
Bady et al. 
Acta Neuropathologica Communications           (2022) 10:39  
https://doi.org/10.1186/s40478-022-01344-5

RESEARCH

DNA methylation‑based age acceleration 
observed in IDH wild‑type glioblastoma 
is associated with better outcome—including 
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Abstract 

Elderly patients represent a growing proportion of individuals with glioblastoma, who however, are often excluded 
from clinical trials owing to poor expected prognosis. We aimed at identifying age-related molecular differences that 
would justify and guide distinct treatment decisions in elderly glioblastoma patients. The combined DNA methylome 
(450 k) of four IDH wild-type glioblastoma datasets, comprising two clinical trial cohorts, was interrogated for dif-
ferences based on the patients’ age, DNA methylation (DNAm) age acceleration (DNAm age “Horvath-clock” minus 
patient age), DNA methylation-based tumor classification (Heidelberg), entropy, and functional methylation of DNA 
damage response (DDR) genes. Age dependent methylation included 19 CpGs (p-value ≤ 0.1, Bonferroni corrected), 
comprising a CpG located in the ELOVL2 gene that is part of a 13-gene forensic age predictor. Most of the age related 
CpGs (n = 16) were also associated with age acceleration that itself was associated with a large number of CpGs 
(n = 50,551). Over 70% age acceleration-associated CpGs (n = 36,348) overlapped with those associated with the DNA 
methylation based tumor classification (n = 170,759). Gene set enrichment analysis identified associated pathways, 
providing insights into the biology of DNAm age acceleration and respective commonalities with glioblastoma clas-
sification. Functional methylation of several DDR genes, defined as correlation of methylation with gene expression 
(r ≤ −0.3), was associated with age acceleration (n = 8), tumor classification (n = 12), or both (n = 4), the latter includ-
ing MGMT. DNAm age acceleration was significantly associated with better outcome in both clinical trial cohorts, 
whereof one comprised only elderly patients. Multivariate analysis included treatment (RT, RT/TMZ→TMZ; TMZ, RT), 
MGMT promoter methylation status, and interaction with treatment. In conclusion, DNA methylation features of age 
acceleration are an integrative part of the methylation-based tumor classification (RTK I, RTK II, MES), while patient age 
seems hardly reflected in the glioblastoma DNA methylome. We found no molecular evidence justifying other treat-
ments in elderly patients, not owing to frailty or co-morbidities.
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Introduction
Patients over the age of 70 represent an increasing frac-
tion of individuals with glioblastoma (GBM) [40], yet 
elderly patients are often excluded from clinical trials 
due to the estimated poor prognosis and a short overall 
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survival (6–9 months). Usually, a shorter duration radia-
tion therapy schedule in association with temozolo-
mide (TMZ) is favored for elderly patients aiming to 
shorten the treatment duration in view of the overall 
short life expectancy. Hypofractionated radiotherapy 
(15 × 2.66  Gy) has been shown clinically equivalent to 
standard 30 × 2  Gy fractionation [43], in combination 
with TMZ chemotherapy this regimen has been supe-
rior to hypofractionated radiotherapy (RT) alone [42]. In 
tumors with a methylated promoter of the O6-methyl-
guanine methyl transferase (MGMT) gene, exclusive or 
initial TMZ chemotherapy alone may be an alternative 
to radiotherapy. Median overall survival remains unsat-
isfactory with treatment regimens. The choice of the 
treatment regimen depends on the patient’s biological 
rather than chronological age and frailty, and the tumor 
MGMT promoter methylation status [59]. Yet, a fraction 
of elderly patients have a more favorable outcome with 
disease control beyond 18–24  months. Little is known 
about the molecular make-up of GBM in older patients 
(7th and 8th decade of life) and whether it differs from 
a “general” GBM IDH wild-type (IDHwt) population. 
We have reported previously from the Nordic trial for 
elderly GBM patients that the MGMT promoter meth-
ylation status is not associated with patient age [33]. The 
predictive value of the MGMT status for benefit from 
TMZ is supported by the aforementioned trials. Expect-
edly, mutations in the isocitrate dehydrogenase gene 1 
(IDH1), a hallmark of gliomas in young adults, are rare 
in the elderly [33, 60]. Moreover, no obvious GBM-spe-
cific genetic alterations have been associated with the age 
of the patients, once removing cases with IDH mutant 
(IDHmut) tumors that are recognized and classified as a 
distinct disease entity since 2016 [31]. Hence, systematic 
molecular characterization is required, in order to jus-
tify distinct treatment modalities not owing to frailty of 
the patients, or suggesting new, more adapted (targeted) 
approaches that can be tested in clinical trials in this 
elderly patient population.

The DNA methylome of cells is known to contain age 
related information reflected in age associated epigenetic 
changes. These are thought to arise from innate biological 
mechanisms, such as deterioration of epigenetic mainte-
nance resulting in changes of DNA methylation over time 
that allowed the construction of accurate predictors of 
chronologic age. Such predictors are known as epigenetic 
clocks or DNA methylation clocks [12, 16, 21, 22, 62]. Fur-
thermore, certain biological features or environmental 
factors have been associated with an acceleration of the 
DNA methylation age (DNAm age) in the blood, certain 
tissues, and cancer. This difference between chronologic 
age of the patient and estimated DNAm age is called 
DNAm age acceleration, and has been found associated 

with obesity, and smoking, but also Down syndrome or 
cancer, as reviewed by Horvath and Raj [23]. It has been 
proposed that biological age acceleration may hold the 
potential for disease specific biomarkers or frailty meas-
ures for individuals [5, 23, 34]. In addition, the tumor 
DNA methylome comprises information on cell of origin, 
plus tumor development related alterations that allow 
accurate tumor classification and identification of new 
tumor entities [9, 37]. Previous studies have reported on 
associations of tumor DNAm age with chronologic age of 
the patients in adult glioma and GBM [30, 65]. However, 
these studies included glioma of variable grades and sub-
types, including IDHmut glioma that constitute an epi-
genetically and clinically distinct entity, associated with 
a glioma CpG island methylator phenotype (G-CIMP +) 
[10, 39, 51].

In this translational research study we aimed at identi-
fying age-related molecular differences that may unravel 
novel therapeutic options and guide rational manage-
ment of elderly GBM patients. To this end we set out to 
investigate the DNA methylome of adult IDHwt GBM 
for age related differences, including the patients’ age, 
DNAm age acceleration of the tumor, DNA methylation-
based tumor classification (Heidelberg), and CpG meth-
ylation entropy. Further, we paid special attention to the 
potential implication of DNA damage response (DDR) 
genes, given the current standard of care, treating GBM 
patients with DNA damaging therapies. We stablished 
the methylome for two clinical trial cohorts treating 
newly diagnosed GBM patients [33, 48, 49], whereof one 
recruited elderly patients only [33]. The study included 
an additional two external GBM data sets [8, 9], and 
retained only tumors meeting the criteria of GBM grade 
4 of the recent update of the WHO CNS5 classification 
2021 [32].

