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Abstract 

Chordoid meningioma is a morphological variant of meningioma designated as WHO grade 2. However, the recur-
rence rates varied widely in different case series, and to date, a unifying molecular genetic signature has not been 
identified. Among 1897 meningiomas resected at our institution, we identified 12 primary chordoid meningiomas 
from 12 patients. Histologically, all 12 cases had predominant (> 50%) chordoid morphology. Ten were otherwise 
grade 1, and two were also atypical. We performed DNA global methylation profile, copy number variation analysis, 
and targeted next-generation sequencing on 11 chordoid meningiomas, and compared to those of 51 non-chordoid, 
mostly high grade meningiomas. The chordoid meningiomas demonstrated a unique methylation profile in tSNE, 
UMAP, and hierarchical heatmap clustering analyses of the most differentially methylated CpGs. The most common 
copy number variation in chordoid meningioma was loss of 1p (7/11, 64%). Three chordoid meningiomas had 2p loss, 
which was significantly higher than the non-chordoid control cohort (27% vs 7.2%, p = 0.035). 22q loss was only seen 
in the two cases with additional atypical histological features. Chordoid meningiomas were enriched in mutations in 
chromatin remodeling genes EP400 (8/11,73%) KMT2C (4/11, 36%) and KMT2D (4/11, 36%), and showed low or absent 
NF2, TERT, SMO, and AKT1 mutations. Prognosis wise, only one case recurred. This case had atypical histology and 
high-grade molecular features including truncating NF2 mutation, 1p, 8p, 10, 14, 22q loss, and homozygous deletion 
of CDKN2A/B. Progression free survival of chordoid, otherwise grade 1 meningioma was comparable to non-chordoid 
WHO grade 1 meningioma (p = 0.75), and significantly better than chordoid WHO grade 2 meningioma (p = 0.019). 
Conclusion: the chordoid histology alone may not justify a universal WHO grade 2 designation. Screening for addi-
tional atypical histological or molecular genetic features is recommended.
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Introduction
Chordoid meningioma is a rare meningioma variant 
characterized by cords of eosinophilic, often vacuolated 
cells in an abundant mucoid matrix [19]. While descrip-
tions of “myxoid”, “chondroblastic”, and meningioma 
mimicking a chordoma have been noted since 1970s 
[5, 7, 11, 14], the first time these tumors were catego-
rized and termed as chordoid meningiomas was in 1988 
[15]. In this initial series, the tumors showed prominent 
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peritumoral lymphoplasmacytic inflammation that 
resembled Castleman’s tumors (angiofollicular hyperpla-
sia of lymph nodes), and occurred in young individuals 
with other systemic manifestations of Castleman syn-
drome, including microcytic anemia, polyclonal gam-
mopathy, or hepatosplenomegaly, most of which resolved 
after the tumor removal. Only two of the seven cases 
recurred. However, subsequent case series found that 
chordoid meningiomas predominantly occurred in adults 
in supratentorial locations, and most had no associated 
systemic hematopoietic abnormalities. The tumor recur-
rence rates varied widely in different series and ranged 
from 0 to 53% [1, 24]. Chordoid meningioma has been 
designated WHO grade 2 in the previous and current 
editions of WHO central nervous system tumor classi-
fications. However, many patients had long progression 
free survival, and the majority of the tumor recurrences 
could be attributed to either incomplete resections or 
presence of other atypical features [4, 6, 13, 24, 32, 33]. 
In a meta-analysis of 221 chordoid meningiomas [1], 
the extent of chordoid component was not predictive of 
recurrence. Rather, the extent of resection and the Ki67 
proliferation index (MIB) > 5% were the only factors that 
significantly associated with recurrences. As such, it is 
debatable whether the chordoid histology in itself por-
tends a higher risk for recurrence.

