Skip to main content
Fig. 1 | Acta Neuropathologica Communications

Fig. 1

From: Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer’s disease pathogenesis

Fig. 1

Characterization of the iPSC-derived human grafts (HG) in the mouse brain a Schematic representation of the experimental workflow. b and c Immunostaining for human cytoplasmic marker STEM121 and nuclear marker DAPI in control and AD grafts six months after transplantation into mouse hippocampus. Scale bars: 1 mm (b) and 2 mm (c). ADHG: AD human graft; CHG: Control human graft. d Quantification of human Nuclei marker-positive cells expressed relative to the total number of DAPI-labeled cells and Ki-67-positive cells expressed relative to the total number of human Nuclei marker-positive cells in control and AD iPSC-derived human grafts. Results are presented as mean ± S.E.M. N = 4 animals. Statistical analysis by two-tailed t-test. e Immunostaining for human Nuclei marker and neuronal markers MAP2, TBR1, and hippocampal markers ZBTB20 and PROX1 in control and AD iPSC-derived human grafts. Scale bars: 200 µm. f Quantification of DCX-, MAP2-, TBR1-, ZBTB20-, PROX1-, GFAP- and STEM123-positive cells in control and AD iPSC-derived human grafts. Results are presented as mean ± S.E.M. N = 4 animals. P value:  p < 0.05. Statistical analysis by two-tailed t-test

Back to article page