Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281–297. 10.1016/S0092-8674(04)00045-5
Article
CAS
PubMed
Google Scholar
Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006, 6(4):259–269. 10.1038/nrc1840
Article
CAS
PubMed
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120(1):15–20. 10.1016/j.cell.2004.12.035
Article
CAS
PubMed
Google Scholar
Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350–355. 10.1038/nature02871
Article
CAS
PubMed
Google Scholar
Ma L, Weinberg RA: Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 2008, 24(9):448–456. 10.1016/j.tig.2008.06.004
Article
CAS
PubMed
Google Scholar
Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha RK, Richardson JC, Saunders AM, Roses AD, Richards CA: Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimer’s Dis 2008, 14(1):27–41.
CAS
Google Scholar
Cui JG, Li YY, Zhao Y, Bhattacharjee S, Lukiw WJ: Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. J Biol Chem 2010, 285(50):38951–38960. 10.1074/jbc.M110.178848
Article
CAS
PubMed
PubMed Central
Google Scholar
Faghihi MA, Zhang M, Huang J, Modarresi F, Van der Brug MP, Nalls MA, Cookson MR, St-Laurent G 3rd, Wahlestedt C: Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol 2010, 11(5):R56. 10.1186/gb-2010-11-5-r56
Article
PubMed
PubMed Central
Google Scholar
Geekiyanage H, Chan C: MicroRNA-137/181c regulates serine palmitoyltransferase and in turn amyloid β, novel targets in sporadic Alzheimer’s disease. J Neurosci 2011, 31(41):14820–14830. 10.1523/JNEUROSCI.3883-11.2011
Article
CAS
PubMed
PubMed Central
Google Scholar
Götz J, Ittner LM, Fändrich M, Schonrock N: Is tau aggregation toxic or protective: a sensible question in the absence of sensitive methods? J Alzheimer’s Dis 2008, 14(4):423–429.
Google Scholar
Hébert SS, Horré K, Nicolaï L, Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S, Delacourte A, De Strooper B: Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/β-secretase expression. Proc Natl Acad Sci U S A 2008, 105(17):6415–6420. 10.1073/pnas.0710263105
Article
PubMed
PubMed Central
Google Scholar
Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B: MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 2009, 33(3):422–428. 10.1016/j.nbd.2008.11.009
Article
PubMed
Google Scholar
Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buée L, De Strooper B: Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010, 19(20):3959–3969. 10.1093/hmg/ddq311
Article
PubMed
Google Scholar
Lukiw WJ: Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 2007, 18(3):297–300. 10.1097/WNR.0b013e3280148e8b
Article
CAS
PubMed
Google Scholar
Lukiw WJ, Zhao Y, Cui JG: An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 2008, 283(46):31315–31322. 10.1074/jbc.M805371200
Article
CAS
PubMed
PubMed Central
Google Scholar
Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ: Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. PLoS One 2010, 5(2):e8898. 10.1371/journal.pone.0008898
Article
PubMed
PubMed Central
Google Scholar
Schratt G: microRNAs at the synapse. Nat Rev Neurosci 2009, 10(12):842–849. 10.1038/nrn2763
Article
CAS
PubMed
Google Scholar
Sethi P, Lukiw WJ: Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett 2009, 459(2):100–104. 10.1016/j.neulet.2009.04.052
Article
CAS
PubMed
Google Scholar
Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J: Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010, 36(4):320–330. 10.1111/j.1365-2990.2010.01076.x
Article
CAS
PubMed
Google Scholar
Smith P, Al Hashimi A, Girard J, Delay C, Hébert SS: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 2011, 116(2):240–247. 10.1111/j.1471-4159.2010.07097.x
Article
CAS
PubMed
Google Scholar
Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of β-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008, 28(5):1213–1223. 10.1523/JNEUROSCI.5065-07.2008
Article
PubMed
PubMed Central
Google Scholar
Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT: Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 2011, 121(2):193–205. 10.1007/s00401-010-0756-0
Article
PubMed
Google Scholar
Doxakis E: Post-transcriptional regulation of α-synuclein expression by mir-7 and mir-153. J Biol Chem 2010, 285(17):12726–12734. 10.1074/jbc.M109.086827
Article
CAS
PubMed
PubMed Central
Google Scholar
Gehrke S, Imai Y, Sokol N, Lu B: Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 2010, 466(7306):637–641. 10.1038/nature09191
Article
CAS
PubMed
PubMed Central
