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Abstract 

Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syn-
drome (FXTAS), abnormal expansion of CGG repeats in the 5’ untranslated region has been found in neuronal intra-
nuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngo-
distal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, 
polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and 
NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the com-
mon clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide 
preliminary opinions about future research in polyG diseases.
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Introduction
Short tandem repeats (STRs) are nucleotide repeats 
located in both coding and non-coding regions through-
out the human genome [103]. STR variants have been 
reported as the cause of a series of neurodegenerative 
diseases, including myotonic dystrophies (DM1and 
DM2), fragile X tremor/ataxia syndrome (FXTAS), some 
spinocerebellar ataxias (SCAs), and chromosome 9 open 
reading frame 72 (C9ORF72)-related amyotrophic lat-
eral sclerosis (ALS) [21]. More and more studies suggest 
that STR variants are an important and potential genetic 
cause of neurodegenerative diseases.

Multiple neurodegenerative diseases have been iden-
tified with trinucleotide repeat expansions. The first tri-
nucleotide repeat expansion in a non-coding region on 
chromosome X was found in patients with fragile X syn-
drome in 1991 through linkage analysis [114], meanwhile 

the first trinucleotide repeat expansion in a coding region 
on androgen receptor gene was identified in Kennedy 
disease (KD) [56]. With the advances of next-generation 
sequencing technology, especially in long-read sequenc-
ing (LRS), CGG repeat expansion in non-coding regions 
was found to be associated with a group of previously 
undetermined late-onset neurodegenerative diseases, 
including neuronal intranuclear inclusion disease (NIID) 
[18, 43, 110], oculopharyngeal myopathy with leukoen-
cephalopathy (OPML) [43], and oculopharyngodistal 
myopathy (OPDM) [19, 43, 129].

The above disorders with non-coding CGG repeat 
expansion in the 5ʹ untranslated region (5’UTR) share 
substantial overlap in clinical, neuroimaging, and patho-
logical features, so we hypothesize that they have similar 
pathogenic mechanisms  (Table  1). Polyglycine (polyG) 
originating from the expanded CGG repeats, which can 
be translated into a gain-of-function toxic protein, has 
been reported as an important pathogenic mechanism 
for FXTAS and NIID [27, 94, 134]. Moreover, prelimi-
nary pathological investigations have shown polyG-pos-
itive intranuclear inclusions (NIIs) may be deposited in 
the biopsy specimens from patients with OPDM types 
3–4 [127, 129], suggesting a similar pathogenesis with 
FXTAS and NIID. Accordingly, these disorders have been 
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classified as a novel entity of disease—the polyG diseases 
[10, 134]. The polyG diseases are a new disease entity, 
which are characterized by the polyG protein being 
deposited in the nucleus with a common genetic cause: 
CGG repeat expansions in the 5’UTR regions.

In this review, we provide a summary of recent findings 
of polyG diseases, and highlight the similarities and dif-
ferences among these diseases. The pathogenic mecha-
nism across different polyG diseases, future research 
directions, potential therapeutic strategies and challenges 
will be discussed.

Polyglycine(G) disorders
Fragile X‑associated tremor/ataxia syndrome (FXTAS)
FXTAS is a late-onset, X-linked, neurodegenerative dis-
ease characterized by intention tremor, cerebellar ataxia, 
and cognitive decline, which principally affects males [9, 
32]. This disorder is caused by premutation with CGG 
repeat expansion (55–200 repeats) in the 5’UTR of the 
fragile X mental retardation 1 (FMR1) gene [35]. FMR1 

is located on Xq27.3 and encodes the RNA-binding pro-
tein FMR1 protein (FMRP) [98]. Methylation appears 
in full mutation CGG expansions (> 200 repeats), lead-
ing to transcriptional silencing with consequent deficit 
FMRP levels in the cells and resulting in fragile X syn-
drome (FXS), one of the most common inherited forms 
of intellectual disability and an autism spectrum disorder 
[23, 89]. Women who carry the expansion will experi-
ence lower than 20% risk in having FXTAS due to ran-
dom inactivation in one of two X chromosomes [34]. 
Males with CGG repeat numbers less than 71 have low 
penetrance of FXTAS [71]. In the general population, the 
prevalence of premutation in CGG repeat expansions is 
approximately 1 in 300 females and 1 in 850 males [21].

More than one in three adult male premutation car-
riers present with the neurologic syndrome, including 
progressive gait ataxia, tremor, cognitive decline, parkin-
sonism, psychological disorders, and generalized brain 
atrophy over 50 years of age [35]. Typical neuroimaging 
changes in FXTAS include symmetrical T2-weighted and 

Table 1  Phenotypic features of polyG diseases

AD Autosomal dominant; XL X-linked dominant; AR Autosomal recessive; N/A not available; UTR​ untranslated region

 +  +  + , most positive;  +  + , some positive;  + , a few positive;  ± , occasionally positive; −, negative

FXTAS fragile X-associated tremor ataxia syndrome; NIID neuronal intranuclear inclusion disease; OPML oculopharyngeal myopathy with leukoencephalopathy; 
OPDM1 oculopharyngodistal myopathy type 1–4; polyG polyGlycine peptide toxicity

FXTAS NIID OPML OPDM

OPDM1 OPDM2 OPDM3 OPDM4

Mode of inheritance XL AD AD AD AD AD AD

Affected genes FMR1 NOTCH2NLC NUTM2B-AS1 LRP12 GIPC1 NOTCH2NLC RILPL1

Gene location Xq27.3 1q21.2 10q22.3 8q22.3 19p13.12 1q21.2 12q24.31

CGG expansion location 5’UTR​ 5’UTR​ Non-coding Transcript 5’UTR​ 5’UTR​ 5’UTR​ 5’UTR​

