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Medulloblastoma cerebrospinal fluid reveals 
metabolites and lipids indicative of hypoxia 
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Abstract 

Medulloblastoma (MB) is the most common malignant brain tumor in children. There remains an unmet need for 
diagnostics to sensitively detect the disease, particularly recurrences. Cerebrospinal fluid (CSF) provides a window into 
the central nervous system, and liquid biopsy of CSF could provide a relatively non-invasive means for disease diag-
nosis. There has yet to be an integrated analysis of the transcriptomic, metabolomic, and lipidomic changes occur-
ring in the CSF of children with MB. CSF samples from patients with (n = 40) or without (n = 11; no cancer) MB were 
subjected to RNA-sequencing and high-resolution mass spectrometry to identify RNA, metabolite, and lipid profiles. 
Differentially expressed transcripts, metabolites, and lipids were identified and their biological significance assessed by 
pathway analysis. The DIABLO multivariate analysis package (R package mixOmics) was used to integrate the molecu-
lar changes characterizing the CSF of MB patients. Differentially expressed transcripts, metabolites, and lipids in CSF 
were discriminatory for the presence of MB but not the exact molecular subtype. One hundred and ten genes and 
ten circular RNAs were differentially expressed in MB CSF compared with normal, representing TGF-β signaling, TNF-α 
signaling via NF-kB, and adipogenesis pathways. Tricarboxylic acid cycle and other metabolites (malate, fumarate, suc-
cinate, α-ketoglutarate, hydroxypyruvate, N-acetyl-aspartate) and total triacylglycerols were significantly upregulated 
in MB CSF compared with normal CSF. Although separating MBs into subgroups using transcriptomic, metabolomic, 
and lipid signatures in CSF was challenging, we were able to identify a group of omics signatures that could separate 
cancer from normal CSF. Metabolic and lipidomic profiles both contained indicators of tumor hypoxia. Our approach 
provides several candidate signatures that deserve further validation, including the novel circular RNA circ_463, and 
insights into the impact of MB on the CSF microenvironment.
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Introduction
Medulloblastoma (MB) is the most common malignant 
tumor of the cerebellum in children, and it accounts 
for 10–15% of pediatric central nervous system (CNS) 
tumors [1]. MB has a propensity to invade and dissemi-
nate in the cerebrospinal fluid (CSF), with disseminated 
CNS disease occurring in 30–40% of cases at initial 
diagnosis and most patients at recurrence [2]. The cur-
rent diagnosis of MB is based on clinical assessment, 
imaging, and subsequent histopathological examination 
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of biopsies, with magnetic resonance imaging (MRI) 
and lumbar puncture often performed to monitor treat-
ment responses and to detect recurrences [3]. Although 
recent advances in imaging have improved MB detec-
tion and monitoring, there remain unmet needs for 
diagnostics to sensitively detect the disease at both ini-
tial presentation and at recurrence. This latter need is 
particularly important, since recurrences (particularly 
subependymal metastatic disease within the ventricles) 
do not always enhance on MRI, and, when present, her-
ald incurable disease that is nearly always fatal [4, 5].

The 2016 World Health Organization Classification 
of Tumors of the Nervous System reclassified MB into 
four subtypes: WNT (wingless) activated, SHH (sonic 
hedgehog) activated, group 3, and group 4 based on 
histopathological and molecular features [6]. More 
recent studies with increased cohort sizes have iden-
tified intra-subtypes and described a total of twelve 
subgroups [7, 8]. Despite this considerable progress in 
the molecular characterization of MB, the biology and 
impact of the disease on the CSF microenvironment 
is still poorly understood, despite the tumor microen-
vironment contributing to cancer progression, metas-
tasis, and resistance and potentially providing a rich 
source of biomarkers that can be sampled relatively 
non-invasively to chart the course of disease.

Liquid biopsies—the molecular analysis of biofluids—is a 
minimally-invasive method that shows promise for disease 
detection and monitoring through the measurement of cir-
culating tumor cells, DNA, RNA, or extracellular vesicles 
in the urine, CSF, and blood samples [9]. Although blood 
has most commonly been used as the biofluid of choice 
for liquid biopsy, its sensitivity for CNS tumors tends to be 
poor due to biomarkers of interest not crossing the blood–
brain barrier [10]. However, CSF bathes the brain and spi-
nal cord and therefore provides a window to tumors arising 
in the CNS and disseminating in the CSF. Furthermore, 
many patients with MB have hydrocephalus that needs to 
be drained to reduce intracranial pressure and prior to sur-
gery. Many studies have attempted to detect biomarkers in 
the CSF in adult patients with CNS tumors [11], but few 
have analyzed the metabolite, lipid, transcriptomic, and 
genomic profiles in the CSF of children [10, 12–15]. To 
date, there has yet to be an integrated analysis of the tran-
scriptomic, metabolomic, and lipidomic changes occurring 
in the CSF of children with MB. This is in no small part due 
to technical difficulties in: (i) global RNA-sequencing of 
messenger RNAs (mRNAs) and circular RNAs (circRNAs) 
in CSF, which contains low concentrations of RNAs that 
are susceptible to fragmentation and degradation; and (ii) 
the ability to profile metabolites and lipids, which have only 
recently been facilitated by the advent of high-resolution, 

high-sensitivity, and high mass accuracy mass spectrom-
eters [16].

