bradley MN, Zelcer N, Deniz J, Ramirez C, Diaz M, Gallardo G, de Galarreta CR, Salazar J, Lopez F, Edwards P, Parks J, Andujar M, Tontonoz P, Castrillo A (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immun 31:245–258. https://doi.org/10.1016/j.immuni.2009.06.018.
Article
CAS
Google Scholar
Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240.
Article
CAS
PubMed
Google Scholar
Natrajan MS, de la Fuente AG, Crawford AH, Linehan E, Nunez V, Johnson KR, Wu T, Fitzgerald DC, Ricote M, Bielekova B, Franklin RJ (2015) Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination. Brain 138:3581–3597. https://doi.org/10.1093/brain/awv289.
Article
PubMed
PubMed Central
Google Scholar
Natrajan MS, Komori M, Kosa P, Johnson KR, Wu T, Franklin RJ, Bielekova B (2015) Pioglitazone regulates myelin phagocytosis and multiple sclerosis monocytes. Ann Clin Transl Neurol 2:1071–1084. https://doi.org/10.1002/acn3.260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol Appl Neurobiol 20:152–162.
Article
CAS
PubMed
Google Scholar
Newton J, Hait NC, Maceyka M, Colaco A, Maczis M, Wassif CA, Cougnoux A, Porter FD, Milstien S, Platt N, Platt FM, Spiegel S (2017) FTY720/fingolimod increases NPC1 and NPC2 expression and reduces cholesterol and sphingolipid accumulation in Niemann-Pick type C mutant fibroblasts. FASEB J 31:1719–1730. https://doi.org/10.1096/fj.201601041R.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, Fitzgerald U (2013) Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun 1:37. https://doi.org/10.1186/2051-5960-1-37.
Article
PubMed
PubMed Central
Google Scholar
Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM, Bruck W, Bishop D, Misgeld T, Kerschensteiner M (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17:495–499. https://doi.org/10.1038/nm.2324.
Article
CAS
PubMed
Google Scholar
Ohta M, Ohta K (2002) Detection of myelin basic protein in cerebrospinal fluid. Exp Rev Mol Diagn 2:627–633. https://doi.org/10.1586/14737159.2.6.627.
Article
CAS
Google Scholar
Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL (2011) Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13:655–667. https://doi.org/10.1016/j.cmet.2011.03.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palavra F, Marado D, Mascarenhas-Melo F, Sereno J, Teixeira-Lemos E, Nunes CC, Goncalves G, Teixeira F, Reis F (2013) New markers of early cardiovascular risk in multiple sclerosis patients: oxidized-LDL correlates with clinical staging. Dis Markers 34:341–348. https://doi.org/10.3233/DMA-130979.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peelen E, Damoiseaux J, Muris AH, Knippenberg S, Smolders J, Hupperts R, Thewissen M (2015) Increased inflammasome related gene expression profile in PBMC may facilitate T helper 17 cell induction in multiple sclerosis. Mol Immun 63:521–529. https://doi.org/10.1016/j.molimm.2014.10.008.
Article
CAS
Google Scholar
Phillips MJ, Needham M, Weller RO (1997) Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol 182:457–464. https://doi.org/10.1002/(SICI)1096-9896(199708)182:4<457::AID-PATH870>3.0.CO;2-Y.
Article
CAS
PubMed
Google Scholar
Pittoni V, Valesini G (2002) The clearance of apoptotic cells: implications for autoimmunity. Autoimmun Rev 1:154–161.
Article
CAS
PubMed
Google Scholar
Plemel JR, Manesh SB, Sparling JS, Tetzlaff W (2013) Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression. Glia 61:1471–1487. https://doi.org/10.1002/glia.22535.
Article
PubMed
Google Scholar
Popescu BF, Pirko I, Lucchinetti CF (2013) Pathology of multiple sclerosis: where do we stand? Continuum (Minneap Minn) 19:901–921. https://doi.org/10.1212/01.CON.0000433291.23091.65.
Article
Google Scholar
Portugal LR, Fernandes LR, Pietra Pedroso VS, Santiago HC, Gazzinelli RT, Alvarez-Leite JI (2008) Influence of low-density lipoprotein (LDL) receptor on lipid composition, inflammation and parasitism during Toxoplasma gondii infection. Microbes Infect 10:276–284. https://doi.org/10.1016/j.micinf.2007.12.001.
Article
CAS
PubMed
Google Scholar
Prineas JW, Graham JS (1981) Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 10:149–158. https://doi.org/10.1002/ana.410100205.
