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Immune cell deconvolution of bulk DNA 
methylation data reveals an association 
with methylation class, key somatic alterations, 
and cell state in glial/glioneuronal tumors
Omkar Singh1, Drew Pratt1,2 and Kenneth Aldape1*   

Abstract 

It is recognized that the tumor microenvironment (TME) plays a critical role in the biology of cancer. To better 
understand the role of immune cell components in CNS tumors, we applied a deconvolution approach to bulk DNA 
methylation array data in a large set of newly profiled samples (n = 741) as well as samples from external data sources 
(n = 3311) of methylation-defined glial and glioneuronal tumors. Using the cell-type proportion data as input, we 
used dimensionality reduction to visualize sample-wise patterns that emerge from the cell type proportion estima-
tions. In IDH-wildtype glioblastomas (n = 2,072), we identified distinct tumor clusters based on immune cell propor-
tion and demonstrated an association with oncogenic alterations such as EGFR amplification and CDKN2A/B homozy-
gous deletion. We also investigated the immune cluster-specific distribution of four malignant cellular states (AC-like, 
OPC-like, MES-like and NPC-like) in the IDH-wildtype cohort. We identified two major immune-based subgroups of 
IDH-mutant gliomas, which largely aligned with 1p/19q co-deletion status. Non-codeleted gliomas showed distinct 
proportions of a key genomic aberration (CDKN2A/B loss) among immune cell-based groups. We also observed 
significant positive correlations between monocyte proportion and expression of PD-L1 and PD-L2 (R = 0.54 and 
0.68, respectively). Overall, the findings highlight specific roles of the TME in biology and classification of CNS tumors, 
where specific immune cell admixtures correlate with tumor types and genomic alterations.

Keywords:  Deconvolution, Tumor microenvironment, Genomic aberrations, Immunotherapy

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Glial and glioneuronal tumors represent a wide range of 
tumor types with distinct biology and clinical outcomes 
and are currently assigned WHO grades 1–4 based on 
histopathologic and molecular features [1, 53]. The 
tumor microenvironment (TME) is a critical element 
in glioma biology and has been shown to alter sensitiv-
ity to immune-based therapies [17, 86]. In addition to 

immune cell burden, the specific cellular composition 
is also a critical feature of the TME and may influence 
key steps in tumor–immune interactions [39]. While 
the contribution of the TME to genomic instability in 
tumor cells has been previously investigated [20, 21, 71, 
87], information is incomplete regarding the presence 
and/or activity of immunosuppressive or immunostim-
ulatory cell types in gliomas, particularly in high-grade 
tumors [69]. Tumor infiltrating lymphocytes, or TILs, 
are often enriched in glioblastoma (GBM) with a mes-
enchymal gene expression signature and are strongly 
associated with mutations in NF1 and RB1 [75]. Con-
versely, TILs have been reported to be depleted in 
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“classical” GBM (EGFR-amplified and PTEN-deleted) 
[75]. IDH-mutant gliomas often exhibit a less promi-
nent TIL infiltration and decreased expression of the 
immune checkpoint molecule PD-L1 as compared to 
IDH wild types, reflecting a less immunosuppressive 
microenvironment [5]. Finally, recent evidence suggests 
tumor-associated macrophages (TAMs) may drive mes-
enchymal differentiation in GBM [76], consistent with 
reports that transcriptomic plasticity of GBM is signifi-
cantly influenced by cellular heterogeneity in the tumor 
microenvironment [67, 78].

Aberrant DNA methylation is recognized as a key 
process for tumor development [42]. Distinct epige-
netic profiles have been recognized in gliomas based 
on DNA methylation and, in combination with other 
somatic alterations, characterized clinically relevant 
subtypes: H3 K27, G34, IDH1, RTKI, RTKII, and mes-
enchymal [82]. An association with chromosomal alter-
ations has been noted. For example, RTKI was found 
to be enriched for PDGFRA amplification and RTKII 
group showed combined chromosome 7 gain/chromo-
some 10 loss (+ 7/−10), CDKN2A loss and amplifica-
tion of epidermal growth factor receptor (EGFR) [24, 
81, 85]. IDH-wt subclass RTK III was predominantly 
reported in children and young adults, and correlates 
with pediatric high grade glioma, showing lower rates 
of TERT mutation and EGFR amplification as com-
pared to adult-type GBMs [80]. Recently, DNA meth-
ylation profiling has emerged as a useful technique for 
tumor classification and the identification of novel sub-
types in glial and glioneuronal tumors [10, 66].

