Skip to main content
Figure 7 | Acta Neuropathologica Communications

Figure 7

From: T cell-activation in neuromyelitis optica lesions plays a role in their formation

Figure 7

Loss of AQP4 reactivity in NMO-like lesions initiated by T cells with different CNS antigen-specificities. (A-F) T cells specific for MBP (A,B), S100β (C,D) and MOG (E,F) were used to induce CNS inflammation, followed by transfer of NMO-IgG 4 days later. The animals were sacrificed 5 days after T cell transfer. For histological evaluation, their spinal cords were reacted with anti-AQP4 antibodies (brown reaction product) and counterstained with hematoxylin to reveal nuclei (blue). bars = 500 μm (A,C,E) and 100 μm (B,D,F). (G) The average number of lesions with AQP4 loss per spinal cord cross section, as determined by evaluating 5 representative spinal cord cross sections (1 cervical, 2 thoracal, and 2 lumbar cross sections) per animal, using 5 animals (MBP, MOG) and 4 animals (S100β) per group. Asterisks indicate statistically significant differences between individual CNS antigen specificities of the T cells used to induce CNS inflammation (ANOVA-Holm Sidak; p < 0,001 for MBP-specific T cells compared to MOG-specific T cells; p = 0,008 for MBP-specific T cells compared to S100β-specific T cells; and p = 0,005 for S100β-specific T cells compared to MOG-specific T cells). (H) The largest lesion with AQP4 loss per animal, using 5 animals (MBP, MOG) and 4 animals (S100β) per group. Asterisks indicate statistically significant differences between individual CNS antigen specificities of the T cells used to induce CNS inflammation (Mann–Whitney U test with Bonferroni-Holm correction; p = 0,732 for MBP/S100β, p = 0,024 for MBP/MOG, p = 0,048 for S100β/MOG).

Back to article page