Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72:1858–1862
Article
CAS
PubMed
PubMed Central
Google Scholar
Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247
Article
CAS
PubMed
Google Scholar
Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225
Article
CAS
PubMed
Google Scholar
Drubin DG, Kirschner MW (1986) Tau protein function in living cells. J Cell Biol 103:2739–2746
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526
Article
CAS
PubMed
Google Scholar
Himmler A (1989) Structure of the bovine tau gene: alternatively spliced transcripts generate a protein family. Mol Cell Biol 9:1389–1396
Article
CAS
PubMed
PubMed Central
Google Scholar
Trojanowski JQ, Schuck T, Schmidt ML, Lee VM (1989) Distribution of tau proteins in the normal human central and peripheral nervous system. J Histochem Cytochem 37:209–215
Article
CAS
PubMed
Google Scholar
Binder LI, Frankfurter A, Rebhun LI (1895) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378
Article
Google Scholar
Bryan JB, Nagle BW, Doenges KH (1975) Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci U S A 72:3570–3574
Article
CAS
PubMed
PubMed Central
Google Scholar
Corces VG, Manso R, De La Torre J, Avila J, Nasr A, Wiche G (1980) Effects of DNA on microtubule assembly. Eur J Biochem 1105:7–16
Google Scholar
Corces VG, Salas J, Salas ML, Avila J (1978) Binding of microtubule proteins to DNA: specificity of the interaction. Eur J Biochem 86:473–479
Article
CAS
PubMed
Google Scholar
Multhaup G, Huber O, Buée L, Galas M-C (2015) Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Aβ42, and tau in nuclear roles. J Biol Chem 290:23515–23522
Article
CAS
PubMed
PubMed Central
Google Scholar
Maina MB, Al-Hilaly YK, Serpell LC (2016) Nuclear tau and its potential role in alzheimer’s disease. Biomolecules 6:2–20
Article
CAS
Google Scholar
Selden SC, Pollard TD (1986) Interaction of actin filaments with microtubules is mediated by microtubule-associated proteins and regulated by phosphorylation. Ann N Y Acad Sci 466:803–812
Article
CAS
PubMed
Google Scholar
Brion JP, Couck AM, Passareiro E, Flament-Durand J (1985) Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicroc Cytol 17:89–96
CAS
Google Scholar
Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986 May 5) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089
CAS
PubMed
Google Scholar
Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85:4884–4888
Article
CAS
PubMed
PubMed Central
Google Scholar
Wischik CM, Novak M, Thøgersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci U S A 85:4506–4510
Article
CAS
PubMed
PubMed Central
Google Scholar
Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci U S A 85:4051–4055
Article
CAS
PubMed
PubMed Central
Google Scholar
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci U S A 82:4245–4249
Article
CAS
PubMed
PubMed Central
Google Scholar
Glenner GG, Wong CW (1984) Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 122:1131–1135
Article
CAS
PubMed
Google Scholar
Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917
Article
CAS
PubMed
PubMed Central
Google Scholar
Derisbourg M, Leghay C, Chiappetta G, Fernandez-Gomez FJ, Laurent C, Demeyer D, Carrier S, Buée-Scherrer V, Blum D, Vinh J, Sergeant N, Verdier Y, Buée L, Hamdane M (2015) Role of the tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 14:9659
Article
CAS
Google Scholar
Wang Y, Mandelkow E (2015) Tau in physiology and pathology. Nat Rev Neurosci 17:22–35
Article
CAS
Google Scholar
Iqbal K, Liu F, Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27
Article
CAS
PubMed
Google Scholar
Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704
Article
CAS
PubMed
PubMed Central
Google Scholar
Spillantini MG, Goedert M, Crowther RA, Murrell JR, Farlow MR, Ghetti B (1997) Familial multiple system tauopathy with presenile dementia: a disease with abundant neuronal and glial tau filaments. Proc Natl Acad Sci U S A 94:4113–4118