Physiological repeat numbers 5–50 7–40? 3–16 13–45 12–32 7–40? 9–16

Pathological repeat numbers 55–200 60–300 50–60 85–289 73–164 60–300 139–197

Age of onset (years)  > 50 most > 50 15–40 30–50 20–60 20–50 15–40

Clinical features

Movement disorders  +  +  +   +   +   +   +   +   + 

Cognitive deficit  +   +  +  +   ±  −  +   +  −
Autonomic dysfunction  +  +  +   +  +  +   +  − −  +  −
Muscle-weakness  +   +   +   +  +   +  +   +  +   +  + 

Others neuropsychosis encephalitic episodes myocardiopathy myocardiopathy − −
Neuroimage features

Brian atrophy  +   +   +  − −  +  −
Leukoencephalopathy  +   +   +  −  +   +  −
Ribbon sign  ±   +   ±  − −  ±  −
Pathology

Eosinophilic inclusions  +   +  +  +  −  +   +   +   + 

Tubulofilamentous inclusion  +   +  −  +   +   +   + 

Ubiqutin- or p62- positive  +   +  N/A  +   +   +   + 

PolyG-positive  +   +  (polyG)? (polyG)? (polyG)?  +  (polyG)?

Rimmed vacuoles in muscle −  ±  −  +   +   +   + 
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fluid attenuated inversion recovery (FLAIR) sequence 
hyperintense changes in the middle cerebellar peduncle 
(MCP sign), extensive white matter lesions, brain atro-
phy, and diffusion-weighted imaging (DWI) sequence 
hyperintensity at the cortico-medullary junction [45].

Premutation carriers used to be regarded as a pheno-
typic variant of FXS with normal cognitive abilities for 
many years. However, recent pathological examination 
suggested that FXTAS is a different disease entity: a type 
of inclusion disease with eosinophilic NIIs in both neu-
rons and astrocytes throughout the brain [33]. The NIIs 
usually contain FMR1 mRNA, polyG peptides, lamin 
A and C, ubiquitin, SUMO, and p62 protein, while it is 
rare for polyglutamine (polyQ) and negative for FMRP 
or TDP-43 [31]. The NIIs are composed of silk-like sub-
stances forming a round and membrane-free structure 
when viewed under electron microscopy. The NIIs are 
also found in multiple tissues including the peripheral 
nerves and skin [112].

Neuronal intranuclear inclusion disease (NIID)
Neuronal intranuclear inclusion disease (NIID) is a rare 
progressive neurodegenerative disease caused by non-
coding CGG repeat expansions in the NOTCH2NLC 
gene [18, 43, 100, 110]. As suggestive as the name, it is 
characterized by ubiquitin- or p62-positive extensive 
eosinophilic NIIs in central and peripheral nervous tis-
sues, which show similar ultrastructural changes as 
FXTAS under electron microscopy [60, 101]. However, 
skin biopsy could show NIIs located in the fibroblast, 
adipocyte, and epithelial cells of sweat gland ducts, 
which greatly facilitated the antemortem diagnosis of 
NIID [102]. The clinical features of NIID show great het-
erogeneity with combinations of cognitive impairments, 
stroke-like symptoms, encephalitic episodes, autonomic 
dysfunction, limb weakness, cerebellar ataxia, parkin-
sonism, peripheral neuropathy, psychiatric disturbance, 
visual abnormalities, and other multi-system symptoms 
[57, 119]. The MRI features in adult-onset NIID include 
diffuse white matter lesions, DWI and FLAIR hyperin-
tensities in the corpus callosum, and DWI linear hyper-
intensity along the cortico-medullary junction, which are 
strikingly similar to those of FXTAS [43, 57].

According to the age of onset, NIID can be classified 
into infantile-onset, juvenile-onset, and adult-onset 
subgroups [64]. Based on the relationship between 
phenotype and genotype, researchers divided famil-
ial genetically positive adult-onset NIID cases into 
three subgroups: parkinsonism-dominant NIID, mus-
cle weakness-dominant NIID, and dementia-dominant 
NIID [110]. Nevertheless, several studies have indicated 
that carriers with more than 300 repeats of expanded 
CGG show a mild or asymptomatic phenotype [20, 127]. 

Beyond NIID, expanded CGG repeats in NOTCH2NLC 
are occasionally related to a small proportion of Parkin-
son’s disease (PD) [65, 97, 110], multiple system atrophy 
(MSA) [29], essential tremor (ET) [105], degenerative 
dementia [4, 101], ALS [46, 130], inherited peripheral 
neuropathy [118], distal motor neuropathy [122, 128], 
mitochondrial encephalomyopathy, lactic acidosis and 
stroke-like episodes (MELAS) [57, 123], and oculophar-
yngodistal myopathy (OPDM) [127]. Intriguingly, CGG 
expansion in NOTCH2NLC was rarely detected in NIID 
cases reported in people of Caucasian descent, suggest-
ing that NIID is likely to be genetically heterogeneous 
among different ethnic groups [15].

Oculopharyngeal myopathy with leukoencephalopathy 
(OPML)
OPML is an extremely rare genetic disease character-
ized by ptosis, ophthalmoplegia, dysphagia, dysar-
thria, and limb muscle weakness [43]. It has only been 
reported in a four-generation Japanese family, in which 
seven individuals showed a similar but variable clini-
cal phenotype including severe gastrointestinal dysmo-
tility, respiratory failure, ataxia, bladder disturbances, 
tremor, and dilated cardiomyopathy. Individuals with 
diffuse limb weakness underwent muscle biopsies, which 
showed a nonspecific myopathic change. Cerebral MRI 
in three affected individuals showed brain atrophy with 
T2 hyperintensity signals in the white matter consist-
ent with leukoencephalopathy. Intriguingly, one patient 
showed leukoencephalopathy that was strikingly similar 
to FXTAS and NIID with characteristic DWI changes at 
the frontal corticomedullary junctions. Inspired by the 
common clinical characteristics and neuroimaging fea-
tures, expanded CGG repeats in whole-genome sequence 
data were directly explored in one individual from the 
family. Researchers identified and verified heterozygous 
trinucleotide repeat expansion CGG in the NUTM2B-
AS1 gene on chromosome 10q22 as the causative gene of 
OPML.