To obtain an integrated understanding of the patho-
biological impact of MB on the surrounding microen-
vironment of the CSF and as a precursor to biomarker 
identification, we analyzed the transcriptomic, metabo-
lomic, and lipidomic landscapes of CSF samples obtained 
from forty patients with primary or recurrent MB and 
eleven normal controls. In doing so, we establish that 
patients with MB have a unique transcriptomic, metabo-
lomic, and lipidomic landscape in their CSF that might be 
helpful for diagnosis and monitoring and that reflects bio-
logical changes consistent with the presence of MB in the 
CNS.

Materials and methods
CSF samples
Details of the CSF samples analyzed are shown in Addi-
tional file 4: Table S1. The Institutional Review Board (IRB) 
at each institution approved the protocol for CSF collec-
tion, and all patients provided written informed consent. 
The eleven normal samples were purchased from BioIVT 
(Westbury, NY USA), Discovery Life Sciences (Huntsville, 
AL USA), and Lee Biosolutions (Maryland Heights, MO 
USA); thirty samples were from the Children Brain Tumor 
Tissue Consortium (CBTTC); five samples were from 
Johns Hopkins University (JHU); and five samples from 
Johns Hopkins All Children’s Hospital (JHACH). Cell-free 
CSF samples were snap-frozen without further processing 
and stored at − 80 °C until sample preparation.

Total RNA isolation from CSF and library preparation 
for RNA‑seq
Briefly, 0.2 ml of CSF was mixed with 1 ml of QIAzol (Qia-
gen, Hilden, Germany) and incubated for 5  min at room 
temperature. Next, 0.4  ml of chloroform was added and 
mixed. The aqueous phase was obtained by centrifugation 
at 14,000 × g for 15 min at 4  °C, and RNAs were isolated 
using the miRNeasy Mini kit (Qiagen) according to the 
manufacturer’s protocol. To perform library generation 
with the NuGen Ovation Solo system, the purified RNAs 
were concentrated using the RNA Clean & Concentra-
tor kit (Zymo Research Corp), and libraries were prepared 
according to the manufacturer’s instructions. Library quan-
tities were estimated using a KAPA library quantification 
kit (Roche Sequencing and Life Science, Wilmington, MA).

cDNA generation and whole transcriptome amplification 
from CSF for quantitative real‑time PCR (qRT‑PCR) 
validation
Total RNAs were isolated from 0.1  ml CSF using a 
miRNeasy Mini kit (Qiagen) and further concentrated 
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using the RNA Clean & Concentrator kit (Zymo Research 
Corp). cDNA generation and whole transcriptome ampli-
fication were performed using a REPLI-g WTA single cell 
kit (Qiagen) according to the manufacturer’s instructions. 
10  ng of amplified cDNA was used for the qRT-PCR 
reaction. qRT-PCR was performed using a Power SYBR 
Green PCR master mix (Applied Biosystems, Waltham, 
MA) in the QuantStudio 3 and 5 Real-Time PCR Systems 
(Thermo Fisher Scientific, Waltham, MA) as previously 
described [17]. The average Ct value of two genes, beta-
actin (ACTB) and ribosomal protein S28 (RPS28), were 
used as endogenous controls. The primer sequences for 
the genes are listed in Additional file 3.

Global metabolite and lipid extraction
For global metabolomics, 50 µL of CSF samples thawed 
on ice were used. For monitoring metabolite extraction, 
20 µL of metabolite internal standard mixture contain-
ing L-leucine-D10 (4  µg/mL), L-tryptophan-2,3,3-D3 
(40 µg/mL), (4 µg/mL), L-tyrosine-13C6 (4 µg/mL), caf-
feine-D3 (4  µg/mL), succinic acid-2,3,3,3-D4 (4  µg/mL), 
L-leucine-13C6 (4 µg/mL), L-phenylalanine-13C6 (4 µg/
mL), N-BOC-L-tert-leucine (4  µg/mL), and N-BOC-L-
aspartic acid (4 µg/mL) in 0.1% formic acid in water was 
added to CSF prior to protein precipitation. L-leucine-
D10, creatine-D3, L-tryptophan-2,3,3-D3, succinic acid-
2,3,3,3-D4, and caffeine-D3 were purchased from CDN 
Isotope (Pointe-Clarie, Quebec, Canada). L-tyrosine-
13C6, L-leucine-13C6, and L-phenylalanine-13C6 were 
purchased from Cambridge Isotope laboratories, Inc. 
(Tewksbury, MA). N-BOC-L-tert-leucine and N-BOC-L-
aspartic acid were purchased from Acros Organics (Fair 
Lawn, NJ). After adding the internal standard mixture, 
the samples were vortex mixed and stored on ice.