Several recent studies examined the genetic and epige-
netic profiles of chordoid meningiomas. Sievers et al. per-
formed global DNA methylation analysis on 38 chordoid 
meningiomas[28], of which 24 fell into benign methyla-
tion classes (MC), 13 into intermediate MC, and one into 
malignant MC. Recurrences was predominantly seen in 
tumors with intermediate or malignant MC, only 1 in 20 
tumors with the benign designation and long-term fol-
low up recurred. Sugur et al. [29] performed fluorescence 
in  situ hybridization (FISH) analysis on 15 chordoid 
meningiomas and found that recurrent chordoid men-
ingiomas had a high rate of 22q, 18p, 14q, and 1p loss, 
similar to non-chordoid high grade meningiomas, while 
non-recurrent chordoid meningiomas showed few such 
deletions. Georgescu et  al. [9] performed paneled NGS 
on 31 chordoid meningiomas and whole exome sequenc-
ing on 15 chordoid meningiomas, and identified 3 prog-
nostic groups. The group with highest recurrence rate 
(ED2) was highly enriched in mutations of NF2, a gene 
whose loss of function is highly associated with atypical 
meningioma [10]. The group with moderate recurrence 
rate (ED3) had mutually exclusive TRAF7, KLF4, AKT1 
or VHL mutations. The group with no recurrence (ED1) 
had no mutations. Taken together, it seems that chordoid 
meningiomas are comprised of a molecularly heteroge-
neous group of tumors. The aggressiveness of chordoid 
meningioma appears to be associated with the same 

combinations of genetic and epigenetic alterations seen 
in conventional atypical meningiomas.

In this study, we provide detailed clinical history, his-
tological assessment, DNA global methylation profile, 
copy number variation analysis, and targeted next-gen-
eration sequencing on 12 primary chordoid meningi-
omas in adults. We report a unique clustering pattern for 
chordoid meningiomas on methylation profile, separate 
from 51 conventional, mostly high grade meningiomas. 
Recurrence in chordoid meningioma was only seen in 
cases with concomitant atypical histology and molecular 
features.

Materials and methods
Case selection and histological assessment
Retrospective review of all meningiomas resected 
between 1995 and 2018 at the University of Texas South-
western Medical Center identified 15 primary chordoid 
meningiomas from 15 patients, which accounted for 
0.79% (15/1897) of all meningiomas. All chordoid men-
ingioma slides were reviewed. The extent of chordoid 
composition was calculated on all slides of chordoid 
meningioma specimens. Mitotic index and presence or 
absence of brain invasion, necrosis, small cell change, 
hyper-cellularity, sheeted architecture, and macro-nucle-
oli were reviewed according to the 2016 WHO classifica-
tion of central nervous system tumors. Analysis of tissue 
and clinical data was performed in accordance with local 
ethical regulations and approved by the institutional 
review board (IRB).

Statistical analysis
Only patients with more than a year of post-operative 
brain MRI follow up were included in the survival anal-
yses. These include 13 chordoid meningiomas from 12 
patients and 464 cases of non-chordoid meningiomas. 
The latter included 332 grade 1 meningiomas, and 128 
grade 2 meningiomas without any chordoid morphol-
ogy. Clinical data, which included age, gender, race, pre-
senting symptoms, tumor location, treatment, extent of 
resection, and radiographic follow-up, were obtained 
from the medical records. Statistical analyses were per-
formed using GraphPad Prism version 9.1.0 software 
(GraphPad, La Jolla, CA) or SAS version 9.2 (SAS Insti-
tute Inc, Cary, North Carolina). Progression free survival 
(PFS) and overall survival (OS) analyses were performed 
using the Kaplan–Meier method. Risk factors for recur-
rence and hazard ratios were calculated by univariate 
Cox regression analysis. The Chi-square test or Fisher’s 
exact test were used to compare categorical parameters. 
The Wilcoxon–Mann–Whitney test was used to compare 
the age distribution. A two-sided probability level of 0.05 
was chosen for statistical significance.
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DNA extraction, DNA methylation analysis and targeted 
next‑generation sequencing
Global DNA methylation analysis and targeted next-
generation sequencing (NGS) were performed on a total 
of 64 cases, including 11 primary chordoid and 53 non-
chordoid meningiomas. The latter group was enriched 
in aggressive meningiomas, including 41 atypical men-
ingiomas, 4 anaplastic meningiomas, 4 recurrent WHO 
grade 1 meningiomas, and 4 non-recurrent WHO grade 
1 meningiomas. Two atypical meningiomas with poor 
methylation data quality were excluded from subsequent 
analysis. For chordoid meningiomas, blocks with the 
highest percent of chordoid morphology were selected 
for methylation analysis.