Google Scholar
Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM: Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci U S A 2009, 106(31):13052–13057. 10.1073/pnas.0906277106
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A: A microRNA feedback circuit in midbrain dopamine neurons. Science 2007, 317(5842):1220–1224. 10.1126/science.1140481
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, van der Walt JM, Mayhew G, Li YJ, Züchner S, Scott WK, Martin ER, Vance JM: Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am J Hum Genet 2008, 82(2):283–289. 10.1016/j.ajhg.2007.09.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson R, Zuccato C, Belyaev ND, Guest DJ, Cattaneo E, Buckley NJ: A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 2008, 29(3):438–445. 10.1016/j.nbd.2007.11.001
Article
CAS
PubMed
Google Scholar
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK: Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227(1):172–179. 10.1016/j.expneurol.2010.10.012
Article
CAS
PubMed
Google Scholar
Packer AN, Xing Y, Harper SQ, Jones L, Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J Neurosci 2008, 28(53):14341–14346. 10.1523/JNEUROSCI.2390-08.2008
Article
CAS
PubMed
PubMed Central
Google Scholar
Ubhi K, Rockenstein E, Kragh C, Inglis C, Spencer B, Michael S, Mante M, Adame A, Galasko D, Masliah E: Widespread microRNA dysregulation in multiple system atrophy - disease-related alteration in miR-96. Eur J Neurosci 2014, 39(6):1026–1041. 10.1111/ejn.12444
Article
PubMed
Google Scholar
Bruneteau G, Simonet T, Bauché S, Mandjee N, Malfatti E, Girard E, Tanguy ML, Behin A, Khiami F, Sariali E, Hell-Remy C, Salachas F, Pradat PF, Fournier E, Lacomblez L, Koenig J, Romero NB, Fontaine B, Meininger V, Schaeffer L, Hantaï D: Muscle histone deacetylase 4 upregulation in amyotrophic lateral sclerosis: potential role in reinnervation ability and disease progression. Brain 2013, 136(Pt 8):2359–2368. 10.1093/brain/awt164
Article
PubMed
Google Scholar
De Felice B, Guida M, Guida M, Coppola C, De Mieri G, Cotrufo R: A miRNA signature in leukocytes from sporadic amyotrophic lateral sclerosis. Gene 2012, 508(1):35–40. 10.1016/j.gene.2012.07.058
Article
CAS
PubMed
Google Scholar
De Felice B, Annunziata A, Fiorentino G, Borra M, Biffali E, Coppola C, Cotrufo R, Brettschneider J, Giordana ML, Dalmay T, Wheeler G, D’Alessandro R (2014) miR-338–3p is over-expressed in blood, CFS, serum and spinal cord from sporadic amyotrophic lateral sclerosis patients. Neurogenetics: Epub ahead of print
Google Scholar
Russell AP, Wada S, Vergani L, Hock MB, Lamon S, Léger B, Ushida T, Cartoni R, Wadley GD, Hespel P, Kralli A, Soraru G, Angelini C, Akimoto T: Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol Dis 2012, 49C: 107–117.
Google Scholar
Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, Bassel-Duby R, Sanes JR, Olson EN: MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326(5959):1549–1554. 10.1126/science.1181046
Article
CAS
PubMed
PubMed Central
Google Scholar
Freischmidt A, Müller K, Ludolph AC, Weishaupt JH: Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2013, 1(1):42. 10.1186/2051-5960-1-42
Article
PubMed
PubMed Central
Google Scholar
Margis R, Margis R, Rieder CR: Identification of blood microRNAs associated to Parkinson’s disease. J Biotechnol 2011, 152(3):96–101. 10.1016/j.jbiotec.2011.01.023
Article
CAS
PubMed
Google Scholar
Schipper HM, Maes OC, Chertkow HM, Wang E: MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Bio 2007, 1: 263–274.
PubMed
PubMed Central
Google Scholar
Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E, Szafranska AE: Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 2008, 10(3):203–211. 10.2353/jmoldx.2008.070153
Article
CAS
PubMed
PubMed Central
Google Scholar
Glud M, Klausen M, Gniadecki R, Rossing M, Hastrup N, Nielsen FC, Drzewiecki KT: MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J Invest Dermatol 2009, 129(5):1219–1224. 10.1038/jid.2008.347
Article
CAS
PubMed
Google Scholar
Lewis F, Maughan NJ, Smith V, Hillan K, Quirke P: Unlocking the archive–gene expression in paraffin-embedded tissue. J Pathol 2001, 195(1):66–71. 10.1002/1096-9896(200109)195:1<66::AID-PATH921>3.0.CO;2-F
Article
CAS
PubMed
Google Scholar
Liu A, Tetzlaff MT, Vanbelle P, Elder D, Feldman M, Tobias JW, Sepulveda AR, Xu X: MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. Int J Clin Exp Pathol 2009, 2(6):519–527.