Global metabolite extraction was performed using 
1  mL ice-cold methanol (80%) for 20–30  min with 
occasional vortexing. The samples were centrifuged at 
20,000  rpm for 10  min at 4  °C to pellet. The superna-
tant (500 µL) was transferred to a new tube and dried 
under nitrogen gas flow at 30  °C. The dried sample was 
reconstituted in 0.1% formic acid in water (50 µL) con-
taining injection standards including BOC-L-tyrosine 
(2  µg/mL), BOC-L-tryptophan (2  µg/mL), and BOC-
D-phenylalanine (2  µg/mL). The remaining 500 µL of 
supernatant from methanol precipitation was transferred 
to 15 mL glass tubes for global lipidomic extraction fol-
lowing a modified version of the Folch extraction [18]. 
Briefly, 20 μL of internal standard mixture containing 
lysophosphatidylcholine (LPC 17:0), phosphatidylser-
ine (PS 14:0/14:0), phosphatidylcholine (PC 17:0/17:0), 
phosphatidylglycerol (PG 14:0/14:0), phosphatidylethan-
olamine (PE 15:0/15:0), sphingomyelin (SM d18:1/17:0), 
ceramide (Cer d18:1/17:0), diacylglycerol (DG 14:0/14:0), 

triacylglycerol (TG 15:0/15:0/15:0), bis(monacyl-glycero)
phosphate (BMP 14:0 (S,R), and Lyso SM(d17:1) each 
at 100  ppm in 2:1 chloroform:methanol was added. 
Except for TG, all other lipid standards were purchased 
from Avanti Polar Lipids (Alabaster, AL), while TG 
was purchased from Sigma-Aldrich (St. Louis, MO). 
Extraction was performed by adding ice cold 4:2:1 
chloroform:methanol:water (v:v:v), and the organic 
phase was collected using low speed centrifugation at 
3500 rpm for 10 min at 4 °C. Collected organic phase was 
dried down under nitrogen flow and reconstituted in 50 
μL of isopropanol plus 1 μL of injection standard mix-
ture containing LPC(19:0), PC(19:0/19:0), PG(17:0/17:0), 
PE(17:0/17:0), PS(17:0/17:0), and TG(17:0/17:0/17:0) 
each at 100  ppm in 2:1 chloroform:methanol. Metabo-
lomic and lipidomic samples were run separately and, for 
each sequence, solvent blanks, extraction blanks (with-
out internal standard), neat quality controls (amino acid 
internal standards mixtures), pooled samples (normal 
pooled mixture of all normal replicates, 5 µL each and 
cancer pooled mixture of all cancerous samples, 5 µL 
each) were also prepared for evaluation of extraction and 
data collection efficiency.

Metabolomic data acquisition
High-pressure liquid chromatography coupled to high-
resolution tandem mass spectrometry (LC-HRMS/MS) 
was used for data collection. Chromatographic separa-
tion for metabolomics was achieved using reversed phase 
chromatography with a C18-pfp column (Ace, Aberdeen, 
Scotland; 100 × 2.1 mm, 2 µm). The mobile phases con-
sisted of solvent A (0.1% FA in H2O) and solvent B (ace-
tonitrile). The system was held constant from 0–3 min at 
100% A, then mobile phase B was ramped from 0 B to 
80% over 10.0  min (3–13  min) and then held constant 
at 80% B for 3 min (13–16 min) with a flow rate of 350 
µL/min and column temperature of 25 °C. For equilibra-
tion, the system was returned to initial conditions with 
0% B and the flow rate was increased to 600 µL/min. The 
flow rate was reduced back to 350 µL/min before the 
next injection. The data collection time per sample was 
20.50  min. Both positive (injection volume 2 µL) and 
negative ion polarity (injection volume 3 µL) in full scan 
mode (35,000 mass resolution) were acquired.

Lipidomic data acquisition
Chromatographic separation for lipidomics was achieved 
on a Waters Acquity C18 BEH column maintained at 
50  °C (2.1 × 100  mm, 1.7  μm particle size, Waters, Mil-
ford, MA). The mobile phases consisted of solvent A 
(60:40 acetonitrile:water) and solvent B (90:8:2 isoprop
anol:acetonitrile:water), both with 10  mM ammonium 
formate and 0.1% formic acid. The gradient elution was 
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ramped from 20% D to 98% D with a 0.5  mL/min flow 
rate over 17.00  min followed by 3.00  min column flush 
and re-equilibration. The flow rate was 500 μL/min. Sam-
ples were analyzed in positive and negative electrospray 
ionization on a Thermo Scientific Q-Exactive mass spec-
trometry with Dionex Ultimate 3000 UHPLC (Thermo 
Scientific, San Jose, CA). Data-dependent (ddMS2-top5) 
MS/MS and AIF (All-ion fragmentation) data were 
obtained on pooled samples per group for identification 
purposes.