Whole genome methylation profiling
DNA was extracted from formalin-fixed paraffin-embed-
ded (FFPE) meningioma samples using Maxwell Pro-
mega FFPE kit (Promega Inc, WI). DNA methylation 
profiling was performed as described previously [27]. 
The samples were scanned in 8 batches with a mixture 
of Infinium type I and II probes. The raw signal intensity 
data from the Human Methylation Epic arrays were then 
processed in R. The variability in methylation across the 
physical slide was identified by Singular Value Decompo-
sition (SVD) analysis on 64 samples. Beta-mixture quan-
tile dilation (BMIQ) normalization on Infinium I and II 
probes with a 0.01 cutoff threshold was then performed 
and followed by a ComBat batchbeadchip adjustment on 
the physical slide. XY chromosome linked probes were 
also filtered out. The differential methylation analysis 
was performed using the ChAMP R package (version 
v2.16.2). DNA methylation data were then reduced to 
2-dimension by distributed stochastic neighbor embed-
ding (t-SNE) [31] and Uniform Manifold Approxima-
tion and Projection (UMAP) for visualization [20]. An 
optimal perplexity of 5 was chosen for both t-SNE and 
UMAP. The top 5000 most variable differentially methyl-
ated probes (DMP) were used for hierarchical clustering. 
Euclidean metric was used to measure distances in high 
dimension space.

Targeted next‑generation sequencing
Mutational and copy number analysis was performed 
on FFPE extracted DNA as described above and 
sequenced using clinically validated DNA next-genera-
tion sequencing exonic NYU Langone Genome PACT, 
a custom-designed Next-Generation Sequencing (NGS) 
panel targeting all exons and selected promoters of 
580 cancer associated genes. The DNA libraries were 
hybridized with capture probes from IDT (Coralville, 
Iowa), and sequenced on Illumina NextSeq500. Raw 

sequence reads were trimmed and adapter sequences 
were removed before being mapped to the human 
genome hg19 using the BWA mem aligner (version 
0.7.17) [17].

As matched DNA samples from patients were not avail-
able, somatic variants were called by mutect2 of GATK4 
[2] on tumor samples with the pool of normal reference 
samples created from 54 blood samples from healthy 
subjects. Variants were then annotated by Ensembl Vari-
ant Effect Predictor (version 101) [21]. Sequencing arti-
facts were removed before post filtering was applied (the 
read coverage greater than 100x and tumor variant allele 
frequency greater than 10 % and less than 70%) to select 
highly confident calls. Copy number segments were cal-
culated by  Circular Binary Segmentation (CBS)  and 
adjusted for the tumor purity and single nucleotide poly-
morphism (SNP) allele counts using CNVKit (version 
0.9.7) [30]. The GISTIC2 (version 2.0) [22] algorithm was 
used to identify regions with significant copy number 
aberrations from the Meningioma cohort.

Results
Demographics of patients with chordoid meningioma
Patient demographics are summarized in Table  1. 
Among the 12 patients with chordoid meningiomas, 9 
were women and 3 were men, with a mean age of onset 
46.9  years (range 34–66). Among the 464 patients with 
non-chordoid meningiomas resected during the same 
time period, 314 were women and 150 were men, with 
mean age 55.5 (range 16–88). While the gender distribu-
tion was similar among both groups (p = 0.76, Fisher’s 
exact test), the patients with chordoid meningiomas were 
significantly younger than those with non-chordoid men-
ingiomas (p = 0.0321, unpaired t-test).

Anatomically 10 cases were supratentorial and 2 were 
infratentorial; none occurred in the spinal cord. The most 
common locations were frontal convexities (4), para-falx 
or tentorium (4), and sphenoid ridge (3). No patient had 
a history of Castleman disease. Patient 6 had a history of 
mediastinal non-Hodgkin lymphoma, status post medi-
astinal radiation 9  years prior to meningioma presenta-
tion. No patient had prior intracranial radiation history. 
No family history of meningiomas were noted in any of 
the patients. Only one patient (Patient 7) had multiple 
meningiomas at presentation, a left tentorium chordoid 
meningioma and right optic nerve meningothelial men-
ingioma without chordoid morphology, resected at two 
different time points. Three other patients (Patients 2, 4 
and 10) developed new meningiomas distant from the 
resection site on surveillance brain MRI. Patient 4 was 
treated with gamma knife and patients 2 and 10 were 
followed.
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Clinical course, histology, and survival analysis
All except one chordoid meningioma had gross total resec-
tions and did not receive post-operative radiation therapy. 
One patient (patient 10) had extensive tumor at presenta-
tion, centered in the right sphenoid wing with encasement 
of the right carotid artery and extensions into the right 
optic canal, cavernous sinus, sphenoid sinus, nasal pharynx 
and orbit. A subtotal resection was performed to debulk 
the mass and decompress the optic nerve, followed by post-
operative fractionated radiation (30 fractions /54 Gray) to 
residual tumor.