Material and methods
Patient samples
Two sets of newly diagnosed GBM samples were 
obtained from patients treated in clinical trials accord-
ing to pre-specified clinical criteria: from the Nor-
dic trial (n = 116), and from the trial conducted by the 
European Organisation for Research and Treamtent of 
Cancer (EORTC) and the National Cancer Institute of 
Canada (NCIC) (EORTC 26,981/NCIC CE.3), pooled 
with the samples from the Lausanne Pilot clinical trial 
(LN-Pilot; Biobank of the Brain and Spine Tumor Center, 
BB_031_BBLBGT, of the Centre Hospitalier Universi-
taire Vaudois, CHUV, Lausanne, Switzerland) (n = 219). 
The constituted clinical trial cohorts were restricted to 
patients for whom enough frozen or paraffin embedded 
tissue was available, thus excluding cases with diagnos-
tic biopsies only. The cohorts overlap largely with those 
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for which the MGMT promoter methylation status was 
reported in the original trials [19, 20, 33]. The Nordic 
phase III trial recruited patients 60 years or older with a 
WHO performance score (PS) [58] of 2 or less, allowing 
PS 3, if it was due to neurological deficits. Patients were 
randomized to one of two regimens of RT (60 Gy in 30 
fractions, or 34 G in 10 fractions) or standard dose TMZ 
(200 mg/m2, days 1–5 every 28 days) [33] (trial registra-
tion number ISRCTN81470623). The LN-Pilot trial and 
the EORTC 26,981/NCIC CE.3 trial (NCT00006353) 
recruited patients between the ages of 18 and 70, and a 
WHO PS of 2 or less [48, 50]. Patients in the uncontrolled 
phase II LN-Pilot trial received the TMZ/RT→TMZ 
standard regimen (the current standard of care), and 
patients in the pivotal trial EORTC 26,981/NCIC CE.3 
were randomized to RT (60 Gy in 30 fractions) or TMZ/
RT→TMZ. Patients signed informed consent for trans-
lational research according to institutional and interna-
tional guidelines and regulations.

DNA methylation analysis
For genome-wide DNA methylation analysis DNA was 
isolated from macro-dissected tumor tissue (frozen sam-
ples: DNeasy Blood & Tissue Kit, Qiagen; formalin fixed 
paraffin embedded (FFPE) samples: EX-WAX™ Paraffin-
embedded DNA Extraction Kit, S4530; Merck KGAa) 
and quantified (Quant-iT™ PicoGreen® dsDNA Assay 
Kit, #P7589, Life Technologies). DNA samples were ana-
lyzed on the Human Methylation 450 K BeadChip (Illu-
mina, San Diego CA, USA) at the Genomics platform 
of the University of Geneva. FFPE-derived tumor DNA 
samples were processed after passing a PCR-based qual-
ity control (Infinium HD FFPE QC Assay Protocol). DNA 
samples were subjected to bisulfite treatment (EZ DNA 
Methylation-Gold™ Kit, Zymo Research) as previously 
described, and FFPE samples were analyzed in separate 
batches after pretreatment with the restauration kit as 
recommended (llumina) [3, 26].

Data availability of own datasets
The datasets from the trial cohorts are available at the 
Gene Expression Omnibus database (GEO) (http://​www.​
ncbi.​nlm.​nih.​gov/​geo/) under the accession numbers 
GSE195684 for the Nordic trial samples, and the samples 
from the LN-Pilot trial and the EORTC 26,981/NCIC 
CE.3 trial are available at GSE195640, or GSE60274. The 
latter comprises data from a subset of GBM samples of 
the EORTC-NCIC & Pilot trials and 5 non-tumoral brain 
tissue samples that we have previously published [26]. 

Methylation data from an additional 5 non-tumoral brain 
tissues used, is available under GSE104293 [3].

External datasets
External datasets comprised the GBM dataset from 
The Cancer Genome Atlas (TCGA,) for which RNA-
seq and HM-450  k data, and corresponding annota-
tions [8] (TCGA; n = 113) were used. The dataset is 
available in the database of Genotypes and Phenotypes 
(dbGaP), dbGaP accession number phs000178.v9.p8; 
http://​cance​rgeno​me.​nih.​gov. The GBM dataset with 
HM-450  k data from the Deutsches Krebsforschung-
szentrum (DKFZ) [9] (n = 235) was downloaded from 
GEO under the accession number GSE109381.

Preprocessing DNA methylation data
The CpG probes with detection p-values > 0.01, located 
on the sex chromosomes, or in SNPs were removed 
from each dataset. The functional normalization [13] 
for Illumina 450 k arrays includes noob (normal-expo-
nential out-of-band) background correction, dye-cor-
rection (chemistry I vs II) and RUV-2 step (removing 
unwanted variation) based on control probes. This nor-
malization was performed by the function preprocess-
Funnorm from the R package minfi. DNA methylation 
was summarized by M-values [11]. The ComBat proce-
dure [24] based on common CpG probes was used to 
aggregate the four datasets to limit experimental varia-
tion and batch effects across the four datasets.

Copy number variation
Copy Number status for each marker was assessed 
using the combined intensities for methylated and 
unmethylated signals and circular binary segmentation 
to detect copy number aberration (CNA) events as pre-
viously described [2]. The homozygous deletion status 
(HD) of CDKN2A was determined using copy number 
probe means (CpGs) located in the CDKN2A gene and 
applying a mixture model [55].

Additional metrics based on DNA methylation
Sample purity
The tumor purity (HMpurity) of each sample was 
estimated as previously proposed [3] using the GBM 
TCGA datasets.

MGMT promoter methylation status
The DNA methylation status of the MGMT promoter 
and the MGMT score (logit-transformed probabil-
ity) were determined using the MGMT-STP27 regres-
sion model based on HM-450 k data [2, 4]. In brief, the 

http://www.ncbi.nlm.nih.gov/geo/
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Page 4 of 18Bady et al. Acta Neuropathologica Communications           (2022) 10:39 

M-values of the methylation probes cg12434587and 
cg12981137 were used as input into the logistic regres-
sion model (MGMT-STP27). A cut-off of 0.358 is used 
for classification into MGMT methylated and unmeth-
ylated promoter status, respectively.

Molecular subtypes
The G-CIMP status was determined by unsupervised 
clustering (Ward’s algorithm with Euclidean distance) 
as previously reported [3] and served as approximation 
for the IDH mutation status, as this information was 
not available for all samples in any of the datasets. All 
G-CIMP + samples were removed. Molecular sub-
types were obtained using the classification procedure 
of central nervous system tumors based on the analysis 
of DNA methylation patterns [9] (version v11b4, www.​
molec​ularn​europ​athol​ogy.​org). For the main analyses of 
this study, we considered only GBM classified as mes-
enchymal (GBM_MES), RTK I (GBM_RTK_I) or RTK II 
(GBM_RTK_II).