Tumor vs normal total RNA analysis
We used the ultra-fast FASTQ preprocessor package 
fastp [19] for quality control and filtering the fastq read 
data of CSF samples. STAR 2.7 [20] was used to aligned 
the filtered fastq files to Ensemble human genome v100. 
The read counts form aligned bam files were quantified 
using the featureCounts package [21]. One normal CSF 
sample was removed from downstream analysis, since 
it had an extremely low gene count. Additionally, low 
count genes from raw data (total expression across the 
sample < 2) were removed. The count data were then nor-
malized using trimmed mean of M-values (TMM) scale 
normalization using edgeR [22]. Those genes with counts 
per million reads mapped (CPM) values > 2 in at least in 
three samples were chosen for downstream analysis. We 
used the limma-voom [23] workflow to identify the dif-
ferentially expressed (DE) genes and gene signatures for 
two groups: MB vs normal. Heatmaps and volcano plots 
were plotted using R version 4.0.3.

Tumor vs normal circular RNA analysis
To remove the ribosomal RNA (rRNA) from reads, 
fastq files were first mapped to human ribosomal DNA 
complete repeating unit (GenBank: U13369.1) using 
bowtie-2 read aligner [24]. The unmapped reads were 
filtered and extracted using a combination of  samtools 
and bedtools for  circular RNA detection. The human 
reference DNA and gene annotation files were down-
loaded from Ensembl v100. The reads were aligned  to 
the human reference genome to generate SAM files using 
the BWA-MEM tool. The CIRI2 [25] work-flow was used 
for circular RNA (circRNA) detection from aligned SAM 
files. The circRNAs identified by CIRI2 were aggregated 
to an RNA vs sample count matrix format using the 
circM tool [26]. Sample CBTTC-3459 was removed since 
it had an extreme circRNA count compared with other 
samples for differential analysis. Analysis of differentially 
expressed circRNA was performed with the DEseq2 R 
package [27]. circRNA counts were very small compared 
with total RNA counts, so we preferred DEseq2 to limma 
to increase the sensitivity of differential analysis. The 
p-values were adjusted using the Benjamini & Hochberg 

method for controlling the false discovery rate. Python 
and R packages were used to generate plots and graphs 
for circRNA expression.

Tumor vs normal global metabolite and lipid processing 
and identification
For lipidomics data analysis, LipidMatch Flow was used 
for file conversion, peak picking (implementing MZMine 
2 [28]), blank filtration, lipid annotation [29], and com-
bining positive and negative datasets. LipidMatch Flow 
was used to annotate ions using data-dependent MS/
MS analysis. For metabolomics data analysis, metabolites 
were identified with MZmine 2.0 and matching metabo-
lite retention time and m/z values to an internal library of 
over 1000 metabolites representing level 1 identification 
following metabolomics standards initiative guidelines. 
MetaboAnalyst 5.0 [30] was used for data processing 
with the following parameters: peak intensity table, sam-
ples in columns unpaired, missing value estimation used 
to replace by a small value (half of the minimum posi-
tive value in the original data, none of the features were 
removed in this step), data filtering by relative standard 
deviation (RSd = SD/mean), normalized by sum (to cor-
rect the instrumental and the technical variation), data 
transformed using log transformation, and data scaled 
using autoscaled (to allow a more direct comparison 
between features of greatly varying intensities). Principal 
component analysis (PCA), an unsupervised statistical 
model, and hierarchical clustering heatmap analysis were 
employed to visualize variance and emphasize variations 
in both metabolomic and lipidomic analyses. Metabolic 
pathway analysis was conducted using the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway database 
by matching metabolite sets with human metabolome 
(https://​www.​genome.​jp/​kegg/​pathw​ay.​html). Metabolite 
set enrichment (fold enrichment) was investigated using 
MetaboAnalyst (open source R package).

mixOmics data integration
Diablo models from mixOmics R package [31] were 
used to perform integrative analysis of transcriptom-
ics, metabolomics, and lipidomics data. Thirty patient 
CSF samples (6 normal, 24 cancer) with all three omics 
datasets were taken for integration. The output of each 
dataset from their analyses described above was sorted 
according to p-values, and the top 100 features from each 
dataset were input into DIABLO for analysis.

Results and discussion
Transcriptomic profiles of CSF from patients 
with and without medulloblastoma
Most studies attempting to profile CSF have focused on 
circulating tumor DNA (ctDNA) due to the relative ease 

https://www.genome.jp/kegg/pathway.html
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of analysis of stable DNA fragments, including in MB 
[12, 32, 33]. Despite CSF also containing RNAs, due to 
their low abundance and lability, most studies have used 
targeted approaches to profile miRNAs and mRNAs in 
CSF from patients with various CNS tumors. Recogniz-
ing the need to systematically profile RNAs in biofluids 
due to their biomarker potential, Hulstaert et al. recently 
published a comprehensive atlas of the extracellular 
transcriptomes of human biofluids, including CSF, but 
their analysis was limited to a comparison of profiles of 
patients with hydrocephalus and glioblastoma and no 
MB patient was profiled [34]. There has yet to be a com-
prehensive and systematic analysis of RNA species in the 
CSF of MB patients.