Oculopharyngodistal myopathy (OPDM)
OPDM is a rare, adult-onset inherited neuromuscular 
disorder characterized by progressive ptosis, external 
ophthalmoplegia, and weakness of the masseter, facial, 
pharyngeal, and distal limb muscles [26, 93]. Recent stud-
ies indicated that CGG repeat expansions in the 5’UTR 
of the LRP12 [43], GIPC1 [19], NOTCH2NLC [127], and 
RILPL1 [129] genes were associated with OPDM types 
1, 2, 3, and 4, respectively. Clinical manifestations of all 
OPDM subtypes showed a characteristic distribution of 
muscle involvement. Moreover, a small part of patients 
with OPDM1/2/4 had extra-muscular symptoms, while 
most patients with OPDM3 simultaneously had different 
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degrees of leukoencephalopathy, peripheral neuropathy, 
and other neurological manifestations [82, 127, 128]. The 
myopathological features were myopathic changes of dif-
fering severity characterized by the presence of rimmed 
vacuoles (RVs) and myeloid bodies in the cytoplasm of 
muscle cells [19, 82]. NIIs, similar to those of FXTAS and 
NIID, could be observed in muscle specimens or skin 
biopsy samples in OPDM1-4, which could facilitate the 
diagnostic workflow [81].

The common spectrum of polyG diseases
Clinical manifestations of polyG diseases
The polyG diseases are adult-onset, slowly progressive, 
multi-system neurodegenerative disorders that primar-
ily involve the central and peripheral nervous systems 
and the muscular system. Movement disorder, cogni-
tive disturbance, muscle weakness, and peripheral neu-
ropathy are the common clinical characteristics of polyG 
diseases.

Movement disorder phenotype
Different types of tremor have been described in patients 
with FXTAS, including ET-like, rest, and cerebellar trem-
ors, and the different tremor types might coexist. In sev-
eral studies, patients diagnosed with ET were screened 
for CGG mutations in FMR1, NOTCH2NLC [105, 125], 
and GIPC1 [28], with positive findings in a few patients. 
Additionally, some OPML patients exhibited mild ataxia 
or tremor [43]. Collectively, tremors were the most 
common symptoms of movement disorders in polyG 
diseases.

Approximately 29% to 60% of FXTAS patients were 
misdiagnosed as parkinsonism [48, 80, 92]. Parkinsonism 
is a series of neurodegenerative syndrome characterized 
by bradykinesia, resting tremor, rigidity, and loss of pos-
tural reflexes. Intermediate-length CGG repeat expan-
sion of NOTCH2NLC have been associated with PD that 
is responsive to small doses of levodopa over many years 
[65, 97]. Expansion of CGG in GIPC1 was also found 
in ten out of 1,036 patients diagnosed with PD [28]. In 
a study of clinical characteristics of LRP12-OPDM, one 
out of 65 patients presented with idiopathic PD in her 
70 s [55]. Therefore, genetic testing of non-coding CGG 
repeat expansion in patients with movement disorders of 
unknown etiology may be helpful for accurate diagnosis 
and effective treatment.

Cognitive deficit phenotypes
Progressive memory loss is a predominant symptom 
in some patients with FXTAS or NIID [12]. Due to dif-
fuse white matter lesions and DWI hyperintensity along 
the cortico-medullary junction of frontal-parietal lobes, 
executive function deficits overlapping with cognitive 

decline are common symptoms in patients with FXTAS 
[12] or NIID. Although no cognitive disturbances 
were reported in OPML patients, extensive white mat-
ter lesions and brain atrophy were observed in cerebral 
MRIs, still the cognitive function of patients was uncer-
tain due to lack of long-term follow-up [43].

The phenotype of OPDMs mainly presents with 
myopathy and less involvement of the central nervous 
system (CNS), while a few patients show CNS mani-
festations [82]. The largest retrospective study of the 
disorder included a cohort of 64 individuals who were 
identified as LRP12 CGG expansion positive, in which 
92% showed no significant CNS manifestations [55]. 
In this study, only one of five patients who underwent 
biopsy had intranuclear tubulofilamentous inclusions 
in the bicep muscle with course over eight years. How-
ever, a general autopsy was performed in one OPDM1 
patient, who had no reported neurological disorder dur-
ing his lifetime. Unexpectedly, it revealed the presence of 
NIIs in almost all organs including CNS and peripheral 
nerves [90]. Approximately 44% of OPDM2 patients with 
GIPC1 CGG repeat showed a cognitive deficit [28], and 
almost all OPDM3 patients had different white matter 
changes. Collectively, we hypothesized that patients with 
polyG-related myopathies initially and mainly showed 
myopathy-based manifestations, while different degrees 
of cognitive impairment might be unidentified or occur 
gradually with disease development.

Autonomic dysfunction
Autonomic dysfunction is commonly noticed in FXTAS 
patients, especially impotence and frequent dysfunc-
tion of bowel and bladder [33, 45]. Autonomic dysfunc-
tion is also prominent and common in patients with 
adult-onset NIID, and unexplained urinary disturbance 
is sometimes the only symptom preceding other neuro-
logical symptoms for many years [77]. Bilateral miosis is 
a unique manifestation and diagnostic indicator for NIID 
[64]. Other autonomic disturbances such as gastrointes-
tinal dysfunction, orthostatic hypotension, arrhythmia, 
and sexual dysfunction are often recorded in the medi-
cal history of NIID patients. Gastrointestinal dysmotil-
ity and bladder function have been reported in OPML 
patients, suggesting the possibility that autonomic nerves 
are affected by NIIs [43]. Collectively, autonomic dys-
functions in polyG diseases are very common and highly 
heterogeneous, and can occur more than a decade before 
typical neuroimaging changes, especially in NIID and 
FXTAS.

