Skip to main content
Fig. 2 | Acta Neuropathologica Communications

Fig. 2

From: C1q-targeted inhibition of the classical complement pathway prevents injury in a novel mouse model of acute motor axonal neuropathy

Fig. 2

C1q neutralisation attenuates injury in a mouse MFS model. a A significant reduction in tidal volume is shown in mice treated with isotype control mAb (n = 3) compared to M1 (n = 4) antibody (p < 0.05). Representative flow-charts from the plethysmography recordings are shown for each treatment group at 6 h post-NHS treatment. Bars represent mean ± SEM. b Top panels: Illustrative images show MAC (orange) and C3c (green) deposited at nerve terminals (identified by α-BTx, red; CFP-positive axons, blue) from mice treated with control mAb, while this staining is absent from those treated with anti-C1q antibody. Lower panels: Anti-ganglioside antibody (orange) is present at terminals from both treatment groups, but neurofilament immunostaining (green) is only present at those terminals from mice treated with anti-C1q antibody. c The early and end-stage complement products C3c and MAC, respectively, showed significantly greater deposits at control mAb treated mice (p < 0.05, p < 0.05, respectively) than anti-C1q antibody treated mice (n = 3 control mAb, n = 4 anti-C1q antibody) nerve terminals. Axonal integrity was a measure of neurofilament immunostaining overlying the endplate. Axonal integrity was significantly more intact at anti-C1q antibody protected mice nerve terminals compared to the control mAb group (p < 0.05). Box and whisker plots represent the spread of all data points per condition and significance was based on Mann–Whitney statistical analysis of the median from each animal per treatment. * p < 0.05, unpaired student t-test (a), Mann–Whitney test (b). Scale bar = 20 μm. AGAb = anti-ganglioside antibody, nAChR = nicotinic acetylcholine receptor

Back to article page