DNAage and age acceleration
DNA methylation-based estimates of age (DNAm age) 
were calculated using ElasticNet regression [66] using 
353 CpG sites selected by the Horvath clock [21, 23]. The 
DNA methylation data were calibrated before the com-
putation of DNAm age as recommended [21]. The metric 
called Age Acceleration (Accel) was obtained by sub-
traction of chronological age (age) from DNA methyla-
tion age (DNAm age). For subsequent analysis, 306 clock 
probes were conserved after filtering and aggregation of 
the four datasets (detection p-values > 0.01).

DNA methylation entropy (HME)
Estimation of the DNA methylation entropy (HME) is 
given by the normalized Shannon entropy [46] adapted 
for methylation fraction (p) given by Beta values [16]. 
For the ith methylation marker, two states were possible: 
unmethylated (1 − pi) or methylated (pi) and the maximal 
entropy is given by log(2). The DNA methylation Entropy 
(HME) for N methylation markers is computed as follow:

The HME metrics were defined for all CpGs (global 
HM-entropy) and for the 12 strata constituted by the 
Island regions (CpG islands, shores, shelves or open 
sea) and promoter location status (promoter or not in 

HMEm =

∑
i[pu × log(pu)+ pm × log(pm)]

N × log(1/2)

promoter). The HME table was described by variation 
partitioning [7] for age, age acceleration and GBM clas-
sification. The results are illustrated in a Venn diagram 
containing the variation fractions for the three supple-
mentary variables.

Expression
Gene expression from RNA sequencing (RNA-seq) data 
(Level 3), from the TCGA GBM dataset selected for this 
study, was quantified for the transcript models using 
RSEM [29] and normalized within samples to a fixed 
upper quartile for TCGA. Further details are available 
at the DCC data portal of TCGA. Gene-level data were 
restricted to genes expressed in at least 70% of samples. 
The complete dataset was normalized by the VOOM 
procedure [28].

Pathway analysis
Pathway analysis was performed by gene set enrich-
ment analysis (GSEA) using the Molecular Signatures 
Database (MSigDB, v7.4.1, updated May 2021, all 8 
collections) [52] using hypergeometric tests (R pack-
ages msigdbr and ClusterProfiler). Gene-sets with 
Bonferroni adjusted P-values ≤ 0.1 were considered 
significant.

Statistical analysis
Detection of DMP
The associations of CpG-probes (CpGs) with age or 
age acceleration (Accel) were investigated by com-
parison of the model including the variable of inter-
est (e.g. CpG ~ age or CpG ~ Accel) and the null model 
(e.g. CpG ~ 1) based on linear models with F-test. The 
Bonferroni procedure was used to account for multiple 
testing comparisons. A differentially methylated posi-
tion (DMP) was defined as a candidate for which the 
q-value was less than 0.1.

Detection of functional methylation
The correlation of methylation with the expression level 
for each CpG-probe located in a gene promoter within 
1500 nucleotides up- or down-stream of the transcrip-
tion start site (TSS) was estimated by Spearman cor-
relation test. A methylated position was defined as 
functional, when the q-value was less than 0.05 and 
the correlation coefficient was inferior to − 0.3 (nega-
tive effect on gene expression). The gene locations were 
based on the Homo sapiens (human) genome assembly 
GRCh37 (hg19) available at the Genome Browser of 
the University of California, Santa Cruz (UCSC build 
hg19, http://​genome.​ucsc.​edu) [25].

http://www.molecularneuropathology.org
http://www.molecularneuropathology.org
http://genome.ucsc.edu
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Cox regression model and other tests
For the continuous variables Wilcoxon test (t) or 
Kruskal and Wallis test (a) were used to test the differ-
ences between two or more groups. The independence 
between qualitative variables and groups was tested 
with Pearson’s Chi-squared with Yates’ continuity cor-
rection. Survival univariate and multivariate models 
were computed by Cox proportional hazards regression 
model [54]. The association tests with GBM classifica-
tion, study origins and the interaction between these 
both variables were performed by model compari-
son using Wald’s test with sandwich estimation of the 
covariance matrix and F-statistic. The covariance of the 
models is estimated by sandwich methods with the type 
version HC3 [64] to compensate heteroscedasticity. 
Principal component analyses (PCA) and the permu-
tation multivariate analyses of variance (ADONIS) [1] 
using Euclidean distances were used to investigate the 
association between additional variables (e.g. age, age 
acceleration or GBM classification) and DNA methyla-
tion data. Analyses and graphical representations were 
performed using R-4.1.2 and the R package rms and 
survival [17, 54].

Results
Patient characteristics
Age-dependent DNA methylation features of GBM were 
investigated in samples from patients enrolled in clinical 
trials for newly diagnosed GBM. They comprised samples 
from the Nordic trial (n = 116), treating elderly patients, 
and the EORTC 26,981/NCIC CE/3 and the Lausanne 
Pilot (LN-Pilot) trials (n = 219). The DNA methylome 
was established on the 450 k platform. The baseline 
description of the full cohorts is presented in Additional 
file 1: Table S1. The DNA methylation-based tumor clas-
sification [9] and its association with age is visualized 
in Additional file  1: Fig. S1. Of note, the patient cohort 
constituted of the EORTC/NCIC & LN-Pilot trials exhib-
ited more diversity in glioma subtypes than the Nordic 
cohort. Detailed annotation of all samples is provided in 
Additional file 2.

Two additional external GBM datasets were included 
in the analyses. The age ranges of the patients in the 
four full GBM datasets, after removing all IDHmut 
/G-CIMP + samples, were as follows: Nordic (n = 115) 
60 to 83  years (median 70, SD 4.8  years), EORTC/
NCIC & LN-Pilot (n = 195) 26 to 70  years (median 55, 
SD 9.39  years), TCGA (n = 113) 21 to 85  years (median 
62, SD 11.9  years), and DKFZ (n = 235) 18 to 86  years 
(median 59, SD 13.3 years). The tumors of the four data-
sets were classified according to the Heidelberg DNA 
methylation-based classifier [9]. Most GBM were classi-
fied as MES, RTK I or RTK II (88% for TCGA, 91% for the 

other 3 datasets), with few samples belonging to GBM-
MID or GBM-G34 (no GBM-G34 in Nordic, Additional 
file 1: Fig. S1) or others that are now considered distinct 
tumor entities in the updated WHO classification 2021, 
and few non-GBM classifications. This study was sub-
sequently restricted to IDHwt GBM subtypes MES, and 
RTK I or II, for which the baseline characteristics of the 
patients are summarized in Table 1 for each dataset.