Article
CAS
PubMed
Google Scholar
Razani B, Feng C, Coleman T, Emanuel R, Wen H, Hwang S, Ting JP, Virgin HW, Kastan MB, Semenkovich CF (2012) Autophagy links inflammasomes to atherosclerotic progression. Cell Metab 15:534–544. https://doi.org/10.1016/j.cmet.2012.02.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reichert F, Rotshenker S (2003) Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages. Neurobiol Dis 12:65–72.
Article
CAS
PubMed
Google Scholar
Reichert F, Slobodov U, Makranz C, Rotshenker S (2001) Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis. Neurobiol Dis 8:504–512. https://doi.org/10.1006/nbdi.2001.0383.
Article
CAS
PubMed
Google Scholar
Rosenson RS, Brewer HB Jr, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, Kontush A, Tall AR, Webb NR (2016) Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol 13:48–60. https://doi.org/10.1038/nrcardio.2015.124.
Article
CAS
PubMed
Google Scholar
Rothhammer V, Borucki DM, Tjon EC, Takenaka MC, Chao CC, Ardura-Fabregat A, de Lima KA, Gutierrez-Vazquez C, Hewson P, Staszewski O, Blain M, Healy L, Neziraj T, Borio M, Wheeler M, Dragin LL, Laplaud DA, Antel J, Alvarez JI, Prinz M, Quintana FJ (2018) Microglial control of astrocytes in response to microbial metabolites. Nature 557:724–728. https://doi.org/10.1038/s41586-018-0119-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruckh JM, Zhao JW, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ, Franklin RJ (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10:96–103. https://doi.org/10.1016/j.stem.2011.11.019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F (2009) Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948. https://doi.org/10.1038/ni.1781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadler RH, Sommer MA, Forno LS, Smith ME (1991) Induction of anti-myelin antibodies in EAE and their possible role in demyelination. J Neurosci Res 30:616–624. https://doi.org/10.1002/jnr.490300404.
Article
CAS
PubMed
Google Scholar
Salemi G, Gueli MC, Vitale F, Battaglieri F, Guglielmini E, Ragonese P, Trentacosti A, Massenti MF, Savettieri G, Bono A (2010) Blood lipids, homocysteine, stress factors, and vitamins in clinically stable multiple sclerosis patients. Lipids Health Dis 9:19. https://doi.org/10.1186/1476-511X-9-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samson S, Mundkur L, Kakkar VV (2012) Immune response to lipoproteins in atherosclerosis. Cholesterol 2012:571846. https://doi.org/10.1155/2012/571846.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. https://doi.org/10.1126/science.1219179.
Article
CAS
PubMed
Google Scholar
Shah AS, Tan L, Long JL, Davidson WS (2013) Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res 54:2575–2585. https://doi.org/10.1194/jlr.R035725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheedy FJ, Grebe A, Rayner KJ, Kalantari P, Ramkhelawon B, Carpenter SB, Becker CE, Ediriweera HN, Mullick AE, Golenbock DT, Stuart LM, Latz E, Fitzgerald KA, Moore KJ (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immun 14:812–820. https://doi.org/10.1038/ni.2639.
Article
CAS
PubMed
Google Scholar
Shigeoka M, Urakawa N, Nishio M, Takase N, Utsunomiya S, Akiyama H, Kakeji Y, Komori T, Koma Y, Yokozaki H (2015) Cyr61 promotes CD204 expression and the migration of macrophages via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer Med 4:437–446. https://doi.org/10.1002/cam4.401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith ME (1993) Phagocytosis of myelin by microglia in vitro. J Neurosci Res 35:480–487. https://doi.org/10.1002/jnr.490350504.
Article
CAS
PubMed
Google Scholar
Smith ME (2001) Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 54:81–94. https://doi.org/10.1002/jemt.1123.
Article
CAS
PubMed
Google Scholar
Sommer MA, Forno LS, Smith ME (1992) EAE cerebrospinal fluid augments in vitro phagocytosis and metabolism of CNS myelin by macrophages. J Neurosci Res 32:384–394. https://doi.org/10.1002/jnr.490320310.
Article
CAS
PubMed
Google Scholar
Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, Raetz CR, Wang EW, Kelly SL, Sullards MC, Murphy RC, Merrill AH Jr, Brown HA, Dennis EA, Li AC, Ley K, Tsimikas S, Fahy E, Subramaniam S, Quehenberger O, Russell DW, Glass CK (2012) Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151:138–152. https://doi.org/10.1016/j.cell.2012.06.054.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13:507–514. https://doi.org/10.1038/nrn3275.