Muscle‑weakness phenotypes
The names OPDM and OPML indicate that weaknesses 
of ocular, bulbar, and limb muscles are likely the primary 
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manifestations of these diseases. Additionally, cardiac 
muscle can be affected, as with dilated cardiomyopathy 
observed in NIID, OPML and OPDM1 patients [43, 83, 
90]. More than half of familial NIID patients showed a 
muscle weakness-dominant phenotype, which was usu-
ally attributed to neurogenic causes, while myopathic 
origins should not be ignored in some NIID cases. 
These muscle weakness-dominant patients usually had a 
younger age at onset, and had a family history associated 
with larger-size repeat expansions [101]. Similarly, some 
FXTAS patients may also present with lower limb mus-
cle weakness [45]. The phenotype of muscle weakness in 
polyG diseases may be associated with NIIs being wide-
spread in nerves and muscles.

Neuroradiological changes of polyG diseases
Neuroimaging of NIID is a very sensitive and specific 
biomarker showing that DWI high-intensity signals are 
distributed along the corticomedullary junction in the 

frontal and parietal lobes (Fig. 1A). These signals gradu-
ally extend along the corticomedullary junction of the 
whole cerebrum as the disease progresses, but usually do 
not expand into the deep white matter even late in dis-
ease progression [101]. High-intensity subcortical DWI 
signals in NIID strongly correlate with pathological spon-
giotic changes of NIID, but the mechanism is still unclear. 
The “cockscomb pattern” or “ribbon sign” seen along the 
corticomedullary junction on DWI are characteristic 
findings in patients with polyG disorders. However, the 
high-intensity signal at the corticomedullary junction is 
often not obvious in the early stage of the disease, and 
can disappear in some patients [49], and thus diagnosis 
of such diseases should not be overly dependent on the 
ribbon sign.

White matter hyperintensities and brain atrophy on 
MRI are other common imaging changes in polyG dis-
eases, including FXTAS, NIID, OPML, and OPMD2-3. 
The cerebellar involvement in FXTAS is more obvious 

Fig. 1  Typical brain radiological and pathological features in patient with NOTCH2NLC-CGG expansion. A and B Representative brain DWI image 
and T2-weighted image of patients with NOTCH2NLC-related polyG disease. C Representative H&E staining image show eosinophilic NIIs (black 
arrow) in sweat gland cells of skin D Representative immunostaining image show p62-positive NIIs (black arrow) in skin. E Representative electron 
microscopy image revealed Intranuclear tubulofilamentous inclusions in the skin of NIID patient. F Immunofluorescence against uN2CpolyG 
using 4D12 antibody (red, generously providing by Dr. Nicolas Charlet-Berguerand) and p62 antibody (green) on brain section from patient with 
NOTCH2NLC-CGG repeat expansion. Nuclei were counterstained with DAPI
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than cerebrum involvement, and MCP sign and general 
cortical and subcortical atrophy are seen in the major-
ity of males, and in some women [9, 33]. White matter 
lesions in NIID and OPML are present in the cerebrum, 
cerebellum, and spinal cord, and most notably in the 
deep white matter of the brain (Fig. 1B). Leukoencepha-
lopathy is obvious on MRI in 97.4% of sporadic and 76.9% 
of familial NIID cases [101]. Additionally, persistent DWI 
hyperintensities in corpus callosum and enhancement of 
cortical surface were observed in some NIID cases [57, 
119]. More than half of FXTAS patients have cerebral 
microbleeds, and NIIs in the endothelial cells of capil-
laries, suggesting cerebrovascular dysfunction in FATXS 
[91]. Almost all OPDM patients have different white mat-
ter hyperintensities but without typical NOTCH2NLC-
related high-intensity signals at the corticomedullary 
junction.

Pathological features of polyG diseases
Each polyG disease has its own pathological features, 
while the presence of NIIs has been demonstrated in all 
types of polyG disorders, except for OPML. Eosinophilic 
NIIs are present throughout the central and periph-
eral nervous systems, and multiple organs in FXTAS, 
NIID, and OPDM1 [90]. In contrast, owing to the lack 
of autopsy histopathological analysis, p62-positive NIIs 
were only found in biopsied skin and skeletal muscle 
samples in other types of OPDM patients [129]. The NIIs 
are round and about 1.5–10 μm in diameter, eosinophilic 
on hematoxylin–eosin (H&E) staining (Fig. 1C), and pos-
itive for p62 and polyG (Fig.  1D and E), and ubiquitin, 
but negative for polyQ on immunostaining. Under elec-
tron microscopy, the inclusions are composed of a pile of 
fibrous substances often with halos around, but without 
membranes (Fig. 1F).

Although inclusions are also seen in multiple neurode-
generative diseases such as polyQ diseases [24, 86], fron-
totemporal dementia (FTLD) [44], OPMD [113, 121] and 
MSA [84], inclusions in polyG diseases have characteris-
tic immune markers and distribution patterns, suggesting 
the existence of unique pathological mechanisms. NIIs 
can be detected more than ten years before the onset 
of NIID symptoms, and are often found in morphologi-
cally intact neurons without obvious neuronal loss [72, 
76], suggesting that NIIs may be associated with the pro-
gression of the disease. p62-positive rimmed vacuoles in 
muscle fibers are unique pathological changes in OPDM 
patients. Muscle biopsy specimens from four OPML 
patients showed nonspecific myopathic changes [43], but 
more biopsy specimens are needed to confirm whether 
OPML has NIIs. Additionally, there is a lack of autopsy 
results from genetically-positive OPML and OPDM2-3 
patients, especially from the CNS. Thus, no direct 

evidence has demonstrated whether NIIs are present in 
neurons of OPDM and OPML. Further studies like post-
mortem histopathologic analyses are necessary to clarify 
any extra-muscular organ involvement and associated 
symptoms that might have been masked by more obvi-
ous features relevant to muscle pathology. NIIs involv-
ing multiple systems may be responsible for the complex 
symptoms of polyG diseases.