CAS
PubMed
PubMed Central
Google Scholar
Szafranska AE, Davison TS, Shingara J, Doleshal M, Riggenbach JA, Morrison CD, Jewell S, Labourier E: Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. J Mol Diagn 2008, 10(5):415–423. 10.2353/jmoldx.2008.080018
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K, Hayashi K, Ju J: Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 2007, 13(10):1668–1674. 10.1261/rna.642907
Article
CAS
PubMed
PubMed Central
Google Scholar
Bing Z, Master SR, Tobias JW, Baldwin DA, Xu XW, Tomaszewski JE: MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue. Virchows Arch 2012, 461(6):663–668. 10.1007/s00428-012-1325-9
Article
CAS
PubMed
Google Scholar
Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, Teal CB, Brem RF, Stojadinovic A, Grinkemeyer M, McCaffrey TA, Man YG, Fu SW: Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One 2013, 8(1):e54213. 10.1371/journal.pone.0054213
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibusuki M, Fu P, Yamamoto S, Fujiwara S, Yamamoto Y, Honda Y, Iyama K, Iwase H: Establishment of a standardized gene-expression analysis system using formalin-fixed, paraffin-embedded, breast cancer specimens. Breast Cancer 2013, 20(2):159–166. 10.1007/s12282-011-0318-x
Article
PubMed
Google Scholar
Lee TS, Jeon HW, Kim YB, Kim YA, Kim MA, Kang SB: Aberrant microRNA expression in endometrial carcinoma using formalin-fixed paraffin-embedded (FFPE) tissues. PLoS One 2013, 8(12):e81421. 10.1371/journal.pone.0081421
Article
PubMed
PubMed Central
Google Scholar
Osawa S, Shimada Y, Sekine S, Okumura T, Nagata T, Fukuoka J, Tsukada K: MicroRNA profiling of gastric cancer patients from formalin-fixed paraffin-embedded samples. Oncol Lett 2011, 2(4):613–619.
PubMed
PubMed Central
Google Scholar
Penland SK, Keku TO, Torrice C, He X, Krishnamurthy J, Hoadley KA, Woosley JT, Thomas NE, Perou CM, Sandler RS, Sharpless NE: RNA expression analysis of formalin-fixed paraffin-embedded tumors. Lab Invest 2007, 87(4):383–391.
CAS
PubMed
Google Scholar
Masuda N, Ohnishi T, Kawamoto S, Monden M, Okubo K: Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 1999, 27(22):4436–4443. 10.1093/nar/27.22.4436
Article
CAS
PubMed
PubMed Central
Google Scholar
Vejnar CE, Zdobnov EM: miRmap: Comprehensive prediction of microRNA target repression strength. Nucleic Acids Res 2012, 40(22):11673–11683. 10.1093/nar/gks901
Article
CAS
PubMed
PubMed Central
Google Scholar
Cowherd RB, Asmar MM, Alderman JM, Alderman EA, Garland AL, Busby WH, Bodnar WM, Rusyn I, Medoff BD, Tisch R, Mayer-Davis E, Swenberg JA, Zeisel SH, Combs TP: Adiponectin lowers glucose production by increasing SOGA. Am J Pathol 2010, 177(4):1936–1945. 10.2353/ajpath.2010.100363
Article
PubMed
Google Scholar
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F: Ambra1 regulates autophagy and development of the nervous system. Nature 2007, 447(7148):1121–1125.