Deconvolution of bulk tumors has typically involved 
in situ-based techniques, such as immunohistochemis-
try (IHC), as well as fluorescence-activated cell sorting 
(FACS), and more recently single-cell RNA sequencing 
(RNA-seq). Recent in silico techniques have allowed 
deconvolution on a much larger scale by utilizing high-
throughput assays such as gene expression and DNA 
methylation microarrays [23, 33, 62, 63, 83, 84]. CIB-
ERSORT is a widely-used reference-based deconvolu-
tion method used to de-convolve bulk transcriptomic 
data (e.g. RNA-seq) [37, 54, 95]. An adaptation of this 
method using DNA methylation data (MethylCIB-
ERSORT) has been recently applied to pediatric CNS 
embryonal tumors and pediatric high-grade gliomas, 
revealing clinically and biologically relevant immune-
based clusters in these select cohorts [12, 35]. Here, we 
sought to apply this deconvolution method to a large 
cohort of epigenetically defined, primarily adult glial 
and glioneuronal tumors with the aim of uncovering 
the relationship of tumor immune microenvironment 
with tumor subtype, canonical genetic alterations, and 
immune modulators.

Materials and methods
DNA methylation profiling
Samples (n = 741) were profiled as part of clinical meth-
ylation testing and analyzed as previously described 
by Capper et  al. [10], and appropriate ethics approval 
was obtained for reporting. Briefly, bisulfite-converted 
genomic DNA was assayed on the Infinium Methylatio-
nEPIC kit (Illumina, USA), and the methylation profile 
was then classified using the Heidelberg methylation clas-
sifier. CNV profiles were derived from the R “conumee” 
package (http://​bioco​nduct​or.​org/​packa​ges/​conum​ee/) as 
implemented in the classifier package. Batch effects were 
examined using variables of formalin-fixed, paraffin-
embedded specimens (FFPE) versus frozen specimens. 
We also compared the 2 array types (450 k vs. EPIC). We 
did not observe major batch effects with respect to mate-
rial type and array type.

Data collection
We collated published literature to collect additional 
data for glial/glioneuronal tumor subtypes. The follow-
ing publicly-available datasets (GSE, GEO database; 
E-MTAB, ArrayExpress) were included for downstream 
analyses: GSE104293 [4], GSE109381 [10], GSE124617 
[6], GSE128654 [79], E-MTAB-5528 [57], GSE140124 
[59], GSE61160 [60], GSE103659 [46], GSE111165 
[7], GSE122994 [45], GSE131482, GSE157397 [25], 
GSE123678 [19], E-MTAB-5552 [58], GSE122920 
[91], E-MTAB-3476 [2], GSE143843 [45], GSE137845 
[34], GSE136361 [89], GSE73895 [41], GSE92462 [96], 
GSE60274 [22], E-MTAB-7802 [18], E-MTAB-5797 
[28], GSE125450 [50], GSE119774 [56], E-MTAB-7490 
[27], GSE135017 [36], E-MTAB-8390 [31], GSE152653 
[55], GSE92579 [47], GSE104723, GSE116298 [90], 
E-GEOD-73895 and E-MTAB-7804 [18]. Our final 
dataset (N = 4052) also included samples from TCGA 
(N = 530) as well as samples processed within our labora-
tory (N = 741). Raw intensity data files (IDAT) for both 
450 K and EPIC arrays were combined into a matrix with 
a common probe set (452,453 probes). All samples were 
processed and normalized by single sample noob func-
tion provided in the Minfi R package [3]. Sample anno-
tation for tumor methylation class was performed using 
DKFZ classifier calibrated scores (v11b4) [10]. The final 
dataset (N = 4052) consisted of three broad glioma/
glioneuronal tumor types: IDH-wt GBM (N = 2072), 
IDH-mut (N = 1178) and low-to-intermediate grade 
glioneuronal tumors (LIGGNT) (N = 802). LIGGNT 
is a broad category of glio-neuronal tumors consisting 
of 11 tumor subtypes: ANA-PA (N = 57), LGG-DIG/
DIA (N = 13), LGG- DNT (N = 83), LGG-GG (N = 42), 
LGG-MYB (N = 56), LGG-PA/MID (N = 85), LGG-PA/
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PF (N = 216), LGG-PAGG/ST (N = 72), LGG-RGNT 
(N = 26), LGG-SEGA (N = 23), PXA (N = 129).