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B et al (2016) Tau protein is essential for stress-induced brain pathology. Proc Natl Acad Sci 113:E3755–E3763
Article
CAS
PubMed
PubMed Central
Google Scholar
Vossel KA, Tartaglia MC, Nygaard HB, Zeman AZ, Miller BL (2017) Epileptic activity in Alzheimer’s disease: causes and clinical relevance. Lancet Neurol 16:311–322
Article
PubMed
Google Scholar
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H (2016) Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 23;8:31
Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633
Article
CAS
PubMed
Google Scholar
Andreadis A (2005) Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta 1739:91–103
Article
CAS
PubMed
Google Scholar
Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239:285–288
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399
CAS
PubMed
PubMed Central
Google Scholar
Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230
CAS
PubMed
PubMed Central
Google Scholar
Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M (2009) Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J Neurochem 108:1167–1176
Article
CAS
PubMed
Google Scholar
Bullmann T, Holzer M, Mori H, Arendt T (2009) Pattern of tau isoforms expression during development in vivo. Int J Dev Neurosci 27:591–597
Article
CAS
PubMed
Google Scholar
Yoshida H, Goedert M (2002) Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats. Biochemistry 41:15203–15211
Article
CAS
PubMed
Google Scholar
Zempel H, Dennissen FJA, Kumar Y, Luedtke J, Biernat J, Mandelkow EM, Mandelkow E (2017) Axodendritic sorting and pathological missorting of tau are isoform-specific and determined by axon initial segment architecture. J Biol Chem 292(29):12192–12207. doi:10.1074/jbc.M117.784702
Article
CAS
PubMed
Google Scholar
Sealey MA, Vourkou E, Cowan CM, Bossing T, Quraishe S, Grammenoudi S et al (2017) Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiol Dis 205:74–83
Article
CAS
Google Scholar
Malmanche N, Dourlen P, Gistelinck M, Demiautte F, Link N, Dupont C et al (2016) Developmental expression of 4-repeat-tau induces neuronal aneuploidy in drosophila Tauopathy models. Sci Rep 7:1–14
Google Scholar
Trabzuni D, Wray S, Vandrovcova J, Ramasamy A, Walker R, Smith C et al (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 21:4094–4103
Article
CAS
PubMed
PubMed Central
Google Scholar
Boutajangout A, Boom A, Leroy K, Brion JP (2004) Expression of tau mRNA and soluble tau isoforms in affected and non-affected brain areas in Alzheimer’s disease. FEBS Lett 576:183–189
Article
CAS
PubMed
Google Scholar
Liu C, Götz J (2013) Profiling murine tau with 0N, 1N and 2N isoform-specific antibodies in brain and peripheral organs reveals distinct subcellular localization, with the 1N isoform being enriched in the nucleus. PLoS One 8
Dickson DW, Kouri N, Murray ME, Josephs KA (2011) Neuropathology of frontotemporal lobar degeneration-tau (FTLD-tau). J Mol Neurosci 45:384–389
Article
CAS
PubMed
PubMed Central
Google Scholar
Iovino M, Agathou S, Gonzalez-Rueda A, Del Castillo Velasco-Herrera M, Borroni B, Alberici A et al (2015) Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain 138:3345–3359
Article
PubMed
PubMed Central
Google Scholar
Fuster-Matanzo A, Llorens-Martín M, Jurado-Arjona J, Avila J, Hernández F (2012) Tau protein and adult hippocampal neurogenesis. Front Neurosci 6:104
Article
CAS
PubMed
PubMed Central
Google Scholar
Drubin DG, Caput D, Kirschner MW (1984) Studies on the expression of the microtubule-associated protein, tau, during mouse brain development, with newly isolated complementary DNA probes. J Cell Biol 98:1090–1097
Article
CAS
PubMed
Google Scholar
Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of tau in the central nervous system. Cell Motil Cytoskeleton 8:210–226
Article
CAS
PubMed
Google Scholar
Sultan A, Nesslany F, Violet M, Bégard S, Loyens A, Talahari S et al (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575
Article
CAS
PubMed
Google Scholar
Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16:3601–3619
CAS
PubMed