We therefore established global transcriptomic differ-
ences in the CSF of patients with (n = 40) and without 
(n = 11) MB representing different molecular subtypes 
(Additional file  4: Table  S1). Each CSF samples showed 
varied read counts and mapping rate (Fig.  1a). By both 
principal component analysis (PCA) and unsupervised 
clustering, CSF samples separated into two distinct 
groups according to the presence or absence of MB 
(Fig. 1b–d). Although, there was no clear separation into 
molecular subtypes, one hundred and ten genes were dif-
ferentially expressed in CSF samples from patients with 
and without MB (Fig. 1c, Additional file 4: Table S2, and 
Additional file 4: Fig. S1; log2 fold-change (FC) < -2 or > 2; 
adjusted p-value < 0.05) that were enriched for several 
pathways by geneset enrichment analysis (GSEA) [35]: 
TGF-β signaling (SKI, FKBP1A, ID2, RHOA, BMPR1A; 
false discovery rate (FDR) 2.59E-04), TNF-α signaling via 
NF-kB (TSC22D1, DUSP1, ID2, KLF9, FOS, IL6ST, SAT1; 
FDR 1.19E-03), and adipogenesis (ALDH2, CMPK1, 
APOE, UQCR10, TOB1, YWHAG; FDR 4.51E-03). TGF-β 
has previously been implicated in the progression of MB 
[36], perhaps by suppressing the anti-tumor effects of 
cytotoxic T cells [37], and the other identified pathways 
warrant further exploration.

We next examined expression of circular RNAs (circR-
NAs), a novel class of non-coding (nc)RNAs with a cova-
lently closed loop structure derived from the host gene’s 
RNA splicing by back splicing. Although generally pre-
sent at low abundance [38], since circRNAs do not have 
exposed ends, they are more resistant to degradation and 
more stable than linear RNAs [39], making them ideal 
biomarkers for detection in human biofluids including 
blood [40], saliva [41], semen [42], urine [43], and CSF 
[34]. CircRNA expression levels in CSF were low, rang-
ing from mean read counts 203 to 1850 in samples from 
MB patients and only 8.57 ± 5.09 in normal samples. 
Nevertheless, 10 circRNAs were differentially expressed 
between MB and non-MB groups (log2 FC < -1 or > 1; 
adjusted p-value < 0.1) (Fig. 1e, Additional file 4: Table S3, 

Additional file 1). Of these, circ_463 was the most upreg-
ulated and abundant circRNA in MB CSF, as confirmed 
by qRT-PCR (Fig. 1f ).

Circ_463, also known as ciRS-7 or CDR1as, was origi-
nally identified as a highly expressed circRNA in human 
and mouse brains [44]. It contains 73 miR-7 seed targets 
and functions as a miR-7 sponge with an unknown role in 
the brain [45]. In cancers, ciRS-7 promotes growth and 
metastasis of esophageal squamous cell carcinoma [46], 
and its silencing in melanoma drives IGF2BP3-mediated 
invasion and metastasis [47]. In multiple myeloma, its 
expression is downregulated in immunomodulatory drug 
resistant cell lines, and depletion of ciRS-7 increased the 
CpG methylation of its host gene LINC00632 [48]. While 
there have been a few very recent reports of circRNA 
expression in MB tissues and cells demonstrating poten-
tial oncogenic function for overexpressed transcripts 
[49–51], this is the first circRNA analysis of CSF in MB 
patients. Therefore, circ_463 appears to be pleiotropic, 
with overexpression in CSF samples of MB patients sug-
gesting a novel oncogenic role in this context.

The metabolic differences in CSF from patients 
with and without medulloblastoma
Global metabolomics has become an important unbiased 
approach to identify diagnostic, prognostic, and predic-
tive biomarkers in human disease [17, 52], and altered 
metabolism is a hallmark of cancer cells, which need to 
adapt to their nutrient-poor microenvironment to sustain 
their viability [53]. Although it is clear that cancer cells 
have altered metabolism, it is less clear to what extent 
this influences the CNS microenvironment and the CSF. 
Like other tumors, several studies have established that 
metabolism is altered in primary and recurrent MB, 
including decreased fatty acid oxidation, increased lipo-
genesis, and a glycolytic phenotype reflected in the detec-
tion of MB by 18FDG-PET [54]. However, there have been 
fewer comprehensive studies of the CSF metabolome in 
CNS tumors and in MB specifically. Metabolite analysis 
of the CSF in glioma patients identified differences in the 
abundance of 43 metabolites compared with controls 
[55], while in MB, Reichl et al. detected upregulation of 
hypoxia-induced proteins and metabolites (up-regulation 
of tryptophan, methionine, serine and lysine) in MB CSF 
[56]. However, the full metabolomic landscape of CSF in 
MB has not been accurately or fully quantified.