Article
CAS
PubMed
Google Scholar
Sun X, Wang X, Chen T, Li T, Cao K, Lu A, Chen Y, Sun D, Luo J, Fan J, Young W, Ren Y (2010) Myelin activates FAK/Akt/NF-kappaB pathways and provokes CR3-dependent inflammatory response in murine system. PLoS One 5:e9380. https://doi.org/10.1371/journal.pone.0009380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swift ME, Burns AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117:1027–1035. https://doi.org/10.1046/j.0022-202x.2001.01539.x.
Article
CAS
PubMed
Google Scholar
Tabas I, Bornfeldt KE (2016) Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res 118:653–667. https://doi.org/10.1161/CIRCRESAHA.115.306256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. https://doi.org/10.1172/JCI28549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tettey P, Simpson S Jr, Taylor B, Blizzard L, Ponsonby AL, Dwyer T, Kostner K, van der Mei I (2014) An adverse lipid profile is associated with disability and progression in disability, in people with MS. Multiple Scler 20:1737–1744. https://doi.org/10.1177/1352458514533162.
Article
CAS
Google Scholar
Thamilarasan M, Koczan D, Hecker M, Paap B, Zettl UK (2012) MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmun Rev 11:174–179. https://doi.org/10.1016/j.autrev.2011.05.009.
Article
CAS
PubMed
Google Scholar
Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Eng J Med 338:278–285. https://doi.org/10.1056/NEJM199801293380502.
Article
CAS
Google Scholar
Tridandapani S, Siefker K, Teillaud JL, Carter JE, Wewers MD, Anderson CL (2002) Regulated expression and inhibitory function of Fcgamma RIIb in human monocytic cells. J Biol Chem 277:5082–5089. https://doi.org/10.1074/jbc.M110277200.
Article
CAS
PubMed
Google Scholar
Trotter J, DeJong LJ, Smith ME (1986) Opsonization with antimyelin antibody increases the uptake and intracellular metabolism of myelin in inflammatory macrophages. J Neurochem 47:779–789.
Article
CAS
PubMed
Google Scholar
Ullery-Ricewick JC, Cox BE, Griffin EE, Jerome WG (2009) Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells. J Lipid Res 50:2014–2026. https://doi.org/10.1194/jlr.M800659-JLR200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulvestad E, Williams K, Vedeler C, Antel J, Nyland H, Mork S, Matre R (1994) Reactive microglia in multiple sclerosis lesions have an increased expression of receptors for the Fc part of IgG. J Neurol Sci 121:125–131.
Article
CAS
PubMed
Google Scholar
Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, Boddeke HW, Eggen BJ (2014) In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia 62:1724–1735. https://doi.org/10.1002/glia.22711.
Article
CAS
PubMed
Google Scholar
van der Laan LJ, Ruuls SR, Weber KS, Lodder IJ, Dopp EA, Dijkstra CD (1996) Macrophage phagocytosis of myelin in vitro determined by flow cytometry: phagocytosis is mediated by CR3 and induces production of tumor necrosis factor-alpha and nitric oxide. J Neuroimmunol 70:145–152.
Article
CAS
PubMed
Google Scholar
van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W (2008) Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a unique reactive phenotype. Glia 56:271–283. https://doi.org/10.1002/glia.20611.
Article
PubMed
Google Scholar
van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF (2011) Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 214:345–349. https://doi.org/10.1016/j.atherosclerosis.2010.11.018.
Article
CAS
PubMed
Google Scholar
van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med 87:273–286. https://doi.org/10.1007/s00109-008-0421-4.
Article
CAS
PubMed
Google Scholar
van Zwam M, Samsom JN, Nieuwenhuis EE, Melief MJ, Wierenga-Wolf AF, Dijke IE, Talens S, van Meurs M, Voerman JS, Boven LA, Laman JD (2011) Myelin ingestion alters macrophage antigen-presenting function in vitro and in vivo. J Leukoc Biol 90:123–132. https://doi.org/10.1189/jlb.1209813.
Article
CAS
PubMed
Google Scholar
van Zwam M, Wierenga-Wolf AF, Melief MJ, Schrijver B, Laman JD, Boven LA (2010) Myelin ingestion by macrophages promotes their motility and capacity to recruit myeloid cells. J Neuroimmunol 225:112–117. https://doi.org/10.1016/j.jneuroim.2010.04.021.
Article
CAS
PubMed
Google Scholar
Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10:35. https://doi.org/10.1186/1742-2094-10-35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G (2002) How the lipid-free structure of the N-terminal truncated human apoA-I converts to the lipid-bound form: new insights from NMR and X-ray structural comparison. FEBS lett 529:157–161.
Article
CAS
PubMed
Google Scholar
Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335. https://doi.org/10.1038/nature17041.
Article
CAS
PubMed
Google Scholar
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y (2015) Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 63:635–651. https://doi.org/10.1002/glia.22774.