Google Scholar
Hinrichs MH, Jalal A, Brenner B, Mandelkow E, Kumar S, Scholz T (2012) Tau protein diffuses along the microtubule lattice. J Biol Chem 287:38559–38568
Article
CAS
PubMed
PubMed Central
Google Scholar
Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84
Article
CAS
PubMed
Google Scholar
Mandell JW, Banker G (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16:5727–5740
CAS
PubMed
Google Scholar
Sayas CL, Tortosa E, Bollati F, Ramírez-Ríos S, Arnal I, Avila J (2015) Tau regulates the localization and function of end-binding proteins 1 and 3 in developing neuronal cells. J Neurochem 133:653–667
Article
CAS
PubMed
Google Scholar
Ramirez-Rios S, Denarier E, Prezel E, Vinit A (2016) Tau antagonizes end-binding protein tracking at microtubule ends through a phosphorylation- dependent mechanism. Mol Biol Cell 27:2924–2934
Article
CAS
PubMed
PubMed Central
Google Scholar
Ivashko-Pachima Y, Sayas CL, Malishkevich A, Gozes I (2017) ADNP/NAP dramatically increase microtubule end-binding protein-tau interaction: a novel avenue for protection against tauopathy. Mol Psychiatry 22:1335–1344
Article
CAS
PubMed
Google Scholar
Sayas CL, Ávila J (2014) Crosstalk between axonal classical microtubule-associated proteins and end binding proteins during axon extension: possible implications in neurodegeneration. J Alz Dis 40(Suppl 1):S17–S22
Google Scholar
Hirokawa N, Funakoshi T, Sato-Harada R, Kanai Y (1996) Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons. J Cell Biol 132:667–679
Article
CAS
PubMed
Google Scholar
Li X, Kumar Y, Zempel H, Mandelkow E-M, Biernat J, Mandelkow E (2011) Novel diffusion barrier for axonal retention of tau in neurons and its failure in neurodegeneration. EMBO J 30:4825–4837
Article
CAS
PubMed
PubMed Central
Google Scholar
Sohn PD, Tracy TE, Son HI, Zhou Y, Leite RE, Miller BL, Seeley WW, Grinberg LT, Gan L (2016) Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener 11:47
Article
PubMed
PubMed Central
Google Scholar
Brandt R, Léger J, Lee (1995). Interaction of tau with the neural plasma membrane mediated by tau's amino-terminal projection domain. J Cell Biol 131:1327–1340
Gauthier-Kemper A, Weissmann C, Golovyashkina N, Sebö-Lemke Z, Drewes G, Gerke V et al (2011) The frontotemporal dementia mutation R406W blocks tau’s interaction with the membrane in an annexin A2-dependent manner. J Cell Biol 192:647–661
Article
CAS
PubMed
PubMed Central
Google Scholar
Maas T, Eidenmüller J, Brandt R (2000) Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275:15733–15740
Article
CAS
PubMed
Google Scholar
Mansuroglu Z, Benhelli-Mokrani H, Marcato V, Sultan A, Violet M, Chauderlier A et al (2016) Loss of tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin. Sci Rep 6:33047
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo MH, Tse SW, Memmott J, Andreadis A (2004) Novel isoforms of tau that lack the microtubule-binding domain. J Neurochem 90:340–351
Article
CAS
PubMed
Google Scholar
Cross DC, Muñoz JP, Hernández P, Maccioni RB (2000) Nuclear and cytoplasmic tau proteins from human nonneuronal cells share common structural and functional features with brain tau. J Cell Biochem 78:305–317
Article
CAS
PubMed
Google Scholar
Georgieff IS, Liem RK, Couchie D, Mavilia C, Nunez J, Shelanski ML (1993) Expression of high molecular weight tau in the central and peripheral nervous systems. J Cell Sci 105:729–737
CAS
PubMed
Google Scholar
Nunez J, Fischer I (1997) Microtubule-associated proteins (MAPs) in the peripheral nervous system during development and regeneration. J Mol Neurosci 8:207–222
Article
CAS
PubMed
Google Scholar
Goedert M, Spillantini MG, Crowther RA (1992) Proc Natl Acad Sci U S A 89:1983–1987
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Loomis PA, Zinkowski RP, Binder LI (1993) A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 21:257–267
Article
Google Scholar
Ashman JB, Hall ES, Eveleth J, Boekelheide K (1992) Tau, the neuronal heat-stable microtubule-associated protein, is also present in the cross-linked microtubule network of the testicular spermatid manchette. Biol Reprod 46(1):120–129