Therefore, we performed comprehensive untargeted 
metabolic profiling of the brain CSF samples using ultra 
high-pressure liquid chromatography and high-resolu-
tion mass spectrometry (UHPLC-HRMS). Metabolite 
data were collected in a randomized manner to avoid 
bias. Using flank feature filtering (BFF) to eliminate false 
peaks, 3995 true metabolic features were identified, of 
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Fig. 1  Global transcriptomic differences in the CSF of patients with (n = 40) and without (n = 11) MB. A Mapping rate of each CSF sample. B 
Principal component analysis of CSF samples using the 48 most differentially expressed genes showing clear separation of normal CSF samples 
from MB CSF samples. C Unsupervised clustering of samples using the 48 most differentially expressed genes showing clear separation of normal 
CSF samples from MB CSF samples. D Volcano plot showing significantly up- or downregulated genes in CSF. E Volcano plot for differentially 
expressed circRNAs between normal vs MB CSF samples. F Top 5 circRNAs expression in different subgroups and qRT-PCR validation of circ-463
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which 352 metabolites were identified as level 1 (high-
est level of confidence in the annotation). Similar to the 
transcriptomic profiles, PCA and unsupervised cluster-
ing of differentially expressed metabolites revealed clear 
separation of metabolic profiles between normal and MB 
CSF (Fig. 2a and c) but not between different molecular 
subtypes. The majority of differentially regulated metab-
olites (FC > 1.5; FDR p < 0.05) were upregulated in MB 
samples (Fig. 2b and Additional file 4: Table S4). Explora-
tory pair-wise metabolite profile discrimination between 
normal and different MB sub-groups confirmed that dif-
ferentially expressed metabolites clearly distinguished 
different molecular subgroups of MB (Additional file  4: 
Fig. S2). Uniquely elevated (Additional file 4: Fig. S3) and 
downregulated (Additional file 4: Fig. S4) metabolites in 
the different MB subtypes were analyzed using volcano 
plot-based differential statistical analysis (p-value < 0.05, 
fold change ≥ 1.5).

We next performed KEGG metabolic pathway analy-
sis of significantly differentially expressed metabolites 
(hypergeometric test, relative betweenness centrality, 
p-value < 0.05) (Fig.  3a). The TCA cycle, alanine, aspar-
tate, and glutamate metabolism, and arginine biosyn-
thesis pathways were all upregulated in MB, particularly 
in SHH, group 3/4, and group 4 tumors. Given that 
CSF metabolic profiles did not discriminate between 
molecular subgroups, we established which metabo-
lites were uniformly expressed in all MB subtypes and 
might therefore be candidate diagnostic biomarkers 
for MB. α-ketoglutarate (Fig.  3b), fumarate (Fig.  3c), 
hydroxypyruvate (Fig.  3d), malate (Fig.  3e), and succi-
nate (Fig.  3f ) from the TCA cycle and N-acetyl-aspar-
tate (Fig. 3g) from the alanine, aspartate, and glutamate 
metabolism pathway were all significantly elevated in all 
different sub-groups of MB; citrate, isocitrate, and trans-
aconitate (Additional file 4: Fig. S5A-C; TCA cycle) and 
GABA (Additional file 4: Fig. S5D; alanine, aspartate, and 
glutamate metabolism) showed minor but significant 
downregulation in MB. For validation, α-ketoglutarate, 
fumarate, malate, and succinate (Fig. 3h) from the TCA 
cycle and N-acetyl-aspartate were all significantly upreg-
ulated by targeted quantification (Fig. 3i). Finally, anser-
ine (Additional file 4: Fig. S5E; histidine and beta-alanine 
metabolism) and S-(5′-adenosyl)-L-methionine (arginine 
biosynthesis; Additional file 4: Fig. S5F) were significantly 
upregulated and 5-oxo-L-proline (glutamine and gluta-
mate metabolism; Additional file 4: Fig. S5G) significantly 
downregulated in MB compared with normal. Collec-
tively, these data suggest that a broad range of metabo-
lites in the CSF, particularly those involved in the TCA 
cycle, distinguish MB from normal. This is consistent 
with a more general model of proliferating MB cells not 

only using the TCA cycle to fuel the need for reducing 
equivalents in the form of NADPH [53] but to provide 
metabolic precursors for the biosynthesis on non-essen-
tial amino acids, since upregulated α-ketoglutarate indi-
cates (i) a continuous supply of glutamine maintaining 
the integrity of the cell cycle [57]; (ii) maintaining the 
cell’s ability to synthesize citrate for energy production 
and de novo lipogenesis, since α-ketoglutarate is oxi-
dized to oxaloacetate to maintain citrate production and 
oxaloacetate can be converted to malate and then pyru-
vate to produce NADPH in a glucose-independent man-
ner [58].