The distribution of the tumors in the three GBM sub-
classes was significantly different between the four data-
sets (p = 0.014, chi-squared). There were less MES GBM 
comprised in the DKFZ dataset as compared to the oth-
ers (22% less), likely due differences in patient selection 
of the study. There were no differences in the proportion 
of female and male patients, or the frequency of MGMT 
promoter methylation between the datasets.

After initial filtering, 361,745 CpGs were retained for 
subsequent analyses. After batch correction no effect 
of the four datasets was observed on the DNA methyla-
tion based organization of the samples as illustrated in 
a PCA (R2 = 0.002, p = 1.00, Fig.  1a-b). In contrast, the 
global organization of DNA methylation was significantly 
affected by GBM methylation subclasses (R2 = 0.083, 
p = 0.01, Fig. 1c). Similarly, no differences were observed 
for sample purity between the data sets (Table  1), but 
between the GBM subclasses (Wald’s test, p < 0.001, 
Table 2; Fig. 1e).

The lowest purity was associated with the MES GBM 
subtype (Fig.  1e), in line with a more pronounced frac-
tion of tumor infiltrating cells that has been associated 
with this subtype [57]. The Nordic trial, recruiting only 
elderly patients (Table  1), introduced a significant dif-
ference of age among the four datasets (Wald’s Test, 
p < 0.001, Table  2). However, no age related association 
with the three GBM subtypes was observed (Wald’s 
Test, p = 0.805, Table  2, Fig.  1d). Finally, no association 
was observed between the GBM subtype and the WHO 
performance score at study entry (PS, scale 0 to 4, with 
higher values indicating greater disability [58]) (Cochran-
Mantel-Henszel chi-squared test with stratification by 
study origin, p = 0.720). These data was available for the 
patients treated in the EORTC 26,981/NCIC CE/3, the 
LN-Pilot study and the Nordic trial, respectively (Addi-
tional file 1: Table S1).

Age related differential methylation (DMP)
First, we analyzed the DNA methylation data for 
associations with the patients’ age. Age dependent 
methylation identified 19 CpGs (p-value ≤ 0.1, after Bon-
ferroni correction; Additional file 1: Table S2). Of these, 
ELOVL Fatty Acid Elongase 2 (ELOVL2) methylation 
at cg16867657 has previously been published as a bio-
marker for chronologic age (r = 0.92) [14] and is part of 
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forensic age predictors [38, 63]. Similarly, methylation 
levels of Tripartite Motif Containing 59 (TRIM59) have 
been associated with chronologic age [34, 63]. Several of 
the probes were associated with cancer relevant genes. 

Three CpGs met our criteria of functional methylation 
that we defined as negative correlation of methylation 
with expression (≤ − 0.3 and p-value adjusted for multi-
ple testing ≤ 0.1) of the corresponding, annotated gene. 

Table 1  Baseline description and parameters of GBM datasets

Description of datasets used in the analyses that were restricted to IDHwt GBM WHO grade 4, 2021, and corresponding parameters determined in this study. 
Significant differences between the datasets were observed for patient age and DNA methylation age of GBM (DNAm age), and GBM subtypes.

Age Acc, DNAm age acceleration; GBM subgroup, methylation-based classification into mesenchymal (MES), RTK I and RTK II; Global HM entropy, human methylation 
based entropy of all genomic regions; HME Prom CpG, human methylation based entropy in promoter CpG islands; HM purity, human methylation based 
determination of sample purity; MGMT promoter methylation status, unmethylated U, methylated M, classified by MGMT-STP27 procedure; MGMT score, calculated 
with MGMT-STP27; SD, standard deviation.

Datasets DKFZ (%) EORTC/NCIC & LN-Pilot 
(%)

Nordic (%) TCGA (%) P-Value

N 214 (100) 177 (100) 105 (100) 99 (100)

Sex 0.1994

Female 101 (47) 66 (37) 40 (38) 42 (42)

Male 113 (53) 111 (63) 65 (62) 57 (58)

Patient age [years]  < 0.0001

Min 29 27 60 33

Max 86 70 83 85

Mean, SD 60.34 ± 11.25 54.35 ± 8.98 70.82 ± 4.66 61.95 ± 10.64

DNAm age [years] 0.0001

Min 40.02 39.56 57.90 30.11

Max 174.01 167.42 180.10 186.71

Mean, SD 94.65 ± 22.58 94.13 ± 26.13 107.75 ± 25.17 98.71 ± 27.72

Age Acc [years] 0.1737

Min − 13.45 − 9.50 − 7.19 − 14.89

Max 135.01 104.14 108.49 120.71

Mean (SD) 34.31 ± 21.25 39.78 ± 24.71 36.93 ± 25.09 36.76 ± 26.67

GBM subgroup 0.0141

GBM_MES 48 (22) 66 (37) 43 (41) 31 (31)

GBM_RTK_I 51 (24) 30 (17) 20 (19) 19 (19)

GBM_RTK_II 115 (54) 81 (46) 42 (40) 49 (49)

MGMT-STP27 0.4871

U 100 (47) 91 (51) 55 (52) 55 (56)

M 114 (53) 86 (49) 50 (48) 44 (44)

MGMT score 0.3412

Min − 5.58 − 10.48 − 4.09 − 11.68

Max 6.98 7.35 8.16 6.34

Mean, SD 0.62 ± 3.59 0.22 ± 3.38 0.32 ± 3.31 − 0.23 ± 3.85

HM purity 0.6177

Min 0.31 0.42 0.42 0.39

Max 0.99 0.95 0.98 0.98

Mean, SD 0.73 ± 0.14 0.74 ± 0.14 0.75 ± 0.14 0.75 ± 0.14

Global HM entropy 0.9938

Min 0.45 0.47 0.47 0.49

Max 0.64 0.64 0.62 0.63

Mean, SD 0.55 ± 0.03 0.55 ± 0.03 0.55 ± 0.03 0.55 ± 0.03

HME Prom CpG: 0.2526

Min 0.27 0.29 0.29 0.28

Max 0.48 0.47 0.45 0.41

Mean, SD 0.36 ± 0.03 0.36 ± 0.03 0.36 ± 0.03 0.36 ± 0.03
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These comprised functional CpG probes for TRIM59, 
Twist Family BHLH Transcription Factor 1 (TWIST1), 
and Nuclear Receptor Interacting Protein 3 (NRIP3), 

respectively (Additional file  1: Table  S2). Functional 
methylation information was derived from the TCGA 
dataset that comprises RNA-sequencing data.
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Fig. 1  Organization of DNA methylation by dataset and GBM subtype. The representation of the twenty first eigenvalues shows the organization 
of the inertia structure a given by principal component analysis (PCA) of the DNA methylation data. The first vectorial plane, defined by the two 
first eigenvalues, represents 21% of the table inertia. The patient samples are represented on the first vectorial plane of the PCA (axes 1 and 2) 
of DNA methylation, annotated by study origin (DKFZ, red; EORTC & LN-Pilot, green; Nordic, blue; TCGA, pink; due to the overlap of the datasets, 
only one label is visible) b and methylation-based GBM classification c, MES, red; RTK I, green; and RTK II, blue. The R-squared (R2) and p-value 
(99 permutations, ADONIS) testing the effect between the DNA methylation data and dataset b and GBM subtype c are indicated. The boxplot 
representations for the patients age d, sample purity e, and DNAm age acceleration f are drawn, stratified by methylation-based GBM classification 
and study origin. No age related association with the three GBM subtypes was observed (p = 0.806, Wald’s test) d, while significant differences were 
found for HM-purity (p < 0.001, Wald’s test) e, and for DNAm age acceleration (p < 0.001, Wald’s test) f 
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Table 2  Wald tests for models with GBM classification and study origin, and interaction