Article
CAS
PubMed
Google Scholar
Sigala J, Jumeau F, Caillet-Boudin ML, Sergeant N, Ballot C, Rigot JM, Marcelli F, Tardivel M, Buée L, Mitchell V (2014) Immuno-detection of tau microtubule-associated protein in human sperm and testis. Asian J Androl 16:927–928
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoue H, Hiradate Y, Shirakata Y, Kanai K, Kosaka K, Gotoh A, Fukuda Y, Nakai Y, Uchida T, Sato E, Tanemura K (2014) Site-specific phosphorylation of tau protein is associated with deacetylation of microtubules in mouse spermato-genic cells during meiosis. FEBS Lett 588:2003–2008
Article
CAS
PubMed
Google Scholar
Violet M, Delattre L, Tardivel M, Sultan A, Chauderlier A, Caillierez R et al (2014) A major role for tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Front Cell Neurosci 8:84
Article
PubMed
PubMed Central
CAS
Google Scholar
Violet M, Chauderlier A, Delattre L, Tardivel M, Chouala MS, Sultan A et al (2015) Prefibrillar tau oligomers alter the nucleic acid protective function of tau in hippocampal neurons in vivo. Neurobiol Dis 82:540–551
Article
CAS
PubMed
Google Scholar
Bou Samra E (2017) A role for tau protein in maintaining ribosomal DNA stability and cytidine deaminase-deficient cell survival. Nat Commun 8:693
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Nogales M, Cabrera JR, Santos-Galindo M, Hoozemans JJ, Ferrer I, Rozemuller AJ et al (2014) Huntington’s disease is a four-repeat tauopathy with tau nuclear rods. Nat Med 20:881–885
Article
CAS
PubMed
Google Scholar
Frost B, Bardai FH, Feany MB (2016) Lamin dysfunction mediates neurodegeneration in Tauopathies. Curr Biol 26:129–136
Article
CAS
PubMed
Google Scholar
Granic A, Padmanabhan J, Norden M, Potter H (2010) Alzheimer Abeta peptide induces chromosome mis-segregation and aneuploidy, including trisomy 21: requirement for tau and APP. Mol Biol Cell 21:511–520
Article
CAS
PubMed
PubMed Central
Google Scholar
Rossi G, Conconi D, Panzeri E, Redaelli S, Piccoli E, Paoletta L et al (2013) Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome. J Alz Dis 33:969–982
CAS
Google Scholar
Caillet-Boudin M-L, Buée L, Sergeant N, Lefebvre B (2015) Regulation of human MAPT gene expression. Mol Neurodegener 10:28
Article
PubMed
PubMed Central
CAS
Google Scholar
Orozco D, Tahirovic S, Rentzsch K, Schwenk BM, Haass C, Edbauer D (2012) Loss of fused in sarcoma (FUS) promotes pathological tau splicing. EMBO Rep 13:759–764
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishigaki S, Fujioka Y, Okada Y, Riku Y, Udagawa T, Honda D et al (2017) Altered tau isoform ratio caused by loss of FUS and SFPQ function leads to FTLD-like phenotypes. Cell Rep 18:1118–1131
Article
CAS
PubMed
Google Scholar
Smith PY, Delay C, Girard J, lie PMA, Planel E, Sergeant N et al (2011) MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum Mol Genet 20:4016–4024
Article
CAS
PubMed
Google Scholar
Santa-Maria I, Hernandez F, Moreno FJ, Avila J (2007) Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-beta-peptide aggregation. Neurosci Lett 429:91–94
Article
CAS
PubMed
Google Scholar
Santa-Maria I, Alaniz ME, Renwick N, Cela C, Fulga TA, Van Vactor D et al (2015) Dysregulation of microRNA-219 promotes neurodegeneration through post-transcriptional regulation of tau. J Clin Invest 125:681–686
Article
PubMed
PubMed Central
Google Scholar
Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399:344–349
Article
CAS
PubMed
Google Scholar
Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN, Hernandez I, Guzman E, Kosik KS, Han S (2017) RNA stores tau reversibly in complex coacervates. PLoS Biol 15(7):e2002183
Article
PubMed
PubMed Central
Google Scholar
Alberti S, Hyman AA (2016) Are aberrant phase transitions a driver of cellular aging? BioEssays 38:959–968
Article
CAS
PubMed
PubMed Central
Google Scholar