Lipidomic alterations in medulloblastoma CSF
Lipids are fundamental and abundant biomolecules in 
cells that have structural, transport, energy storage, and 
cellular signaling roles. Unsurprisingly, therefore, they 
all play critical roles in many diseases including cancer 
[59]; however, there is little available information on the 
lipid profiles of human MB. Tissue analysis suggests that 
human MBs may have high lipid levels, at least in con-
trast to other pediatric brain tumors [60], and a lipidomic 
analysis of a mouse model of SHH MB determined 34 
upregulated lipids associated with metastasis [61]. Given 
that biofluid lipidomes might provide a rich source of 
biomarkers and provide insights into the underlying biol-
ogy of MB, we proceeded to examine CSF lipid profiles.

Using LipidMatch, 727 lipids were identified in all sam-
ples including predicted lipids (Additional file  2), and 
14 of these were differentially expressed based on fold 
change threshold 1.5 and p-value < 0.05 (11 lipid species 
elevated and 3 downregulated) in the CSF of MB patients 
compared with normal (Fig. 4a). To understand the role 
of specific lipids in MB, we conducted lipid class analy-
sis between MB and normal. Total triacylglycerols (TGs; 
n = 171) were significantly upregulated in MB (Fig.  4b) 
and diacylglycerols (DGs; n = 17) (Fig.  4c), monogalac-
tosyldiacylglycerol (MGDG; n = 19) (Fig.  4d), choles-
terol ester (CE; n = 14) (Fig.  4e), phosphatidylcholine 
(PC; n = 85) (Fig.  4f ), N-hexadecanoyl hexosylceramide 
(HexCer; n = 6) (Fig.  4g), sphingomyelin (SM; n = 51) 
(Fig. 4h), and oxidized lipids including oxLPC (lysophos-
phatidylcholine; n = 2), oxLPE (lysophosphatidylethan-
olamine n = 1), oxPC (n = 20), oxPE (n = 21), and oxTG 
(n = 13) (Fig. 4i) were significantly downregulated in MB 
compared with normal. Together with the increase in 
α-ketoglutarate noted above, these lipid profiles might 
reflect a state of hypoxia in MB CSF because (i) cancer 
cells accumulate TGs due to hypoxia [62]; and (ii) hypoxia 
can create a deficit of glucose-derived acetyl-CoA, 
requiring the conversion of α-ketoglutarate into citrate 
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Fig. 2  Global metabolic alterations in MB. A Unsupervised PCA-based multivariate analysis of CSF global metabolic profile between normal (n = 6) 
and MB (n = 28). B Volcano plot of differentially altered metabolites in MB compared with normal. C Relative abundance heatmap of highly altered 
metabolites in normal and different MBs, shown as a heatmap representation. Log2 FC, log2 fold-change; m/z, mass charge ratio; RT, retention time
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Fig. 3  Top enriched metabolic networks in MB. A Enriched KEGG pathways in CSF metabolites in MB are shown with the p-values and the number 
of metabolites represented in each pathway. The size of each bubble represents the number of metabolites differentially expressed for each 
pathway. B-G Relative abundance of highly altered metabolites involved in TCA cycle and alanine, aspartate, and glutamate metabolism from 
untargeted metabolomics analysis. H, I Concentrations of TCA cycle metabolites H and N-acetyl-aspartate I in MB CSF compared with normal using 
a targeted quantitative assay
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so that it can be then used to generate acetyl-CoA [63]. 
From the practical perspective, CE, HexCer (CerG1), and 
SM may be promising CSF biomarkers for MB.

Integrative analysis of transcriptome, lipidome, 
and metabolome
Given that the transcriptome, lipidome, and metabolome 
are integrated and interrelated biological systems that 
modulate phenotype, we next performed a multivariate 
analysis to integrate the molecular changes character-
izing the CSF of MB patients using the data integration 
analysis for biomarker discovery DIABLO method in 
the mixOmics R package [64]. The DIABLO method 

identified several important features discriminating can-
cer from normal through interrogation of correlations 
between the three omics datasets.

The first component of sparse partial least-squares dis-
criminant analysis (sPLS-DA) [65] of the combined tran-
scriptomic, metabolomic, and lipidomic datasets clearly 
discriminated normal from MB CSF samples (Fig.  5a), 
with the transcriptomic and metabolomic data show-
ing the highest discriminatory capacity and correlations 
(Fig. 5b and Additional file 4: Fig. S6). To obtain the best 
discriminative features, the minimum loading coefficient 
for the first component of sPLS-DA was set at ± 0.15 for 
each data block. This filtering (Fig.  5c and d) identified 