* F-values are computed with covariance matrix, estimated by sandwich estimation (type HC3) to reduce the effect of the variance heterogeneity

Characteristic MES RTK I RTK II GBM classification Study GBM Class x Study

Mean (sd) Mean (sd) Mean (sd) *F-value Pr(> F) *F-value Pr(> F) *F-value Pr(> F)

Patient age [yrs] 60.175 (10.853) 61.075 (11.927) 60.834 (10.83) 0.216 0.806 52.158  < 0.001 0.747 0.612

DNAm age [yrs] 89.246 (21.746) 94.538 (24.999) 104.106 (26.163) 10.717  < 0.001 4.670 0.003 1.896 0.079

Age accel [yrs] 29.072 (19.566) 33.463 (21.956) 43.273 (25.652) 10.480  < 0.001 1.457 0.225 2.456 0.024

HM-purity 0.592 (0.104) 0.817 (0.105) 0.802 (0.099) 68.162  < 0.001 2.288 0.078 1.086 0.369

Global HME 0.556 (0.029) 0.571 (0.027) 0.545 (0.029) 18.557  < 0.001 0.029 0.994 0.394 0.883

HME prom CpG 0.362 (0.032) 0.361 (0.03) 0.363 (0.029) 0.086 0.917 0.147 0.932 1.815 0.094

R = 0.4 , p < 0.001

R = 0.155 , p = 0.113

R = 0.322 , p < 0.001

R = 0.294 , p = 0.003

Nordic TCGA

DKFZ EORTC/NCIC & LN-Pilot
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Fig. 2  Chronological age of patients versus DNAm age of GBM. The chronological age of the patients (observed age) versus DNAm age predicted 
by DNA methylation data of the tumors is shown for the four datasets. The accuracy of the models is given by the Spearman’s coefficient correlation 
and the regression model between the observed age of the patients and the predicted age (DNAm age) of the tumors. The correlation values 
(|r|≤ 0.4) show strong deviation between chronological age versus DNAm age of the GBM in the four studies
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DNA methylation age acceleration
Next, we determined DNAm age acceleration of the 
tumors that is defined as the DNAm age of the tumor, 
minus the patient’s age. The association of the patients’ 
chronologic age and the tumor DNAm age, determined 
with the Horvath clock, was modest, as illustrated in 
scatterplots for the datasets, EORTC/NCIC & LN-Pilot 
(r = 0.322), TCGA (r = 0.294) and the DKFZ dataset 
(r = 0.400), and weak for the Nordic dataset (r = 0.155) 
(Fig. 2). The small age range of this older population, may 
explain the latter (Table 1).

The age acceleration was significantly different to 
zero (t test, p < 0.001) with an averaged acceleration of 
36.81  years and a standard deviation of 23.99  years. No 
differences in DNAm age acceleration were observed 
between male and female patients (p = 0.774, ANOVA, 
stratified by study). It is of note that the association 
between the numerous copy number variations (CNVs), 
characteristic for GBM, and the interrogated clock 
probes and DNAm age was weak. Only 7% of the varia-
tion of the DNAm age (p < 0.001) was explained, based on 
the regression of the four first axes from PCA of the clock 
probes, hence, excluding a strong confounding influence 
by CNVs.

A large number of CpGs associated with age accelera-
tion were identified (DMP age accel, n = 50,551). Most 
of the age related CpGs (16 of 19) were also associated 
with age acceleration. Although by construction, DNAm 
age acceleration is not associated with the patients’ age 
(DNAm age acceleration = chronologic age of the patient 
minus DNAm predicted age of the tumor, see methods 
section). Interestingly, over 70% age acceleration associ-
ated CpGs (n = 36,348) overlapped with those associated 
with tumor classification (n = 170,759) into the three 
methylation-based GBM subtypes (MES, RTK I, RTK II) 
(Fig. 3a). Hence, it was not surprising that age accelera-
tion was significantly associated with the GBM subtype 
(Wald’s test, p < 0.001, Table 2; Fig. 1f ). The tumors classi-
fied as GBM RTK II, trended to exhibit higher age accel-
eration than the two other GBM methylation subclasses. 
However, the sample purity constituted a weak con-
founding factor, with a Spearman correlation coefficient 
between DNAm age acceleration and purity of r = 0.290 
(p < 0.001), illustrated in Additional file 1: Fig. S2.

The overlap of the CpGs fulfilling all three criteria, age, 
DNAm age acceleration, and methylation-based subclas-
sification, comprised 4 CpGs that also included the probe 
in the ELOVL2 promoter (Additional file  1: Table  S2). 
This suggests that DNA methylation features of DNAm 
age acceleration are an integrative part of methylation-
based tumor classification, while age seems only slightly 
reflected in the tumor DNA methylome. The breakdown 
of the selected CpGs by genome regions and function 

(e.g. promoter, gene body, enhancer, etc.); the three vari-
ables, age, DNAm age acceleration and classification, and 
affiliation with the Horvath clock, is detailed in Fig.  3c. 
It is of note that the observed significant association of 
129 clock probes with the GBM classification was not 
dependent on their location on the 22 autosomes (Fish-
er’s test with p-value estimated by Monté-Carlo simula-
tion, p = 0.558).

Pathway analysis of DNAm age acceleration and tumor 
classification
Next, we were interested in the pathways to which the 
genes belonged that were associated with DNAm age 
acceleration or classification. Performing signature analy-
sis using MiSigDB (molecular signatures database; gene 
set enrichment analysis [GSEA], adjusted p ≤ 0.1) and the 
CpGs associated with DNAm age acceleration yielded 
1220 pathways. The top pathways were dominated by 
gene-sets characterizing epigenetic properties of neural 
precursor cells, or gene sets for midbrain neurotypes, and 
other progenitor cells, and axon development (Fig.  3d) 
invoking developmental features and cell of origin. The 
tumor classification associated CpGs yielded 23 path-
ways, of which most (n = 20) overlapped with those from 
DNAm age acceleration, in line with the large overlap of 
CpGs between the two criteria.