Histologically, the extent of chordoid component ranged 
from 60 to 100%. Only one tumor (patient 1) had extensive 
peritumoral lymphoplasmacytic infiltrate. Ten tumors, 
including all three tumors with pure chordoid morphology, 
were classified as otherwise WHO Grade 1 and lacked any 
atypical features; mitotic figures were rare (< 1/mm2) and 
there was no brain invasion. Tumor cells were arranged as 
individual cells (Fig. 1A), single file cords (Fig. 1B), or small 
nests (Fig. 1C) within abundant mucoid matrix. More com-
pact areas with mucin depletion were indistinguishable 
from conventional meningothelial or transitional meningi-
oma (Fig. 1D, asterisks) and were deemed “non-chordoid” 
areas. None of those tumors recurred after a mean brain 
MRI follow up of 110  months (range 31–232), including 
the case with subtotal resection.

Two cases (Patients 11 and 12) were histologically classi-
fied as atypical meningioma, WHO grade 2. Case 11 had a 
dominant (> 70%) chordoid histology (Fig. 1E) and showed 
extensive brain invasion. The invasive nests at the tumor-
brain interface had non-chordoid morphology (Fig.  1F). 
Mitotic index was high and focally reached 12 mitoses/10 
HPF (Fig.  1G). Frequent microscopic necrosis and large 
geographic necrosis (Fig.  1H) were present, as well as 
small cell change, hypercellularity, and prominent nucleoli 
(Fig.  1G). This patient had multiple recurrences and died 
from progressive disease 88 months after initial resection, 
despite multiple rounds of radiation therapy and addi-
tional surgeries. The three recurrence resection specimens 
showed atypical meningioma morphology without any 
chordoid features. The tumor from patient 12 had a mitotic 
index of 5/10 HPF and areas of hypercellularity with 
sheeted architecture, but showed no brain invasion, small 
cell change, prominent nucleoli, or necrosis. This patient 
had no evidence of recurrence at 38 months of follow up.

Kaplan–Meier survival analyses were performed on 
patients with > 12  months of brain imaging follow up 
for progression free survival (PFS) and any follow up for 

overall survival (OS), to compare the chordoid cohort 
with non-chordoid cohort (Fig. 2). PFS of chordoid, oth-
erwise grade 1 meningiomas was comparable to non-
chordoid WHO grade 1 meningioma (p = 0.75, Log-rank 
test), and significantly better than chordoid WHO grade 
2 meningiomas (p = 0.019, Log-rank test). Similarly, OS 
of chordoid, otherwise grade 1 meningioma was com-
parable to non-chordoid WHO grade 1 meningioma 
(p = 0.71, Log-rank test), and significantly better than 
chordoid WHO grade 2 meningioma (p = 0.008, Log-
rank test).

Whole genome DNA methylation analysis
DNA methylation analysis of 11 cases of chordoid men-
ingiomas all classified as meningioma by the German 
Cancer Research Center (DKFZ) meningioma methyla-
tion classifier[25], v2.4 (https://​www.​molec​ularn​europ​
athol​ogy.​org/​mnp/​class​ifier/5). Of those, nine matched 
to the benign methylation class (MC) family Ben-2, one 
matched to the MC family Inter-A, and the only recur-
rent case matched to malignant family MC Mal (Table 1). 
None of the cases had MGMT promoter methylation.

T-distributed stochastic neighbor embedding (t-SNE) 
analysis and Uniform Manifold Approximation and Pro-
jection (UMAP) on 11 chordoid and 51 non-chordoid 
meningiomas showed that the chordoid meningiomas 
clustered together, separate from non-chordoid men-
ingiomas (Fig.  3). The 11 chordoid cases also clustered 
together on the hierarchical clustering analysis of the 
heatmap of most differentially methylated CpGs (0.05 
significant) (Fig. 4).