Moschner K, Sündermann F, Meyer H, Da Graca AP, Appel N, Paululat A et al (2014) RNA protein granules modulate tau isoform expression and induce neuronal sprouting. J Biol Chem 289:16814–16825
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobayashi S, Tanaka T, Soeda Y, Almeida OFX, Takashima A (2017) Local Somatodendritic translation and hyperphosphorylation of tau protein triggered by AMPA and NMDA receptor stimulation. EBioMedicine 20:120–126
Article
PubMed
PubMed Central
Google Scholar
Ash PEA, Vanderweyde TE, Youmans KL, Apicco DJ, Wolozin B (2014) Pathological stress granules in Alzheimer’s disease. Brain Res 1584:52–58
Article
CAS
PubMed
PubMed Central
Google Scholar
Panas MD, Ivanov P, Anderson P (2016) Mechanistic insights into mammalian stress granule dynamics. J Cell Biol:313–323
Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E et al (2016) Interaction of tau with the RNA-binding protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep 15:1455–1466
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelkovnikova TA, Dimasi P, Kukharsky MS, An H, Quintiero A, Schirmer C et al (2017) Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly. Cell Death Dis 8:e2788
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994 Jun 7) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A 91(12):5562–5566
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonso AC, Grundke-Iqbal I, Iqbal K (1996 Jul) Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2(7):783–787
Article
CAS
PubMed
Google Scholar
Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997 Jan 7) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A 94(1):298–303
Article
CAS
PubMed
PubMed Central
Google Scholar
Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A et al (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in drosophila. Mol Psychiatry 9:522–530
Article
CAS
PubMed
Google Scholar
Cowan CM, Chee F, Shepherd D, Mudher A (2010) Disruption of neuronal function by soluble hyperphosphorylated tau in a drosophila model of tauopathy. Biochem Soc Trans 38:564–570
Article
CAS
PubMed
Google Scholar
Ma Q-L, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M et al (2014) Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris water maze with aging. J Neurosci 34:7124–7136
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L (2013) Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 34:1523–1529
Article
CAS
PubMed
PubMed Central
Google Scholar
Lopes S, Teplytska L, Vaz-Silva J, Dioli C, Trindade R, Morais M et al (2016) Tau deletion prevents stress-induced dendritic atrophy in prefrontal cortex: role of synaptic mitochondria. Cereb Cortex 27(4):2580–2591
Google Scholar
Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S et al (2014) Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc L. B Biol Sci 369:20130144
Article
CAS
Google Scholar
Ahmed T, Van der Jeugd A, Blum D, Galas MC, D’Hooge R, Buee L et al (2014) Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging 35:2474–2478
Article
CAS
PubMed
Google Scholar
Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont JIT, Gerhardt E, Pagesy P, Vileno M, Bournonville C, Hamdane MBK, Lancel S, Demeyer D, Eddarkaoui S, Vallez E, Vieau D, Humez SFE, Grenier-Boley B, Outeiro TF, Staels B, Amouyel P, Balschun D, Buée LB, Blum D (2017) Tau deletion promotes brain insulin resistance. J Exp Med 214:2257–2269
Article
PubMed
PubMed Central
Google Scholar
Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest 122:1316–1338
Article
CAS
PubMed
PubMed Central
Google Scholar
Yarchoan M, Arnold SE (2014) Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63:2253–2261
Article
PubMed
PubMed Central
Google Scholar
Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397
Article
CAS
PubMed
Google Scholar
Klein C, Kramer E-M, Cardine A-M, Schraven B, Brandt R, Trotter J (2002) Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. J Neurosci 22:698–707
CAS
PubMed
Google Scholar
Krämer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68:2003–2012
Article
PubMed
CAS
Google Scholar