Epidemiology and genetics
No prospective longitudinal studies of individuals with 
polyG diseases have been conducted. Some retrospec-
tive studies have been conducted on NIID and FXTAS, 
which showed significant differences in the population 
distribution of the two disorders [15, 126]. The reported 
FXTAS cases were mainly in individuals of Caucasian 
descent, with a few in Asian populations. Conversely, 
NOTCH2NLC-NIID cases were mainly reported in East 
Asian populations, with no reports from Caucasian pop-
ulations. Currently, genetically confirmed cases of OPML 
and OPDM are mostly from China and Japan, and are 
rare in Caucasian populations. Whether this difference is 
related to a founder effect is unclear.

In terms of inheritance, polyG diseases are all domi-
nantly inherited, but many patients with polyG diseases 
show sporadic pattern with no clear family history. 
Clinical and genetic anticipation are typical features 
in most STR-related diseases, while anticipation have 
not observed in patients with polyG diseases currently. 
Nucleotide repeat instability and unstable transmission 
of CGG repeats between parents and offspring have been 
reported in individual FXTAS, NIID, and OPDM families 
[5, 20]. These characteristics suggest that polyG diseases 
may have different molecular genetic mechanisms com-
pared to polyQ diseases.

Mechanisms
The puzzle of trinucleotide STR
STRs are a series of small repetitive DNA units consist-
ing of 2–6 nucleotides, covering around 6.77% of the 
human genome [16]. STRs contribute to genetic diver-
sity, but may be harmful to humans due to repeat-medi-
ated genome instability [37]. Looking back to the past 
30  years of studies in repeat expansion disorders [21], 
polyQ diseases have been characterized by NIIs con-
taining polyQ translated by CAG repeats [59]. Almost 
10  years ago, when investigations into the pathogenesis 
of polyQ diseases was at its beginning stage, one of the 
seminal questions was how the same mutation present 
in ORFs of different genes, and thus different proteins 
with polyQ expansion, could result in different diseases 
with some common symptoms [79]. Among them, two 
proteins (androgen receptor and Ataxin-1) with nuclear 
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localization signal (NLS) in two typical polyQ diseases 
(KD and SCA1) demonstrate the concept that it is the 
change in normal function and conformation of the 
polyQ protein, induced by an expanded polyQ tract, 
which initiates the pathogenic process [54, 85].

In those days, research on the pathogenesis of FXTAS 
is at a standstill since the repeat expansion is confined 
to the 5’UTR of FMR1 [51], despite the fact that CGG 
repeat expansion is believed to be essential, as said 
by Ammar Al-Chalabi when the pathogenic locus of 
C9ORF72 was uncertain, “It’s like we knew the street, 
but we didn’t know the exact house” [25]. Fortunately, 
research on DM1, another disease caused by non-cod-
ing trinucleotide repeat expansions, has progressed and 
demonstrated that repeat sequence-mediated RNA toxic-
ity seems to be involved [117]. Unexpectedly, unlike the 
typical RNA gain-of-function disease, the majority of 
the mutant RNA is not located in NIIs, and there is lit-
tle or no reduction of FMRP in FXTAS [9, 109]. Another 
hypothesis first proposed by Ranum and colleagues sug-
gested that repeat-associated non-AUG (RAN) transla-
tion was involved; this was later confirmed by Todd et al. 
in FXTAS [111, 136]. Since no or very little FMRpolyA 
is observed in individuals or disease models of FXTAS, 
the role of FMRpolyG is an attractive alternative. Fur-
thermore, FMRpolyG is indispensable to the formation 
of NIIs, as well as mediating the CGG repeat associated 
toxicity [94]. Recently, FXTAS has its companies that 
consist of a group of emerging diseases (NIID, OPML, 
and OPDMs) associated with CGG repeats [135]. PolyG 
positive NIIs are found in NIID and OPDMs, and expres-
sion of polyG by embedding CGG repeat sequence in the 
5’UTR of NOTCH2NLC is pathogenic in cells and ani-
mals. Inspired by polyQ diseases, it led us to infer that 
polyG is the core pathogenesis of these diseases.

Repeat‑mediated genome instability
Although polyG diseases are reported to be autoso-
mal dominant [21], the hereditary mode is uncertain 
due to random expansion or contraction of the repeats 
[52]. For example, offspring of FXTAS patients can be 
unaffected or suffer from FXS [5]. Unexpectedly, males 
carrying large CGG repeat expansions (up to 300) 
in NOTCH2NLC seem to be asymptomatic, though 
NOTCH2NLC mRNA levels decrease as a consequence of 
hypermethylation around the CGG repeats, displaying a 
strikingly different prognosis in contrast to FXS patients 
with full mutation alleles of FMR1 [133]. However, these 
individuals may have children with NIID if the repeat 
number is contracted during spermatogenesis [20]. The 
inconsistent repeat number is related to genome insta-
bility, and possibly an explanation of variable disease 

phenotypes considering the length of polyG tracts trans-
lated by the repeats [66].