The common pathways were also dominated by gene 
sets characterizing epigenetic features of neural pro-
genitors, included sets for transmembrane transporters 
and channels, and cancer gene sets (Module 11 and 64) 
(Fig. 3d). The few CpGs associated with age were linked 
with gene sets of downstream targets of STAT5B (Sig-
nal Transducer And Activator Of Transcription 5) and 
RSRFC4 (alias of MEF2A, Myocyte-Specific Enhancer 
Factor 2A), with 3 of the 4 genes overlapping in the 
two sets, the latter was also associated with DNAm age 
acceleration.

Subsequently we looked only at the functional CpGs 
(Fig. 3c), as they may shed light on associated biological 
mechanisms, and determined the associated pathways 
(GSEA, adjusted p ≤ 0.1). The “functional” pathways 
associated with DNAm age accel (n = 167) mostly (119, 
71%) overlapped with those associated with classifi-
cation (n = 294) (Additional file  1: Suppl Fig. S2). The 
overlapping “functional” pathways were dominated by 
gene-signatures characterizing epigenetic properties of 
neural precursor cells, or gene sets for midbrain neu-
rotypes, and other progenitor cells [27, 35, 36]. These 
comprised gene sets associated with specific chro-
matin marks (histone H3 dimethylation mark at K4, 
H3K4me2, open chromatin, and trimethylation mark 
at K27, H3K27me3, repressive mark) associated with 
neural progenitor cells (NPC) [35, 36], and distinct 



Page 10 of 18Bady et al. Acta Neuropathologica Communications           (2022) 10:39 

gene signatures derived from single cell sequencing of 
human embryonic midbrain cells [27]. In addition, sig-
natures of immune cells, and some cancer related signa-
tures were comprised, the latter including the Verhaak 
expression signature for mesenchymal GBM (Addi-
tional file  1: Fig. S2). Interestingly, but not surpris-
ing, among the top 30 functional pathways associated 

with the methylation-based classification comprised 
three signatures of the expression based GBM classifier 
defined by Verhaak [56] (signatures for mesenchymal, 
classical, and proneural GBM). These observations sup-
port the overall consistency and biological relevance of 
the findings.

Fig. 3  Associations of DNA methylome with age, DNAm age acceleration, and GBM subclassification. Methylome-wide association studies of 
the samples were performed for age (green), DNAm age acceleration (pink) and GBM classification (blue) and visualized in a Venn-diagram, for 
the interaction between the three sets of candidate CpG-probes a and the associated genes b. The genomic location of the selected CpGs, their 
association with age, DNAm age acceleration, GBM classification, the CpG functionality, and association with the Horvath clock are summarized in c. 
Gene set enrichment analysis (GSEA), using the MSigDB database, was established for candidate CpG-probes related to age, DNAm age acceleration 
and GBM classification. The list of gene sets d corresponds to the pathways significantly enriched for age and GBM classification. The number (NB) of 
genes per gene set is indicated and the p-value is represented by the color code. The gene lists overlapping with those associated with functional 
methylation (Additional file 1: Fig. S3) are highlighted in bold
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Human methylation entropy (HME) and age
Subsequently, we investigated the genome-wide variation 
of DNA methylation that may affect regulatory functions 
and genomic/epigenomic stability of the tumors. For this 

purpose, we used the measure of the Human Methylation 
Entropy (HME) that quantifies the methylation complex-
ity for a given CpG or a given genomic region [16]. Low 
heterogeneity/high similarity corresponds to low entropy 
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Fig. 4  DNA methylation entropy (HME) of GBM in function of genome location. The entropy metrics based on DNA methylation (HME) was 
determined by genome location, constituted of the Island regions (CpG islands, shores, shelves or open sea) and promoter location (promoter 
or not in promoter). The Eigenvalues of the PCA of the dataset containing the HME metrics suggest that the first two dimensions explain most of 
the variability, a. The entropy (HME metrics) stratified by genome location was projected on the first vectorial plane (axes 1 & 2) of the PCA b. The 
colors of the arrows and labels indicate the genome location in (blue) or outside (red) of a promoter. c The contribution of DNAm age acceleration 
(Accel), age (Age) and GBM classification (Class) to HME was determined by variation partitioning and visualized in a Venn diagram containing the 
variation fractions. d The GBM samples are represented on the first vectorial plane of the PCA for global HME, annotated for GBM classification (MES, 
red; RTK I, green; RTK II, blue). Boxplot representation of global entropy e and entropy of CpGs located in promoter islands f is visualized by GBM 
classification. The association of classification with entropy by genome location was examined by Wald test (Additional file 1: Table S4)
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scores (range 0 to 1; e.g. 100% methylation, 0 entropy; 
50% methylation, organized in fully methylated and 
fully unmethylated alleles, 0.25 entropy; 50% methyla-
tion, organized randomly, 0.65 entropy, for more details 
see [45]). The entropy at 12 distinct genomic regions 
(promoter, shore, etc.) tested, showed characteristic 
features by region, with strikingly lower entropy levels 
within CpG promoter islands (Fig.  4). This may suggest 
that CpG promoter islands present more homogenous 
DNA methylation patterns, e.g. methylated or unmethyl-
ated states, likely due to their direct regulatory function 
in gene expression. HME at different genomic regions 
(Additional file 1: Table S3) and global HME were associ-
ated with GBM subtype (Wald’s Test, p < 0.001, Table 2, 
Fig.  4e). Indeed, HME was highest in RTK I for most 
genomic regions. In contrast, no difference between 
tumor subtypes was detected for HME in the promoter 
CpGs Islands (Wald’s Test, p = 0.917, Table 2, Fig. 4f ). No 
differences were observed between datasets at the dis-
tinct regions and over all regions combined. Finally, we 
performed variation partitioning of HM-entropy metrics 
to evaluate the contribution of age, age acceleration and 
GBM classification. This revealed some weak associa-
tion of HM-entropy with GBM classification, explaining 
13% (R2 = 0.131) of the variance, while age had very little 
impact (R2 = 0.005), and the contribution of DNAm age 
acceleration was also small (R2 = 0.050).

DNA damage response (DDR) and DNAm age acceleration
Since all GBM patients, including the elderly, are treated 
with genotoxic therapy we had a closer look at the 
involvement of DNA damage response (DDR) genes in 
DNAm age acceleration. Evaluating only CpG probes 
associated with the promoter region of DDR genes as 
input (list as defined by Pearl et al. [41], 3947 CpGs, asso-
ciated with 403 genes that might reveal age dependent 
treatment responses, did not yield any age related candi-
date CpGs.

