Skip to main content
Figure 8 | Acta Neuropathologica Communications

Figure 8

From: Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins

Figure 8

Proliferation of granule cells. Immunofluorescent detection of 5-bromodeoxyuridine (BrdU; red) in cerebella of control (A) and nestin-Cre/DG-null mice (B) at P0. Immunofluorescent detection of neuronal nuclear protein (NeuN; red) and laminin (LM; green) in cerebella of control (C) and nestin-Cre/DG-null mice (D, E) at P8. Immunofluorescent detection of 5-bromodeoxyuridine (BrdU; red) and neuronal nuclear protein (NeuN; green) in control (F) and nestin-Cre/DG-null cerebella at P8 (G, H). Quantitative analysis of GC proliferation at P0 (I) and P8 (J). GC proliferation appears to be normal in control and nestin-Cre/DG-null cerebella at birth. However, a reduction in the number of BrdU positive cells was detected at areas of disrupted basement membrane in the nestin-Cre/DG-null cerebellum at P8. Carets (^) denote the intact basement membrane; tildes (~) indicate areas of disrupted basement membrane; asterisks (*) represent ectopic GCs. Error bars denote standard error of the mean. Asterisk in panel J denotes P < 0.05. n = 3 for each group described in bar graphs. b.m. = basement membrane; EGLi = inner external granule cell layer; EGLo = outer external granule cell layer. Scale bar: 20 μm.

Back to article page