There are several possible factors underlying repeat-
mediated genome instability, including dynamic DNA 
structures, DNA replication and transcription, DNA 
repair, and chromatin environment [52]. During DNA 
replication or transcription, single-stranded DNA can be 
formed, and the repeat tracts tend to incorporate into dif-
ferent secondary structures determined by the sequence 
itself. In brief, H-DNA is likely to be formed by homopu-
rine/homopyrimidine mirror repeats [87], G4-DNA by 
GC-rich sequence, imperfect hairpin by inverted DNA 
repeat [30], and DNA-unwinding elements by AT-rich 
sequence [61]. These secondary structures impede repli-
cation fork progression and transcription, thus leading to 
formation of a DNA nick or a double-strand break (DSB), 
and consequent initiation of DNA repair. The repeat 
number would undergo unpredictable changes during 
the process. Moreover, the secondary structures could 
bring epigenetic changes to the surrounding chroma-
tin, further altering gene expression patterns and repeat 
instability [104].

For CGG repeats, large repeat length is one of the risks 
of increasing repeat instability [38]. When located in the 
lagging strand template during replication, CGG repeats 
are prone to form hairpins or G4 structures and experi-
ence repeat contraction [39, 120]. Large CGG repeats 
may stall the replication fork, leading to DSBs and chro-
mosome fragility [116, 131]. During DNA transcription, 
a DNA-RNA hybrid named R-loop is formed on a tem-
plate strand to regulate gene expression and terminate 
transcription, leaving the expanding complementary 
part of the DNA duplex single-stranded to form DNA 
hairpin (S-loop) [63], G4-DNA or hybrid G4-DNA-RNA 
structure (G-loop) [2], or a triplex structure of an RNA 
transcript and a single-stranded DNA portion (H-loop) 
[78]. These unwanted structures increase the instability 
of CGG repeats. Additionally, various pathways of DNA 
repair like homologous replication (HR), end-joining (EJ) 
pathways, mismatch repair (MMR), base excision repair 
(BER), and nucleotide excision repair (NER) further 
increase the risk of genome instability with CGG repeats 
[52].

RNA toxicity
RNA-binding proteins (RBPs) are important regulating 
components of gene expression to support cell viability 
[7]. The RNA gain-of-function hypothesis was first pro-
posed in DM models based on the observation of nuclear 
foci containing the myotonic dystrophy protein kinase 
(DMPK) transcript and RBPs interacting with expanded 
repeats [68, 73, 108], and has become increasingly 
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significant in non-coding repeat expansion disorders. In 
this hypothesis, RNA foci, generally formed by interac-
tions between secondary structures of repeat RNAs and 
RBPs, are the hallmark and are found in many repeat 
expansion diseases, such as amyotrophic lateral sclero-
sis and frontotemporal dementia caused by C9ORF72 
(C9ALS/FTD), FXTAS, and many SCAs [132]. Though 
RNA foci are mostly intranuclear, cytoplasmic RNA 
foci as well as RNA foci at the edge of the nucleus have 
also been observed [17, 75]. The canonical role of RNA 
toxicity in pathogenesis is mis-splicing, as confirmed in 
DM1, CUG repeat RNA sequesters the muscle blind-like 
(MBNL) proteins and leads to transcriptome-wide spli-
ceopathy [106]. In addition, miRNA misprocessing [87], 
transcriptional deregulation [11], global translational 
inhibition mediated by stress granule [41], and alterna-
tive polyadenylation sites [6] have also been proposed in 
recent years.

For FXTAS, the CGG repeat RNA might compromise 
the function of various RBPs like Pur-alpha, hnRNPA2/
B1, CUGBP1, Sam68, and Drosha-DGCR8. Overexpres-
sion of most of these proteins can rescue the pheno-
type in CGG Drosophila [47, 95, 96, 99]. However, CGG 
repeats seem to have a more complex role than could be 
explained by RNA toxicity alone [94, 111]. Compared 
with diseases mainly driven by RNA gain-of-function, the 
pathological repeat range in FXTAS is quite different for 
the size that is particularly short but close to the path-
ogenic number of other polyG diseases [21]. Using an 
RNA FISH probe, CGG repeat RNA formed RNA foci in 
patients diagnosed with NIID and OPDM types 4. Some 
RBPs were also found to be colocalized with the RNA 
foci in polyG diseases like Sam68 and MBNL1 [20, 127, 
129]. However, considering the limited role of RNA tox-
icity in FXTAS, further investigation is needed in other 
polyG diseases.

polyG protein toxicity
In most conditions, protein translation is a canonical 
process beginning with an AUG start codon and end-
ing with one of three stop codons (UAA, UGA, and 
UAG). However, the AUG-dependent translation initially 
seemed unable to explain the translation process of CGG 
expansion embedded within 5’UTR, so RAN translation, 
an AUG-independent translation, was first proposed by 
Ranum and colleagues [136]. Based on this hypothesis, 
RAN translation of CGG repeats in FXTAS can lead to 
the theorical expression of polyAlanine, polyG and pol-
yArgine containing proteins. However, later studies find 
that CGG repeats translation still can occur by a canoni-
cal ribosome scanning mechanism and initiates upstream 
of the repeats at near cognate start codons, either a GTG 
or ACG [50, 94], mainly resulting in expression of one 

protein, FMRpolyG, as the CGG repeats are in the gly-
cine frame in regard to these GTG or ACG near cognate 
start codon. Furthermore, antibodies were developed 
against these putative polyAlanine and polyG proteins 
and only FMRpolyG was consistently observed in FXTAS 
brain sections, while the polyAlanine protein was rarely 
observed or absent [53, 94]. Thus, RAN translation of 
CGG repeats into polyAlanine or polyArginine is now 
considered as a minor pathogenic mechanism, if even 
present, in FXTAS. Similarly, recent reports indicate 
that translation of the NOTCH2NLC CGG repeats into a 
novel polyG-containing protein occurs through canoni-
cal translation initiation at an AUG start codon located 
upstream of the repeats, with again the CGG repeats in 
the glycine frame in regards to this AUG start codon[10, 
134]. Collectively, both CGG repeat expansion trans-
lation in FXTAS and NIID occur through a canonical 
mechanism of translation, different from the RAN trans-
lation proposed by the Ranum group. Intriguingly, an 
anti-glycine non-specific antibody that may recognize the 
polyG domain of protein have been found to be colocal-
ized with p62 in NIIs of OPDM3 and 4, indicating a pos-
sibility that CGG expansion embedded in the 5’UTR of 
corresponding genes (NOTCH2NLC or RILPL1) may be 
translated into polyG with the same ribosome-depend-
ent translation mechanism [127, 129], but the potential 
mechanism of OPDM/OPML still needs to be further 
studied.