DMPs related to DNAm age acceleration comprised 
206 CpGs in 109 DDR genes whereof 22 CpGs in 8 genes 
were functional and comprised among others, the gene 
encoding an accessory subunit of DNA Polymerase Epsi-
lon (POLE4), the gene encoding Cyclin Dependent Kinase 
Inhibitor 2A (CDKN2A), MGMT, and the gene Struc-
tural Maintenance of Chromosomes 1B (SMC1B) visu-
alized in a heatmap (Fig. 5) (Additional file 1: Table S4). 
DMPs associated with tumor classification consisted 
of 272 CpGs in 138 DDR genes whereof 22 in 12 genes 
were functional (Additional file 1: Table S5). Four genes 
with functional CpGs were associated with both DNAm 
age acceleration and tumor classification and comprised 
CDKN2A, MGMT, the gene for the Helicase like Tran-
scription Factor (HTLF), and SMC1B, as annotated in 

Fig. 5. CDKN2A is a prominent tumor suppressor gene, 
frequently affected by homozygous deletions (HD) in 
IDHmut GBM [8], Therefore we tested the methylation 
of the CpG-probe cg07562918 (M-value) located in the 
CDKN2A gene that was significantly associated with age 
acceleration and tumor classification, for association with 
the HD-status. Methylation of this CpG was significantly 
associated with HD of the CDKN2A gene (Wilcoxon test 
p < 0.001). However, no significant direct effect of the HD 
status of the CDKN2A gene was identified on DNAm age 
acceleration (Wilcoxon test, p = 0.163; Additional file  1: 
Fig. S4).

Age acceleration and outcome
Finally, we integrated DNAm age acceleration into the 
multivariable model for outcome for the two clinical trial 
cohorts, and included the following parameters: treat-
ment (TMZ/RT→TMZ for EORTC/NCIC & LN-Pilot; 
TMZ for Nordic), MGMT status (MGMT methylation), 
and the interaction between treatment and MGMT meth-
ylation (predictive factor). DNAm age acceleration was 
significant in both cohorts, EORTC/NCIC & LN-Pilot 
p = 0.0138 and Nordic p = 0.00161 (Table 3). The predic-
tive value of MGMT methylation (interaction between 
treatment and MGMT methylation) was confirmed in 
the EORTC/NCIC & LN-Pilot cohort (p < 0.0001). The 
interaction term in the Nordic cohort was not significant 
(p = 0.09). However, the number of MGMT methylated 
patients in the TMZ-arm was very small (n = 13), sug-
gesting lack of power for this test.

Discussion
In this study, we investigated the DNA methylome of 
IDHwt GBM for age related differences that could hint 
at predictive or prognostic factors or indicate particular 
vulnerabilities for treatments in elderly patients. How-
ever, we found no strong direct associations, although 
we identified the methylation probe in ELOVL2 that has 
reportedly the highest association with age as a single 
marker [5, 14] and TRIM59 methylation, another robust 
marker for aging [34, 63]. ELOVL2 is a GBM-relevant 
gene [15, 44]. However, methylation of this probe was not 
functional according to our analysis. TRIM59 was among 
the genes associated with functional methylation. It 
encodes a protein with ubiquitin-transferase activity, and 
it has been associated with various regulatory processes 
and maybe involved in innate immune regulation.

We then used the metric of DNAm age and age accel-
eration proposed by the Horvath DNA methylation 
clock that has been trained on multiple tissues using the 
HM-27  k array (does not comprise CpG probes associ-
ated/annotated with ELOVL2), and has been reported to 
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be highly accurate to predict chronologic age (r = 0.92) 
[14]. This methylation clock is considered independ-
ent of tissue type and mitotic potential [21, 23]. Various 
epigenetic clocks have been developed with potential as 
biomarkers. The aim is not only to determine accurate 
chronologic age, but to develop biological clocks for spe-
cific purposes, such as tissue specific sensors of disease, 
risk of disease, including cancer risk, or external stress, 
such as smoking history, or all-cause mortality (Grim-
Age) (reviewed in [5, 12, 23, 34]).

DNAm age acceleration observed for GBM averaged at 
almost 40  years, with a wide variability. No association 
was found with the patients’ sex.

The acceleration associated gene sets, identified using 
the MiSigDB, comprised several distinct cell type-spe-
cific signatures obtained by single cell sequencing of cells 
derived from embryonic ventral midbrain [27]. Other sig-
natures reflected epigenetic features at developmentally 
regulated genes with high CpG density promoters that 
are characterized by bivalent histone marks (both active 
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H3K4me3 and repressive H3K27me3 marks) that are 
poised but silent in ES (embryonic stem) cells and active 
in NPC, such as the genes encoding the Oligodendrocyte 
Transcription Factor 1 and 2 (Olig1 and Olig 2). Changes 
in the pattern of histone marks have a strong influence on 
DNA methylation. The signatures identified here, asso-
ciated with DNAm age acceleration reflected a change, 
with loss of the active mark H3K4me3 and retention of 
H3K27me2 and/or the repressive mark H3K27me3 that 
has been associated with partial increase of DNA meth-
ylation [35]. Hypermethylation of such regulatory genes 
that are active under differentiation are found pref-
erentially aberrantly methylated and thereby silenced 
in cancer. Such genes are reported to be regulated by 
thritorax-group and/or polycomb-repressive complex 2 
(PRC2) proteins. Furthermore, CpGs whose methylation 
increases with age at specific locations, have been found 
overrepresented near polycomb target genes and biva-
lent chromatin domains. These genes are of importance 
for stemness and cell differentiation and have been found 
frequently methylated in cancer [21, 53]. Beside these 
insights into epigenetic mechanisms associated with age 
acceleration and the neurotypes specific signatures [27, 

35, 36], suggestive of developmental features and cell of 
origin, the analyses also yielded signatures for immune 
cells, cell death, and cancer. The biological relevance is 
further supported by the fact that a subset of these sig-
natures overlapped with those associated with functional 
methylation, implicating that the observed increased 
methylation was negatively associated with expression 
of the corresponding genes, affecting related pathways 
(Fig.  3d; Additional file  1: Fig. S2). The investigation of 
mechanisms and biological consequences reflected in 
methylation aging clocks is an active field of research that 
has been extensively reviewed elsewhere [5, 12, 47].