Article
PubMed
Google Scholar
Watkins LM, Neal JW, Loveless S, Michailidou I, Ramaglia V, Rees MI, Reynolds R, Robertson NP, Morgan BP, Howell OW (2016) Complement is activated in progressive multiple sclerosis cortical grey matter lesions. J Neuroinflammation 13:161. https://doi.org/10.1186/s12974-016-0611-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber MS, Hemmer B, Cepok S (2011) The role of antibodies in multiple sclerosis. Biochimica et biophysica acta 1812:239–245. https://doi.org/10.1016/j.bbadis.2010.06.009.
Article
CAS
PubMed
Google Scholar
Weinger JG, Omari KM, Marsden K, Raine CS, Shafit-Zagardo B (2009) Up-regulation of soluble Axl and Mer receptor tyrosine kinases negatively correlates with Gas6 in established multiple sclerosis lesions. Am J Pathol 175:283–293. https://doi.org/10.2353/ajpath.2009.080807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weinstock-Guttman B, Zivadinov R, Mahfooz N, Carl E, Drake A, Schneider J, Teter B, Hussein S, Mehta B, Weiskopf M, Durfee J, Bergsland N, Ramanathan M (2011) Serum lipid profiles are associated with disability and MRI outcomes in multiple sclerosis. J Neuroinflammation 8:127. https://doi.org/10.1186/1742-2094-8-127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wermeling F, Karlsson MC, McGaha TL (2009) An anatomical view on macrophages in tolerance. Autoimmun Rev 9:49–52. https://doi.org/10.1016/j.autrev.2009.03.004.
Article
CAS
PubMed
Google Scholar
Wickman G, Julian L, Olson MF (2012) How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ 19:735–742. https://doi.org/10.1038/cdd.2012.25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams K, Ulvestad E, Waage A, Antel JP, McLaurin J (1994) Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res 38:433–443. https://doi.org/10.1002/jnr.490380409.
Article
CAS
PubMed
Google Scholar
Wolvers DA, Coenen-de Roo CJ, Mebius RE, van der Cammen MJ, Tirion F, Miltenburg AM, Kraal G (1999) Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol 162:1994–1998.
CAS
PubMed
Google Scholar
Wong CK, Smith CA, Sakamoto K, Kaminski N, Koff JL, Goldstein DR (2017) Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. J Immunol 199:1060–1068. https://doi.org/10.4049/jimmunol.1700397.
Article
CAS
PubMed
Google Scholar
Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H, Lutjohann D, Kerksiek A, van Kruchten R, Maeda N, Staels B, van Bilsen M, Shiri-Sverdlov R, Hofker MH (2008) Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatol 48:474–486. https://doi.org/10.1002/hep.22363.
Article
Google Scholar
Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. https://doi.org/10.1084/jem.20132477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, Zhou R (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. https://doi.org/10.1016/j.cell.2014.11.047.
Article
CAS
PubMed
Google Scholar
Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34:660–667. https://doi.org/10.1038/jcbfm.2013.242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yao S, Miao C, Tian H, Sang H, Yang N, Jiao P, Han J, Zong C, Qin S (2014) Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression. J Biol Chem 289:4032–4042. https://doi.org/10.1074/jbc.M113.524512.
Article
CAS
PubMed
Google Scholar
Yuan XM, Li W, Brunk UT, Dalen H, Chang YH, Sevanian A (2000) Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med 28:208–218.
Article
CAS
PubMed
Google Scholar
Zani IA, Stephen SL, Mughal NA, Russell D, Homer-Vanniasinkam S, Wheatcroft SB, Ponnambalam S (2015) Scavenger receptor structure and function in health and disease. Cells 4:178–201. https://doi.org/10.3390/cells4020178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Zhang ZY, Schittenhelm J, Wu Y, Meyermann R, Schluesener HJ (2011) Parenchymal accumulation of CD163+ macrophages/microglia in multiple sclerosis brains. J Neuroimmunol 237:73–79. https://doi.org/10.1016/j.jneuroim.2011.06.006.
Article
CAS
PubMed
Google Scholar
Zhou J, Lhotak S, Hilditch BA, Austin RC (2005) Activation of the unfolded protein response occurs at all stages of atherosclerotic lesion development in apolipoprotein E-deficient mice. Circ 111:1814–1821. https://doi.org/10.1161/01.CIR.0000160864.31351.C1.
Article
CAS
Google Scholar
Zizzo G, Hilliard BA, Monestier M, Cohen PL (2012) Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 189:3508–3520. https://doi.org/10.4049/jimmunol.1200662.
Article
CAS
PubMed
Google Scholar