Sellier et al. carried out a series of experiments with a 
fascinating design and provided crucial evidence for dis-
criminating the role of RNA toxicity from protein tox-
icity [94]. They found that cell models with expanded 
CGG repeats embedded in the 5’UTR of FMR1 formed 
rare RNA foci compared to the expanded CGG repeats 
without the surrounding FMR1 sequence. Transgenic 
mouse models with mutant 5’UTR that express only 
the CGG RNA remained indistinguishable from control 
mice. Beyond that, the authors indicated that FMRpolyG 
first accumulated in the cytoplasm and formed aggre-
gates, and then these aggregates migrated and formed 
an inclusion within the cell nucleus. Not surprisingly, 
the phenomenon reappeared in cell models transfected 
with NOTCH2NLC 5’UTR GGC49-GFP (polyG frame), 
and though there were no fluorescence signals in the 
cytoplasm, the nuclear polyG inclusions became larger 
with time. Furthermore, FMRpolyG and uN2CpolyG 
disrupted both the morphology and function of nuclear 
lamina, and overexpression of LAP2 rescued neuron 
death caused by FMRpolyG [134]. According to the 
above studies in FXTAS and NIID, the significance of 
polyG in pathogenesis may overwhelm that of toxic RNA, 
while how much of a role and how polyG plays role in the 
pathogenesis of polyG diseases remains unclear.
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Future directions for CGG repeat expansion
Learning from polyQ diseases, we can foresee the pro-
ductive future of pathogenic mechanism studies in polyG 
diseases. Here, according to the investigations of polyQ 
diseases and FXTAS, we would like to give some prelimi-
nary opinions about future research in polyG diseases 
(Fig. 2).

First, what is the role of host genes in pathogenesis? 
Although CGG repeat expansions may lead us to under-
stand the diseases with a common pathological change, 
the clinical spectrum is quite varied among polyG 

diseases [135]. With the same CGG repeat expansion 
located in non-coding regions and similar repeat-length 
thresholds for disease penetrance, we wonder if different 
host genes can partly explain the variety of symptoms. 
Since the CGG repeat is embedded in uORFs, polyG 
seems to function independently of the downstream pro-
tein expressed by the host genes, while the tissue specific 
expression pattern of the host gene may limit the toxic-
ity of polyG considering the translation efficiency. Due to 
separation from the host protein, polyG toxicity is totally 
different from the mechanism in polyQ that is closely 

Fig. 2  Main mechanisms associated with polyG diseases. A CGG repeats are triplet nucleotides located in non-coding regions. There are two main 
pathogenesis mechanisms of non-coding CGG expansion related diseases. Mild and moderate CGG repeats can translate into polyglycine, and 
the protein toxicity causes neurodegeneration disorders, including FXTAS and NIID. In contrast, a high degree of repeated CGG sequences will 
lead to CpG island hypermethylation. Hypermethylation of CpG can lead to transcriptional gene silencing, resulting in partial or complete loss of 
the native protein encoded by the gene, resulting in abnormal FXS or asymptomatic NIID. B Hypotheses for the mechanism of nuclear inclusion 
body formation. CGG repeat RNAs can fold into complex structures, including hairpins, which aberrantly interact with and sequester RBPs into RNA 
foci. Non-coding RNA repeats could undergo canonical ribosome-dependent translation mechanism, thereby producing toxic polyG peptides. C 
Possible therapeutic approaches for polyG diseases. ASOs can bind to mRNA that contains pathological repeat expansions, inducing degradation 
of the target RNA. Small molecules can interact with mutant mRNA and break the hairpin structure. CRISPR/Cas9 technology can be used to excise 
portions of CGG repeats to inhibit methylation or translation of toxic proteins
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related to the function of the host gene [59]. For example, 
the way that polyG enters the nucleus is unclear, while 
polyQ containing protein can be transported to nucleus 
with NLS expressed by host genes. As shown in previous 
work, host proteins were partly colocalized with NIIs, 
especially for NOTCH2NLC, the gene which can some-
times be translated into a polyG containing protein [127, 
129]. Since CGG repeat translation is initiated upstream 
of the start codon, it may sequestrate the translation tools 
and disrupt the expression of downstream proteins [94]. 
However, the levels of host proteins seem to be unaf-
fected, and individuals remain asymptomatic even once 
the expression is down-regulated [20].

Second, what is the role of NIIs? NIIs are formed in a 
series of triplet expansion diseases but their contribu-
tion to the disease itself is uncertain [66, 67]. In polyQ 
diseases, inclusions mainly form in the nucleus, and may 
be protective in the early phase because they may isolate 
the toxic polyQ from binding with functional proteins. 
Inclusions can be toxic when they turn into irrevers-
ible solid aggregates [59]. However, long before the NIIs 
formed, repeat RNA needs to be translated in the cyto-
plasm and gradually migrate and settle into the nucleus 
[94]. As indicated in polyQ diseases, the accepted idea 
is that the nucleus is an important site of polyQ toxicity 
partly due to the NLS carried by the host proteins [59]. 
While in polyG-related diseases, when the host proteins 
no longer work with the toxic tract [10, 94, 134], would 
the role of nucleus be more like a final location than an 
active pathogenic site? Like RVs present in OPDMs [90], 
would polyG reside in other parts of the cell and have a 
different pathogenic role? Future advancements in dis-
ease research may answer these fascinating questions.