Fig. 4  Global lipid alterations in MB from lipidomics. A Differentially altered lipids in MB compared with normal by volcano plot analysis. B-I Relative 
abundance of different lipids analyzed based on lipid class. p-values calculated based of Student’s t-test and two-tailed unequal variance
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n = 19 transcripts, n = 28 metabolites, and n = 16 
lipids that best distinguished MB from normal samples 
(Fig. 5e). Among 19 RNA transcripts, ten were validated 
by qRT-PCR (Additional file  4: Fig. S7). The integra-
tion of data using multi-omics tools is indispensable for 
cancer metabolism studies [66]. Finally, to visualize the 
between-omics correlations in the DIABLO analysis, a 
Circos plot (Fig. 5f ) revealed a number of strong positive 
and negative correlations; for example, UFM1 was posi-
tively correlated with S-adenosyl-L-methionine (Pear-
son’s r = 0.76) and LPC 17:0 (Pearson’s r = 0.6) and LPC 
17:0 was positively correlated with S-adenosyl-L-methio-
nine (Pearson’s r = 0.66). UFM1 (ubiquitin-fold modifier 
1) has been identified as an important factor associated 
with microcephaly by affecting cell cycle regulation and 
cancer development [67] while, in a preliminary study, 
S-adenosyl-L-methionine found to modulate cell cycle 
progression in cancer [68]. We further analyzed the 
MAGIC (Medulloblastoma Advanced Genomics Inter-
national Consortium (https://​plone.​bcgsc.​ca/​proje​ct/​
magic) [7]; Additional file 4: Fig. S8 and Additional file 4: 
Fig. S9) datasets and found 17 out of the 19 differentially 
expressed RNAs in different MB subtypes (Fig. 5f ).

Conclusion
This is the first comprehensive, integrated molecular 
analysis of the CSF of MB patients and its comparison 
with normal CSF and the first to establish global tran-
scriptomic and lipidomic profiles in the CSF of patients 
with MB. Our study provides proof-of-principle that all 
three molecular approaches can be successfully applied 
to CSF samples not only to discriminate MB patients 
from those without the disease (i.e., for biomarker dis-
covery), but also to provide new insights into the patho-
biology of the disease. Since the molecular profiles 
were discriminatory for the presence of MB but not 
the exact molecular subtype, the molecular changes in 
the CSF microenvironment seem to reflect general fea-
tures of MB existing in that anatomical compartment. 
In particular, the metabolic and lipidomic profiles both 

contained indicators of tumor hypoxia. Our analy-
sis provides a number of candidate biomarkers that 
deserve further validation, including the novel circular 
RNA circ_463. Due to the presence of the blood–brain 
barrier, CSF analysis is an ideal means to identify and 
assay for biomarkers arising from brain tumors that 
might not necessarily reach the circulation. CSF is eas-
ier to collect and less invasive than tissue biopsy and we 
now show that it provides a comprehensive landscape 
of the transcriptomic, metabolomic, and lipidomic 
status of MB. CSF can be used not only for primary 
diagnosis but also to predict responses to treatment 
and recurrence by monitoring biomarker levels after 
surgery, radiotherapy, and/or chemotherapy [69] Ide-
ally, CSF should be collected after surgery to establish 
a baseline for predicting future events, and a separate 
CSF sample could be taken during radiographic follow-
up to help establish the predictive value of these CSF 
biomarkers for recurrence or response to therapy [70]. 
Since CSF sampling is the part of standard care for 
patients with CNS tumors other than MB, CSF-based 
biomarkers hold promise for the accurate assessment of 
other CNS tumors.

High-throughput technologies have been used to char-
acterize cancer in multiple dimensions including genetic, 
protein, transcriptomic, epigenetic, lipidomic, and metab-
olomic variations. Multivariate or integrative data analysis 
is now emerging as a powerful tool in cancer biology [71] 
[72]. Although it is challenging to pool independent data-
sets (RNA, protein, lipid, and metabolite) and combine 
them into one, several algorithms [72], including DIABLO 
used here [65], are providing robust statistical frameworks 
for meaningful data integration. Identifying multivariate 
molecular signatures in MB patients should provide infor-
mation about therapeutic efficacy, disease staging, patient 
survival, and cancer recurrence.

Finally, it remains to be determined whether these 
biomarkers are sufficiently sensitive to detect recurrent 
disease or their optimal combination, which require 
further validation in prospective cohorts.

Fig. 5  Sparse partial least-squares discriminant analysis. A sPLS-DA consensus plot for the combination of the three datasets showing complete 
discrimination of the 30 CSF samples (24 medulloblastoma and six normal samples). B The individual contribution of each dataset to the sPLS-DA 
final model, in each case showing the score plots for the two first components, indicating the best separation capability for transcriptome 
data followed by metabolome and lipidome data. C Selected features shown in pyramid bar plot. Loading plot represents the top 19 RNAs, 28 
metabolites, and 16 lipids contributing to group separation. D Sample scatterplot from plotDiablo displaying the first component in each dataset 
(upper diagonal plot) and Pearson correlation between each component (lower diagonal plot). E Clustered image map (Euclidean distance, 
complete linkage) of the multi-omics signature based on the 54 multi-omics signature identified on the first component. Samples are represented 
in rows, selected features on the first component in columns. F The Circos plot (cut off: 0.7) shows positive or negative correlations denoted as red 
and blue lines, respectively

(See figure on next page.)

https://plone.bcgsc.ca/project/magic
https://plone.bcgsc.ca/project/magic
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Fig. 5  (See legend on previous page.)
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