Copy number variation analysis
Copy number variations (CNV) of the 11 chordoid men-
ingioma cases are summarized in Tables  1 and 2. The 
most common copy number variation in chordoid men-
ingioma was loss of 1p (7/11, 64%), which was not sig-
nificantly different from the control cohort composed 
mostly of high grade meningiomas (75%, p = 0.47). Four 
chordoid cases had balanced genome with no large losses 
or gains (all in the Ben-2 MC). Three chordoid meningi-
omas had 2p loss, which was significantly higher than the 
non-chordoid control cohort (27% vs 7.2%, p = 0.035). All 
three cases with 2p loss also had 1p loss. Chordoid men-
ingiomas had significantly less 14q loss and 22q loss than 
the control cohort. Interestingly, 22q loss was only seen 
in the two chordoid meningiomas with atypical histologi-
cal features, but in none of the otherwise WHO grade 1 

Fig. 1  Chordoid meningioma histology. A–D Chordoid meningiomas with otherwise benign histology, H&E. A Case 4, tumor cells arranged as 
individual cells. B Patient 1, tumor cells arranged as single file cords. C,D Patient 6, tumor cells arranged as small nests. Asterisk indicates solid area 
without mucin. E–H Patient 11, Chordoid meningioma with atypical histology, H&E. E Chordoid morphology dominated the tumor. F Extensive 
brain invasion. G Mitosis (arrow) and prominent nucleoli. H Geographic necrosis

(See figure on next page.)

https://www.molecularneuropathology.org/mnp/classifier/5
https://www.molecularneuropathology.org/mnp/classifier/5
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chordoid meningiomas. The case that was classified into 
Mal MC (Patient 11) showed multiple losses including 
1p, 8p, 10, 14, 22q, as well as NF2 truncating mutation 
and homozygous deletion of CDKN2A/B, alterations 
commonly seen in atypical and anaplastic meningiomas 
[3, 10].

Targeted next‑generation sequencing
The genetic changes are summarized in Fig. 5 and Addi-
tional file 1: Data S1. Raw annotated variant file includ-
ing variant allelic frequency (VAF), mean read depth 
and clinVar annotations are provided in Additional file 2: 
Data S2. The chordoid meningiomas showed lower rates 
of mutation than non-chordoid high grade meningiomas, 
with infrequent NF2 and TERT promoter mutations. 
Mutations common in non-chordoid low grade men-
ingiomas, such as AKT1 and SMO, were also sparse or 
absent. Interestingly, chordoid meningiomas appeared to 
be enriched in chromatin remodeling genes EP400 (8/11, 
73%, mean read depth 291)) KMT2C (4/11, 36%, mean 
read depth 1715) and KMT2D (4/11, 36%, mean read 
depth 575) mutations. Those mutations were also present 
in non-chordoid meningiomas but were less frequent, 
49% for EP400, 27% for KMT2C and 7.2% for KMT2D, 
respectively.

Discussion
In this study, we demonstrate that the chordoid histology 
alone may not be predictive of clinical aggressiveness. 
Rather, aggressive behavior in this chordoid meningioma 
cohort was associated with concomitant atypical histol-
ogy and genetic molecular alterations found in conven-
tional atypical meningiomas. Compared to prior studies, 
we report a unique methylation profile for chordoid 
meningioma, enrichment of chromatin remodeling gene 

mutations, and a predominantly benign clinical course in 
this relatively small cohort.

Demographically, chordoid meningioma accounted 
for 0.79% of all meningiomas resected at our institu-
tion between 1995 and 2018, consistent with previously 
reported frequency ranging between 0.36 and 1.64% [8, 
24, 32]. The mean age at presentation was 46.9, similar as 
the 45.5 year of age reported in a meta-analysis [1], and 
nearly a decade younger than the non-chordoid menin-
giomas (mean 55.0). This feature raised the possibility of 
a genetic or nongenetic risk that increased the chances of 
developing meningioma at an earlier age compared to the 
general population. However, the lack of any significant 
family history of brain tumors and scarcity of patients 
with multiple tumors argues against a germline tumor 
pre-disposition in patients with chordoid meningiomas.