Sotiropoulos I, Lopes AT, Pinto V, Lopes S, Carlos S, Duarte-Silva S et al (2014) Selective impact of tau loss on nociceptive primary afferents and pain sensation. Exp Neurol 261:486–493
Article
CAS
PubMed
Google Scholar
Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T et al (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369:488–491
Article
CAS
PubMed
Google Scholar
Lopes S, Lopes A, Pinto V, Guimares MR, Sardinha VM, Duarte-Silva S et al (2016) Absence of tau triggers age-dependent sciatic nerve morphofunctional deficits and motor impairment. Aging Cell 15:208–216
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18:291–295
Article
CAS
PubMed
Google Scholar
Gumucio A, Lannfelt L, Nilsson LNG (2013) Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging. BMC Neurosci 14:2–25
Article
CAS
Google Scholar
Sato-Yoshitake R, Shiomura Y, Miyasaka H, Hirokawa N (1989) Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron 3:229–238
Article
CAS
PubMed
Google Scholar
Georgieff IS, Liem RK, Mellado W, Nunez J, Shelanski ML (1991) High molecular weight tau: preferential localization in the peripheral nervous system. J Cell Sci 100:55–60
CAS
PubMed
Google Scholar
Nothias F, Boyne L, Murray M, Tessler A, Fischer I (1995) The expression and distribution of tau proteins and messenger RNA in rat dorsal root ganglion neurons during development and regeneration. Neuroscience 166:707–719
Article
Google Scholar
Frappier TF, Georgieff IS, Brown K, Shelanski ML (1994) Regulation of microtubule-microtubule spacing and bundling. J Neurochem 63:2288–2294
Article
CAS
PubMed
Google Scholar
Boyne LJ, Martin K, Hockfield S, Fischer I (1995) Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons. J Neurosci Res 140:439–450
Article
Google Scholar
Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N et al (2012) Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem 287:32040–32053
Article
PubMed
PubMed Central
CAS
Google Scholar
Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT (2012) The synaptic accumulation of hyperphosphorylated tau oligomers in alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol 181:1426–1435
Article
CAS
PubMed
PubMed Central
Google Scholar
Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I et al (2014) Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-Beta oligomers. J Neurosci 34:6084–6097
Article
PubMed
CAS
Google Scholar
Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron:410–426
Regan P, Piers T, Yi JH, Kim DH, Huh S, Park SJ, Ryu JH, Whitcomb DJ, Cho K (2015) Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J Neurosci 35(12):4804–4812
Article
CAS
PubMed
PubMed Central
Google Scholar
Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT et al (2007) Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol 9:139–148
Article
CAS
PubMed
Google Scholar
Dillon C, Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci 28:25–55
Article
CAS
PubMed
Google Scholar
Harris JA, Koyama A, Maeda S, Ho K, Devidze N, Dubal DB et al (2012) Human P301L-mutant tau expression in mouse entorhinal-hippocampal network causes tau aggregation and presynaptic pathology but no cognitive deficits. PLoS One 7:e45881
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK et al (2010) Tau Mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68:1067–1081
Article
CAS
PubMed
PubMed Central
Google Scholar
Kornau H-C, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Source Sci. New Ser 269:1737–1740
CAS
Google Scholar
Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111:3167–3177
CAS
PubMed
Google Scholar
Reynolds C, Garwood C, Wray S, Price C, Kellie S, Perera T et al (2008) Phosphorylation regulates tau interactions with SH3 domains of phosphatidylinositol-3-kinase, phospholipase cgamma 1, GRB2 and SRC-family kinases. J Biol Chem 283(26):18177–18186
Article
CAS
PubMed
Google Scholar
Trepanier CH, Jackson MF, MacDonald JF (2012) Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J 279:12–19
Article
CAS
PubMed
Google Scholar
Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen P, Anderton B et al (2011) Tyrosine phosphorylation of tau regulates its interactions with Fyn SH2 domains, but not SH3 domains, altering the cellular localization of tau. FEBS J 278:2927–2937
Article
CAS
PubMed
Google Scholar
Pooler AM, Usardi A, Evans CJ, Philpott KL, Noble W, Hanger DP (2012) Dynamic association of tau with neuronal membranes is regulated by phosphorylation. Neurobiol Aging 33:431.e27–431.e38
Article
CAS
Google Scholar
Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and tau. J Biol Chem 280:35119–35125
Article
CAS
PubMed
Google Scholar
Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A (2002) Tau is essential to beta -amyloid-induced neurotoxicity. Proc Natl Acad Sci U S A 99:6364–6369
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T et al (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754
Article
CAS
PubMed
Google Scholar
Shipton OA, Leitz JR, Dworzak J, Acton CEJ, Tunbridge EM, Denk F et al (2011) Tau protein is required for amyloid β-induced impairment of hippocampal long-term potentiation. J Neurosci 31:1688–1692
Article
CAS
PubMed
Google Scholar
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F et al (2011) Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci 31:700–711
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura T, Fukuda T, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N, Takashima AYS (2007) Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. EMBO J 26:5143–5152
Article
CAS
PubMed
PubMed Central
Google Scholar
Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J et al (2013) The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain 136:1913–1928
Article
PubMed
PubMed Central
Google Scholar
Zempel H, Thies E, Mandelkow E, Mandelkow E-M (2010) Abeta oligomers cause localized ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30:11938–11950
Article
CAS
PubMed
Google Scholar
Miller EC, Teravskis PJ, Dummer BW, Zhao X, Huganir RL, Liao D (2014) Tau phosphorylation and tau mislocalization mediate soluble a?? Oligomer-induced AMPA glutamate receptor signaling deficits. Eur J Neurosci 39:1214–1224
Article
PubMed
PubMed Central
Google Scholar
Tsushima H, Emanuele M, Polenghi A, Esposito A, Vassalli M, Barberis A et al (2015) HDAC6 and RhoA are novel players in Abeta-driven disruption of neuronal polarity. Nat Commun 6:7781
Article
CAS
PubMed
Google Scholar
Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328
Article
CAS
PubMed
Google Scholar
Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V et al (2015) Tau Mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol 53:4745–4753
Article
PubMed
CAS
Google Scholar
Dioli C, Patrício P, Trindade R, Pinto LG, Silva JM, Morais M, et al (2017) Tau-dependent suppression of adult neurogenesis in the stressed hippocampus. Mol. Psychiatry In press:1–9; 22:1110-1118
Gheyara AL, Ponnusamy R, Djukic B, Craft RJ, Ho K, Guo W et al (2014) Tau reduction prevents disease in a mouse model of Dravet syndrome. Ann Neurol 76:443–456
Article
CAS
PubMed
PubMed Central
Google Scholar
Rissman RA, Lee K-F, Vale W, Sawchenko PE, Alonso A, Grundke-Iqbal I et al (2007) Corticotropin-releasing factor receptors differentially regulate stress-induced tau phosphorylation. J Neurosci 27:6552–6562
Article
CAS
PubMed
Google Scholar
Planel E, Miyasaka T, Launey T, Chui D-H, Tanemura K, Sato S et al (2004) Alterations in glucose metabolism induce hypothermia leading to tau hyperphosphorylation through differential inhibition of kinase and phosphatase activities: implications for Alzheimer’s disease. J Neurosci 24:2401–2411
Article
CAS
PubMed
Google Scholar
van der Harg JM, Nölle A, Zwart R, Boerema AS, van Haastert ES, Strijkstra AM et al (2014) The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress. Cell Death Dis 5:e1393
Article
CAS
PubMed
PubMed Central
Google Scholar
Arendt T, Stieler J, Strijkstra AM, R a H, Rüdiger J, E a V d Z et al (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981
CAS
PubMed
Google Scholar