When associating the observed DNAm age accelera-
tion of the GBM with patient outcome, we observed a 
significant effect, when analyzing the cohorts treated in 
clinical trials. Increased age acceleration in these IDHwt 
GBM was associated with better outcome, raising the 
question of the biological meaning of DNAm age accel-
eration in the context of these tumors. Therefore, we con-
sider tumor related DNAm age acceleration as a measure 
for epigenetic distance associated with tumor develop-
ment and GBM subtype. This is in accordance with the 
observation that DNAm age acceleration associated 

Table 3  Multivariable Cox regression models including age acceleration, GBM classification, global HM-entropy (HME) and HME at 
promoter CpGs

Cox models, adjusted for Treatment (TRT), methylation status of MGMT promoter (MGMT), and the interaction of these two variables (TRT X MGMT)

HME, human methylation entropy; HR, hazard ratio; MGMTmeth, methylated MGMT; Pr(( >|z|), p-value for z-statistics; P-value <0.5, bold

Model Variables EORTC/NCIC & LN-Pilot (N = 177) Nordic study (N = 105)

Modality HR z-value Pr( >|z|) Modality HR z-value Pr( >|z|)

Age acceleration [years]

Treatment (TRT) TMZ + RT 1.34862 1.31435 0.18873 TMZ 1.06845 0.23966 0.81059

MGMT MGMTmeth 0.77273 − 1.10615 0.26866 MGMTmeth 1.13894 0.50912 0.61067

Age Acceleration 0.99124 − 2.46259 0.01379 0.98549 − 3.15493 0.00161
TRT x MGMT TMZ + RT x MGMTmeth 0.27215 − 3.94628 0.00008 TMZ x MGMTmeth 0.47267 − 1.66716 0.09548

GBM classification

Treatment (TRT) TMZ + RT 1.19859 0.80597 0.42026 TMZ 1.12226 0.41692 0.67674

MGMT MGMTmeth 0.70503 − 1.52048 0.12839 MGMTmeth 1.05817 0.22379 0.82292

GBM classification GBM_RTK_I 1.54086 1.91764 0.05516 GBM_RTK_I 1.12308 0.41675 0.67686

GBM_RTK_II 0.91674 − 0.48386 0.62848 GBM_RTK_II 0.52912 − 2.63579 0.00839
TRT x MGMT TMZ + RT x MGMTmeth 0.31994 − 3.55697 0.00038 TMZ x MGMTmeth 0.53507 − 1.39736 0.16230

Global HME

Treatment (TRT) TMZ + RT 1.12690 0.55400 0.57958 TMZ 1.08996 0.30807 0.75803

MGMT MGMTmeth 0.69179 − 1.61442 0.10644 MGMTmeth 0.89983 − 0.42203 0.67300

HME 3.18126 0.49623 0.61973 164.80788 1.64897 0.09915

TMZ + RT x MGMTmeth 0.34584 − 3.38245 0.00072 TMZ x MGMTmeth 0.54313 − 1.36378 0.17264

HME promoter CpG

Treatment (TRT) TMZ + RT 1.15106 0.65024 0.51554 TMZ 1.17499 0.58063 0.56149

MGMT Methylated 0.73235 − 1.33193 0.18288 MGMTmeth 0.95937 − 0.16478 0.86912

HME prom CpG 0.04405 − 1.14097 0.25388 0.16488 − 0.58312 0.55982

TRT x MGMT TMZ + RT x MGMTmeth 0.33173 − 3.48833 0.00049 TMZ x MGMTmeth 0.53779 − 1.39207 0.16390
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probes overlap largely with those associated with meth-
ylation–based GBM classification.

It has been suggested that deterioration of epigenetic 
maintenance contributes to age related changes [23], and 
more recently, it has been proposed that DNA break-
induced epigenetic drift may contribute to aging [18]. 
Given the gross structural changes observed in GBM 
this is an interesting hypothesis. However, the numer-
ous CNVs, characteristic of GBM, only explained a minor 
part (7%) of DNAm age of the tumors. Along the same 
lines, while a subset of clock probes was significantly 
associated with the methylation–based GBM classifi-
cation, this was not dependent on their chromosomal 
location. Hence, this measure seems to comprehensively 
capture GBM related epigenetic changes that are associ-
ated in part with the GBM subclassification. The DNA 
methylation-based GBM classification is constituted of 
multidimensional information reflected by DNA meth-
ylation that are contributed by biological features such 
as purity, age acceleration, HM-entropy (variability of the 
DNA methylation), and other factors. The purity, reflect-
ing infiltrating immune cells, measured by means of a 
DNA methylation variation, contributes to the differen-
tiation of MES GBM samples, while DNAm age accel-
eration facilitates the differentiation of the RTK II GBM 
samples from those classified as RTK I and MES, and the 
HME discerns RTK I from the two others. Interestingly, 
among the significant pathways associated functional 
methylation and tumor classification, we identified pre-
viously reported expression-based GBM classification 
signatures [56]. This underlines the strong functional 
implication of DNA methylation on the expression phe-
notypes of the tumors and the coherence of the results.

The HM entropy metrics (12 distinct regions, and 
global entropy) exhibited genome-location depend-
ent variation explained in part by the GBM subtypes 
(13%), but was basically not affected by age (0.5%). As 
an exception, HM entropy at promoter associated loca-
tions was lowest, and was not different across the GBM 
subtypes, indicating little permissiveness for variation in 
accordance with direct functional implications of meth-
ylated versus unmethylated status of promoters on gene 
expression.

Finally, we were interested in the DDR genes with func-
tional methylation associated with DNAm age accelera-
tion and classification that may yield mechanistic insights 
in the context of the genotoxic treatments that are part 
of the standard of care. Enhanced POLE4 methylation (8 
functional probes) was associated with DNAm age accel-
eration (Additional file  1: Figure S3). Deletion of Pole-4 
that encodes an accessory subunit of the DNA polymer-
ase epsilon complex, has been reported to have no strong 
effects on its own in worms, however, in absence of the 

gene encoding the regulator of telomere elongation heli-
case 1 (rtel-1) apparently led to synthetic lethality due to 
impaired homologous recombination (HR) [6]. Similarly, 
six functional probes of MGMT were associated with 
DNAm age acceleration, whereof three were also asso-
ciated with GBM subclassification. Functional probes in 
CDKN2A, HLTF, and SMCB1 were also associated with 
both. Other functional probes were only associated with 
tumor classification, e.g. the gene encoding the Fanconi 
anemia complementation group M protein (FANCM) 
or the gene encoding the AlkB Homolog 1, Histone 
H2A Dioxygenase (ALKBH1). The former is involved in 
homology directed DNA repair, and the latter takes part 
in the repair of DNA alkylation damage and has recently 
been associated with the regulation of the level of 
N6-methyladenine (N6-mA) DNA modifications, impli-
cated in epigenetic regulation of gene expression relevant 
in GBM [61]. While MGMT methylation is a known pre-
dictive factor for responsiveness to the alkylating agent 
TMZ in GBM, it remains to be explored, whether any of 
the other identified probes and their associated genes and 
pathways, indicate potentially actionable vulnerabilities.

In conclusion, our efforts to identify epigenetic differ-
ences in GBM of elderly patients revealed that once all 
high grade gliomas not classified as GBM IDHwt WHO 
grade 4 are removed, the distribution and spectrum of 
the GBM subtypes seems to be comparable across adult 
age, at least from a DNA methylation point of view 
(Fig. 1). DNAm differences of the tumors quantified as 
age acceleration or HME overlap with features of tumor 
classification, while age is hardly reflected. Interest-
ingly, the epigenetic distance measured as DNAm age 
acceleration was associated with better outcome in the 
cohorts treated in clinical trials also for elderly GBM 
patients. However, our analyses yielded no molecular 
evidence for age related differences that would advocate 
different treatment modalities in elderly GBM patients.
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