CAS
PubMed
Google Scholar
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009, 11(4):468–476. 10.1038/ncb1854
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan EY, Longatti A, McKnight NC, Tooze SA: Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 2009, 29(1):157–171. 10.1128/MCB.01082-08
Article
CAS
PubMed
Google Scholar
Mori F, Tanji K, Miki Y, Wakabayashi K: Decreased cystatin C immunoreactivity in spinal motor neurons and astrocytes in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2009, 68(11):1200–1206. 10.1097/NEN.0b013e3181bdcdce
Article
CAS
PubMed
Google Scholar
Groelz D, Sobin L, Branton P, Compton C, Wyrich R, Rainen L: Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp Mol Pathol 2013, 94(1):188–194. 10.1016/j.yexmp.2012.07.002
Article
CAS
PubMed
Google Scholar
von Ahlfen S, Missel A, Bendrat K, Schlumpberger M: Determinants of RNA quality from FFPE samples. PLoS One 2007, 2(12):e1261. 10.1371/journal.pone.0001261
Article
PubMed
PubMed Central
Google Scholar
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ: Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012, 125(Pt 22):5329–5337. 10.1242/jcs.105239
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu N, Nelson BR, Bezprozvannaya S, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN: Requirement of MEF2A, C, and D for skeletal muscle regeneration. Proc Natl Acad Sci U S A 2014, 111(11):4109–4114. 10.1073/pnas.1401732111
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphries AC, Donnelly SK, Way M: Cdc42 and the Rho GEF intersectin-1 collaborate with Nck to promote N-WASPdependent actin polymerisation. J Cell Sci 2014, 127(Pt 3):673–685. 10.1242/jcs.141366
Article
CAS
PubMed
Google Scholar
Tsetsenis T, Younts TJ, Chiu CQ, Kaeser PS, Castillo PE, Südhof TC: Rab3B protein is required for long-term depression of hippocampal inhibitory synapses and for normal reversal learning. Proc Natl Acad Sci U S A 2011, 108(34):14300–14305. 10.1073/pnas.1112237108
Article
CAS
PubMed
PubMed Central
Google Scholar
Carta E, Chung SK, James VM, Robinson A, Gill JL, Remy N, Vanbellinghen JF, Drew CJ, Cagdas S, Cameron D, Cowan FM, Del Toro M, Graham GE, Manzur AY, Masri A, Rivera S, Scalais E, Shiang R, Sinclair K, Stuart CA, Tijssen MA, Wise G, Zuberi SM, Harvey K, Pearce BR, Topf M, Thomas RH, Supplisson S, Rees MI, Harvey RJ: Mutations in the GlyT2 gene (SLC6A5) are a second major cause of startle disease. J Biol Chem 2012, 287(34):28975–28985. 10.1074/jbc.M112.372094
Article
CAS
PubMed
PubMed Central
Google Scholar
Ajit Bolar N, Vanlander AV, Wilbrecht C, Van der Aa N, Smet J, De Paepe B, Vandeweyer G, Kooy F, Eyskens F, De Latter E, Delanghe G, Govaert P, Leroy JG, Loeys B, Lill R, Van Laer L, Van Coster R: Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 2013, 22(13):2590–2602. 10.1093/hmg/ddt107
Article
CAS
PubMed
Google Scholar
Rowe GC, Jang C, Patten IS, Arany Z: PGC-1β regulates angiogenesis in skeletal muscle. Am J Physiol Endocrinol Metab 2011, 301(1):E155-E163. 10.1152/ajpendo.00681.2010
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, Mao Z: Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323(5910):124–127. 10.1126/science.1166088
Article
CAS
PubMed
PubMed Central
Google Scholar
Francius C, Clotman F: Dynamic expression of the Onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 2010, 165(1):116–129. 10.1016/j.neuroscience.2009.09.076
Article
CAS
PubMed
Google Scholar
Shen E, Shulha H, Weng Z, Akbarian S (2004) Regulation of histone H3K4 methylation in brain development and disease. Philos Trans R Soc Lond B Biol Sci 369(1652). doi:10.1098/rstb.2013.0514
Toriumi K, Ikami M, Kondo M, Mouri A, Koseki T, Ibi D, Furukawa-Hibi Y, Nagai T, Mamiya T, Nitta A, Yamada K, Nabeshima T: SHATI/NAT8L regulates neurite outgrowth via microtubule stabilization. J Neurosci Res 2013, 91(12):1525–1532. 10.1002/jnr.23273
Article
CAS
PubMed
Google Scholar
Wilczynska KM, Singh SK, Adams B, Bryan L, Rao RR, Valerie K, Wright S, Griswold-Prenner I, Kordula T: Nuclear factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes. Stem Cells 2009, 27(5):1173–1181. 10.1002/stem.35