Genetically, previous studies [9, 28] found that chor-
doid meningiomas had sparce NF2, TRAF7, KLF4, 
SMO, AKT1 and SMARCB1 mutations common to non-
chordoid meningioma. In accordance, our study found 
NF2 and AKT1 mutation in one case each, and no SMO 
or SMARCB1 mutation. TRAF7 and KLF4 were not 
included in our relatively small NGS panel. Our chor-
doid cohort was relatively enriched in chromatin remod-
eling genes EP400, KMT2C and KMT2D mutations 
compared to non-chordoid meningiomas. EP400 (E1A 
binding protein, 400KD) is the central ATP-hydrolyzing 
subunit of the TIP60/EP400 complex which utilizes the 
energy from ATP hydrolysis to reorganize chromatin 
and gene expression [12]. KMT2C and KMT2D are type 
2 lysine methyltransferases that form the core of nuclear 
regulatory structures known as COMPASS complexes 
(complex of proteins associating with Set1). KMT2C/D 
mediates mono- and tri-methylation of histone H3 at 
lysine 4 (H3K4me1 and H3K4me3) [16]. However, the 
mutations in KMT2C/D in our chordoid meningiomas 

Fig. 2  Kaplan–Meier survival analyses of progression free survival and overall survival of chordoid meningiomas compared to non-chordoid 
meningiomas
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cohort did not result in diffuse loss of nuclear H3K4me1 
or H3K4me3 expression by immunohistochemistry (data 
not shown). These mutations were not present in every 

chordoid case and were also seen in non-chordoid men-
ingiomas. Our study also confirms the finding by Sievers 
et al.[28] that 2p loss was significantly higher in chordoid 

Fig. 3  Unsupervised clustering of epigenetic markers from chordoid meningioma samples reveals distinct subtypes. DNA methylation from 62 
patient samples was analyzed using the EPIC array; the resulting methylation matrix was then passed through two commonly used dimensionality 
reduction algorithms, tSNE (left) and UMAP (right). Samples are annotated by histological classification. ATM: atypical meningioma. ANA: anaplastic 
meningioma. CHOM: chordoid meningioma. MNG: meningothelial and transitional meningiomas
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than non-chordoid meningiomas. However, 2p loss was 
only present in 27% of our chordoid cases and not associ-
ated with aggressive behavior.

In a large genetic study comparing 468 benign and 
88 atypical primary meningiomas, Harmanci et  al. [10] 
reported that the only somatically mutated gene that was 

found to be significantly enriched in the atypical cohort 
was NF2, which co-occur with either genomic instabil-
ity or SMARCB1 mutations [10]. This finding held true 
in our chordoid cohort as well. Recurrence was only 
seen in the one case with NF2 truncating mutation along 
with chromosome instability, and atypical histology was 

Fig. 4  Differentially Methylated Probes (DMPs) analysis of a heatmap of the top 5000 most variable methylated CpGs. Columns represent samples 
and rows methylation sites; individual cells are color coded by their methylation value. Hierarchical clustering was performed on both axes of the 
heatmap. The distance of each methylation site from a transcription start site is annotated to the right of the heatmap. Differential methylation 
highlights the distinct signature of chordoid meningiomas. Meningioma classification is annotated beneath the heatmap: ANM- Anaplastic 
meningioma, ATM- Atypical meningioma, CHOM- Chordoid meningioma, MNG- meningothelial and transitional
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associated with 22q loss. Likewise, in Georgescu et  al. 
[9], the worst prognostic group (ED2) had 75% cases 
with NF2 mutation, 71% with 22q loss. The intermediate 
prognostic group (ED3) had 12% case with NF2 muta-
tion, 85% with 22q loss. The benign group (ED1) had 0% 
NF2 mutation, and 25% 22q loss. In Sugur et al. [29], 5 of 
15 chordoid meningiomas recurred, all of which showed 
either complete or partial deletion of the NF2 gene locus; 
and four of the five cases had deletions of 1p,14q,18p 
and 22q. Taken together, it appears that NF2 mutation 
and chromosome instability can account for majority of 
recurrences in chordoid meningioma.

