Skip to main content

Advertisement

Fig. 6 | Acta Neuropathologica Communications

Fig. 6

From: Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape

Fig. 6

Whole genome sequencing (WGS), copy number alteration- and 850 K methylation profiling of extracranial GBM metastasis. a CNA profile obtained from 850 K methylation profiling confirms the WGS profile (Suppl. Fig. 1) and highlights unique molecular profile of the extracranial metastasis. b tSNE clustering comparing the three tumours with published methylation profiles by Capper et al. restricted to GBM subgroups, show a mesenchymal transcriptional signature of the cerebral tumours, while the metastasis clusters on the border of the mesenchymal (MES) and RTKII cluster. c OncoPrint was generated from WGS data of the initially diagnosed GBM (cerebral primary), its first intracranial recurrence (cerebral recurrence) and the biopsy specimen of the vertebral body metastasis from L3. A gene mutation is shown if it is affected in at least two samples or if it has at least one variant with a COSMIC ID. In addition, mutational burden is depicted. d The overlap of single nucleotide variants between the three tumours, which affect protein coding regions with a known COSMIC mutation are depicted as a Venn diagram (left). Due to reduced gDNA quality of the peripheral metastasis only variants in regions covered at least 8x in the depicted samples were considered. e Cosmic signature analysis shows single base substitution signature type 1 (C > T) in all three tumours. d CNV profile obtained from 850 K methylation profiling confirms the WGS profile (Suppl. Fig. 1) and highlights unique molecular profile of the extracranial metastasis. e tSNE clustering comparing the three tumors with published methylation profiles by Capper et al. restricted to GBM subgroups, show a mesenchymal transcriptional signature of the cerebral tumours, while the metastasis clusters on the border of the mesenchymal (MES) and RTKII cluster

Back to article page