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei J, Fujita M, Nakai M, Waragai M, Watabe K, Akatsu H, Rockenstein E, Masliah E, Hashimoto M: Enhanced lysosomal pathology caused by β-synuclein mutants linked to dementia with Lewy bodies. J Biol Chem 2007, 282(39):28904–28914. 10.1074/jbc.M703711200
Article
CAS
PubMed
Google Scholar
Wen Y, Zand B, Ozpolat B, Szczepanski MJ, Lu C, Yuca E, Carroll AR, Alpay N, Bartholomeusz C, Tekedereli I, Kang Y, Rupaimoole R, Pecot CV, Dalton HJ, Hernandez A, Lokshin A, Lutgendorf SK, Liu J, Hittelman WN, Chen WY, Lopez-Berestein G, Szajnik M, Ueno NT, Coleman RL, Sood AK: Antagonism of tumoral prolactin receptor promotes autophagy-related cell death. Cell Rep 2014, 7(2):488–500. 10.1016/j.celrep.2014.03.009
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi AM, Ryter SW, Levine B: Autophagy in human health and disease. N Engl J Med 2013, 368(7):651–662. 10.1056/NEJMra1205406
Article
CAS
PubMed
Google Scholar
Nixon RA, Yang DS: Autophagy failure in Alzheimer’s disease–locating the primary defect. Neurobiol Dis 2011, 43(1):38–45. 10.1016/j.nbd.2011.01.021
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki S: Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2011, 70(5):349–359. 10.1097/NEN.0b013e3182160690
Article
PubMed
Google Scholar
Tanji K, Mori F, Kakita A, Takahashi H, Wakabayashi K: Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis 2011, 43(3):690–697. 10.1016/j.nbd.2011.05.022
Article
CAS
PubMed
Google Scholar
Tanji K, Odagiri S, Maruyama A, Mori F, Kakita A, Takahashi H, Wakabayashi K: Alteration of autophagosomal proteins in multiple system atrophy. Neurobiol Dis 2012, 49C: 190–198.
Google Scholar
Sepe S, Nardacci R, Fanelli F, Rosso P, Bernardi C, Cecconi F, Mastroberardino PG, Piacentini M, Moreno S: Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging. Neurobiol Aging 2014, 35(1):96–108. 10.1016/j.neurobiolaging.2013.07.001
Article
CAS
PubMed
Google Scholar
Abrahamsen HN, Steiniche T, Nexo E, Hamilton-Dutoit SJ, Sorensen BS: Towards quantitative mRNA analysis in paraffin-embedded tissues using real-time reverse transcriptase-polymerase chain reaction: a methodological study on lymph nodes from melanoma patients. J Mol Diagn 2003, 5(1):34–41. 10.1016/S1525-1578(10)60449-7
Article
CAS
PubMed
PubMed Central
Google Scholar
Peiró-Chova L, Peña-Chilet M, López-Guerrero JA, García-Giménez JL, Alonso-Yuste E, Burgues O, Lluch A, Ferrer-Lozano J, Ribas G: High stability of microRNAs in tissue samples of compromised quality. Virchows Arch 2013, 463(6):765–774. 10.1007/s00428-013-1485-2
Article
PubMed
Google Scholar
Hui AB, Shi W, Boutros PC, Miller N, Pintilie M, Fyles T, McCready D, Wong D, Gerster K, Waldron L, Jurisica I, Penn LZ, Liu FF: Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues. Lab Invest 2009, 89(5):597–606. 10.1038/labinvest.2009.12
Article
CAS
PubMed
Google Scholar
Hutvagner G, Simard MJ: Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 2008, 9(1):22–32. 10.1038/nrm2321
Article
CAS
PubMed
Google Scholar
Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G: miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002, 16(6):720–728. 10.1101/gad.974702
Article
CAS
PubMed
PubMed Central
Google Scholar
Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T: TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 2006, 351(3):602–611. 10.1016/j.bbrc.2006.10.093
Article
CAS
PubMed
Google Scholar
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM: Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314(5796):130–133. 10.1126/science.1134108
Article
CAS
PubMed
Google Scholar
Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B, Vandenberghe W: Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 2011, 31(28):10249–10261. 10.1523/JNEUROSCI.1917-11.2011
Article
CAS
PubMed
Google Scholar
Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK: Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci U S A 2012, 109(37):15024–15029. 10.1073/pnas.1206362109
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Li L, Chen S, Yang D, Wang Y, Zhang X, Wang Z, Le W: Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 2011, 7(4):412–425. 10.4161/auto.7.4.14541
Article
CAS
PubMed
Google Scholar