Intriguingly, tSNE, UMAP, and hierarchical cluster-
ing heatmap analyses of most differentially methylated 

CpGs did identify a unique methylation profile that 
separated the chordoid meningioma cohort from the 
non-chordoid control cohort. We speculate that the 
chordoid morphology may have an underlining genetic 
or epigenetic alteration that occurred early in tumo-
rigenesis, which in itself does not portend aggressive 
behavior. However, gaining of additional molecular fea-
tures of high-grade meningioma, such as 22q/NF2 loss, 
chromosome instability, and homozygous CDKN2A/B 
deletions leads to tumor progression. The variable 
presence of the latter high grade meningioma molecu-
lar features in different chordoid meningioma series 
may account for the variable recurrence rates in those 
studies. That been said, this study is limited as a small, 

Table 2  Methylation class and copy number variation of meningiomas

a Median (IQR) for frequency (%)
b Fisher’s exact test; Person’s Chi-squared test

Variables Overall, N = 62a Chordoid, N = 11a Non-Chordoid, N = 51a p valueb

MC class, n (%)  < 0.001

Benign 16 (26) 9 (82) 7 (14)

Intermediate 28 (45) 1 (9.1) 27 (53)

Malignant 18 (29) 1 (9.1) 17 (33)

1p Loss, n (%) 45 (73) 7 (64) 38 (75) 0.47

2p Loss, n (%) 5 (8.1) 3 (27) 2 (3.9) 0.035

10 Loss, n (%) 15 (24) 1 (9.1) 14 (27) 0.27

14q Loss, n (%) 31 (50) 1 (9.1) 30 (59) 0.003

22q Loss, n (%) 44 (71) 2 (18) 42 (82)  < 0.001

Fig. 5  Genomic profiles of chordoid meningiomas. Visualization of recurrent genomic alteration events in Meningiomas by OncoPrint. The samples 
are clustered by Meningioma type. Alteration percentage per gene is shown on the left side
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retrospective cohort from a single institution, and liable 
to unintended selection bias. The control cohort is also 
relatively small and unbalanced, composed predomi-
nantly of atypical and anaplastic meningiomas, which 
may affect hierarchical clustering analyses of methyla-
tion profile. More data from a larger dataset in future 
studies will be necessary for confirmation.

The association between the extent of chordoid com-
ponent and tumor aggressiveness has been controver-
sial. In a series of 42 chordoid meningiomas, Couce 
et al. reported that 85.7% of recurrent tumors had pri-
mary tumors with > 50% chordoid pattern. Lin et  al. 
[18] reported increased chordoid component in one of 
two recurrent tumors compared to their primary coun-
terparts. On the other hand, Sadashiva et al. found no 
correlation between the extent of chordoid component 
and recurrence in a series of 41 chordoid meningiomas 
[24], nor did Choy et al. in a large meta-analysis [1]. In 
our series, none of the tumors with pure chordoid mor-
phology recurred after long term follow up. The only 
case that did recur had 70% chordoid component in 
primary tumor and no significant chordoid component 
in 3 separate recurrence specimens. Atypical features 
such as invasive tumor nests in brain (Fig. 1F), dura or 
bone at the periphery of tumor typically had non-chor-
doid morphology; necrosis often occurred in regions 
of solid hypercellularity that lacked chordoid matrix 
(Fig. 1G).

There have been rare, individual case reports of “myx-
oid meningioma”, which was considered as a rare vari-
ant of metaplastic meningioma that generally behaved 
in a benign fashion [23, 26]. The distinction between 
chordoid and myxoid meningioma was morphologi-
cal, emphasizing vacuolated cytoplasm, well demar-
cated cell borders and polygonal cell shape in chordoid 
meningioma. No genetic molecular studies have been 
done on myxoid meningiomas specifically. However, 
metaplastic meningioma in general were enriched in 
chromosome 5 gain, and classified into the Ben-3 meth-
ylation class [25], which was distinct from our chordoid 
cohort.

Chordoid meningioma is currently classified as WHO 
grade 2. However, this designation creates a conundrum 
in practice for tumors with marked chordoid matrix but 
otherwise benign histology, which behaved as WHO 
grade 1 meningioma in our experience. Georgescu et al. 
and Sievers et  al. each proposed a 3-tiered grading sys-
tem within chordoid meningioma depending either on 
the presence of different mutations and/or the DNA 
methylation subclass. In cases where DNA methyla-
tion or panel genetic analysis is not available, reporting 
of presence or absence of any other atypical features is 
highly recommended.
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