Signature matrix development and validation
To construct the reference immune cell signature 
matrix, we collected methylation profile of pure non-
neoplastic cell types. Raw data files (idat) were obtained 
from publicly-available sources, including B-cells 
(GSE110554,GSE49618, GSE35069, GSE88824) [9, 44, 
72, 77], CD8 T-cells (GSE110554, GSE35069, GSE88824) 
[44, 72, 77], endothelial cells (GSE82234, GSE144804) 
[29, 73], monocyte, neutrophil, NK cells, eosinophils 
(GSE35069, GSE88824) [44, 72], glia (GSE66351) [32], 
neurons (GSE98203,GSE66351) [32, 48], CD4 T-cells 
and Treg (GSE49667) [94]. Microglia methylation pro-
file was obtained from in-house profiling. Methylation 
profiles from 61 cancer cell lines were obtained from 
various sources (GSE128654, GSE68379, GSE152035, 
GSE134165; E-MTAB-9297, GSE122809, GSE137845, 
E-MTAB-9282), representing select types and subtypes 
of glial/glioneuronal tumors. Methylation data used to 
generate the signature matrix was processed and nor-
malized by single sample noob function provided in the 
Minfi R package [3]. For immune cell deconvolution, we 
used the MethylCIBERSORT R package using the proce-
dure as described by Chakravarthy et al. [12]. For feature 
selection, we used a modified function of FeatureSelect.
V4 as described in Williamson et al. [35]. A maximum of 
top 100 features per pairwise comparison were selected 
with a median β-value difference of 0.2 and false discov-
ery rate of 0.01. We selected 1,290 probes from the gener-
ated signature matrix differentiating 13 cell types: B-cells, 
cancer, CD4T, CD8T, endothelial, eosinophil, glia, micro-
glia, monocyte, neuron, neutrophil, NK cells and Treg. To 
validate the matrix represents a homogeneous signature 
for each putative cell type, we performed dimensionality 
reduction (t-SNE) of pure reference cell types and heat-
map with unsupervised clustering of selected probes and 
all cancer cell lines used to create the signature matrix. 
We generated scatter plots between cancer fraction and 
two purity measures (ESTIMATE purity and ABSO-
LUTE purity) [70] to demonstrate a correlation as a vali-
dation step for true cancer fraction estimation. Finally, 
we ran CIBERSORT on bulk tumor data using a Docker 
container with 1000 permutations without quantile nor-
malization [63]. To validate our findings, we compared 
MethylCIBERSORT fraction output with gene expression 
based CIBERSORT proportion of six major cell types 
in data subset (N = 394) by using LM6 signature matrix 
[14]. We observed significant positive Pearson’s correla-
tion (Additional file  1: Fig.  1) between similar cell type 
fractions [93].

Dimensionality reduction and immune cell fraction 
estimation in tumor subtypes
We classified all samples (N = 4052) into three represent-
ative cohorts: IDH-wt (N = 2072), IDH-mut (N = 1178) 
and LIGGNT (N = 802). Our main objective was to 
investigate an immune cell fraction-based clustering pat-
tern within these three major cohorts. We first investi-
gated the clustering distribution by both including and 
excluding the inferred cancer proportion in each dataset 
(Additional file 2: Fig. 2). Prior to clustering we removed 
the cancer fraction and normalized the non-neoplastic 
cells (scaled from 0 to 1) and used immune cell fractions 
to generate UMAP for each cohort separately. The opti-
mum numbers of clusters in each cohort was obtained 
using k-means clustering with Nbclust R package, pro-
viding 30 indices with which to determine the number of 
clusters [13]. Cluster selection process was based on the 
majority rule, which is available in the NbClust package. 
We compared three different methods; kmeans, ward.D 
and ward.D2 and finally selected kmeans clustering as 
a uniform approach to select optimum number of clus-
ter (Additional file  3: Fig.  3). We next assessed overall 
immune cell proportions in each tumor subtype to deter-
mine methylation class-specific immune cell proportions 
(Additional file  4: Fig.  4a). We also investigated cancer 
proportion in each tumor subtype, and we found signifi-
cant differences in cancer fraction of three major tumor 
cohorts (Additional file 4: Fig. 4b,c).