Third, what is the role of polyG? As for CGG repeats 
located in the 5’UTR of FMR1 and NOTCH2NLC, polyG 
has been identified to be toxic in different disease mod-
els, and it may interact with lamin to disturb nuclear 
function. Overexpression of LAP2B partly rescues the 
phenotype of FXTAS animal models [10, 94, 134]. This 
one affected site cannot provide us a whole picture to 
fully explain the various clinical outcomes, thus more 
potential targets need to be found in the future. Although 
recent knowledge about polyG is limited, the future is 
not so uncertain since polyQ has been found to be cor-
related with gene expression, axonal transportation, 
mitochondrial function, neuronal excitotoxicity, and ion 
homeostasis [43].

Therapeutic approaches for polyG diseases
There is still a lack of effective treatment for polyG dis-
eases. As more is learned about the pathogenesis of 
the diseases, several potential therapeutic approaches 

targeting the DNA, RNA, and protein levels have been 
developed [124].

Antisense oligonucleotides (ASOs) are chemically syn-
thesized single stranded nucleic acids that can bind RNA 
targets and prevent them from forming secondary struc-
tures and sequestrating the RBPs. Furthermore, the target 
RNAs can be degraded by RNaseH [8]. ASOs have been 
successfully applied in treating neurodegenerative dis-
eases caused by repeat expansions. Recent achievements 
witnessed that ALS fibroblast or induced pluripotent 
stem cell (iPSC)-derived neurons were rescued by reduc-
ing formation of RNA foci and glutamate excitotoxicity 
[1, 8]. Clinical trials have been conducted in patients with 
ALS and Huntington’s disease (HD) and partly relieve 
their symptoms [13, 74, 107]. Encouragingly, this kind of 
therapy has been investigated in models of FXTAS, and 
specific ASOs greatly improved the clinical and patho-
logical phenotypes in FXTAS mice [22].

Another intervention targeting RNA toxicity is RNA 
interference (RNAi) strategies, to which purpose is 
degrading target mRNA and reducing protein expres-
sion with RNA molecules including microRNA (miRNA), 
small interfering RNA (siRNA), and short hairpin RNA 
(shRNA) arenow the most common RNA molecules for 
RNAi [14]. For C9ALS/FTD, siRNA effectively reduced 
GGG​GCC​ repeat-containing transcripts and RNA foci 
formation in cells and a mouse model [40, 69, 70]. For 
HD, miRNA has been applied and successfully reduced 
transcript of huntingtin gene (HTT) levels, leading to 
improvement in neuropathology [75]. For FXTAS, evi-
dence has shown that using siRNA against RNA of a 
specific retrotransposon, gypsy, is able to modulate neu-
rodegeneration in Drosophila [42].

As for intervention in RNA levels, small molecules can 
also interact with CGG repeat RNAs. 9-hydroxy-5,11-di-
methyl-2-(2-(piperidin-1-yl)ethyl)-6H-pyrido[4, 3-b]
carbazol-2-ium, can bind CGG repeats in vitro, improve 
FXTAS-associated splicing defects, and reduce the size 
and number of pathologic protein aggregates. Other 
small molecules identified to interact with CGG repeats 
include phospholipase A2 inhibitors [88], naphthyridine 
carbamate dimer [36], piperine, geldanamycin [115], and 
spironolactone [58].

Repairing DNA levels may be important, but such 
intervention is risky because it may cause higher repeat 
associated instability, and thus lead to genome muta-
tions or further expansion of the repeat itself. A study 
suggests that the expanded repeats can be excised from 
DNA by CRISPR/Cas9 technology [3]. Expression of 
FMR1 can be reactivated by using CRISPR/Cas9 to edit 
FMR1 full mutation allele (CGG repeats > 200) in FXS 
iPSCs [62].
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Conclusions
Four years ago, following the simple but practical prin-
ciple, with great comparability in phenotypes lead-
ing to great comparability in genes, Ishiura et  al. [43]. 
made a breakthrough in STR-related neurodegenera-
tive diseases. They determined that expanded CGG 
repeats located in non-coding regions were the cause 
of NIID, OPML, and OPDM type 1. Subsequently, 
NOTCH2NLC-related disorders and other types of 
OPDM due to abnormal expansion of CGG repeats 
were reported. Regarding the essential role of polyG 
in FXTAS and NIID, and polyG-positive NIIs may be 
also presented in OPDM type 3/4, the diseases caused 
by CGG repeat expansion can be classified as polyG 
diseases, highlighting the likely pathogenic role of toxic 
polyG.

As discussed in this review, the clinical spectrum of 
polyG diseases is variable, but mainly involves the cen-
tral and peripheral nervous systems and the muscular 
system. The disease spectrum may be further enlarged 
in the future due to the increasing attention on CGG 
repeat expansion and the advancement of DNA sequenc-
ing methods. However, a well-explained polyG-related 
pathogenesis underlying these different disease pheno-
types would be challenging to propose. Until now, the 
basic research of polyG diseases has focused mainly on 
modeling the formation and toxicity of polyG in cells and 
animals, and only one downstream target (nuclear lam-
ina) was discovered [94]. Thus, targeted interventions for 
the polyG diseases have been stuck on RNAi, gene edit-
ing, and small molecules interacting with repeat RNAs, 
which may lead to genome instability. Future investiga-
tions of the diseases may reveal more effective down-
stream targets of the polyG proteins, and provide us with 
a more complete picture to better understand, diagnose, 
and treat the diseases.
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