Copy number variants
Somatic copy number variants were computed from raw 
signal intensities (IDAT) using the Conumee R pack-
age [40]. This method combines the intensity values of 
the methylated and unmethylated probes of each of the 
CpG sites and normalizes them to a set of control sam-
ples. CNV calling using DNA methylation array data 
has its own limitation such as it cannot rely on allele fre-
quencies to define a copy-number neutral state baseline 
as described by Capper et al. [11] but still it is useful for 
large DNA methylation datasets. To investigate the pres-
ence of oncogenic gene amplifications and homozygous 
deletions events, we adopted the methodology described 
by Capper et al. [10]. We focused our analysis on select 
diagnostic and/or prognostic oncogenic events described 
in glial/glioneuronal tumors: EGFR amplification, PTEN 
deletion, PDGFRA amplification, CDKN2A/B deletion, 
1p/19q codeletion, MYCN and MDM2 amplification. 
Amplifications were defined as a log2ratio ≥ 1, and dele-
tions defined as a log2ratio ≤ −0.8. We set these high cut-
off values to identify true amplification/deletion events 
and to filter out small gain/loss. For 1p/19 codeletion, 
we considered co-deletion when both chromosome 1p 
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and 19q showed log2ratio ≤ –0.20. MDM2 and CDK4 
are frequently co-amplified genes in glioma, to validate 
our finding we examined all MDM2 amplified samples 
for CDK4 amplification. To investigate co-amplification 
we used average amplification cutoff (log2ratio ≥ 0.4) 
as described by Capper et   al. [11] and we observed co-
amplification of MDM2 and CDK4 in more than 68% of 
samples.

Immune cell proportion and PD‑L1/2 gene expression
To investigate a possible association of monocyte pro-
portion with gene expression and promoter methylation 
of the immune checkpoint ligands PD-L1 and PD-L2, 
we used a subset of the data (n = 594) which contained 
matched gene expression profiles (RNA-seq). RNA-seq 
trimmed mean M-values (TMM) was performed using 
the calcNormFactors function in the edgeR package 
[74]. Using the voom() function in limma, the counts 
were converted log2-counts-per-million (logCPM) and 
quantile normalized [49]. DNA methylation data was 
processed using single sample noob approach. We then 
selected promoter-associated probes in PD-L1/L2 and 
used the average beta value of all selected probes in these 
regions as the promoter methylation value.

Survival analysis
Survival data was collected from original source of data 
(if available) as described in data collection sub-section 
of material and methods. To examine the association of 
immune cell proportion with overall survival, we per-
formed Kaplan–Meier survival analyses with the log-
rank test using the survminer and survival packages in R 
[43]. Samples with high proportion (> median) and low 
proportion (< median) were compared to see survival dif-
ferences. Survival analysis was also performed to assess 
the cluster based survival differences in some cases (if 
survival data was available e.g. O-IDH).

Results
Identification and verification of methylation‑derived 
immune cell populations
A critical step in the deconvolution of bulk data is the 
appropriate choice of purified reference cell types and 
confirming a homogeneous population. Using Methyl-
CIBERSORT, we constructed a signature matrix consist-
ing of 1,290 probes distinguishing 13 specific cell types, 
as previously described: B-cells, CD4T, CD8T, Treg, 
NK cells, eosinophils, neutrophils, monocytes, micro-
glia, endothelial cells, glial cells, neurons, and the can-
cer fraction. After generation of the signature matrix, 
we verified correct representation of cellular phenotypes 
by visualizing the profiles with t-SNE, which demon-
strated an appropriate distinction between all purified 

reference groups (Fig.  1a). As confirmation, additional 
unsupervised hierarchical clustering of the signature 
matrix probes clearly distinguished these cell type clus-
ters (Fig.  1b). We further investigated the association 
of the cancer fraction with two purity measures, ESTI-
MATE and ABSOLUTE (where available) and show a 
significant correlation with ESTIMATE-based (R = 0.59, 
p value < 2.2e−16) and ABSOLUTE purity (0.77, p 
value < 2.2e−16) (Fig. 1c).

Immune cell deconvolution and clustering of IDH‑wildtype 
diffuse gliomas
We first investigated the distribution of immune cell 
populations in a large set of IDH-wildtype diffuse glio-
blastoma (N = 2,072). This set consisted of seven meth-
ylation-defined glioma types: GBM-G34, GBM-MES, 
GBM-MID, GBM-MYCN, GBM-RTKI, GBM-RTKII and 
GBM-RTKIII that were defined using DKFZ DNA meth-
ylation classifier calibrated scores (version 11b4) [10]. 
From the deconvolution results, we calculated the over-
all mean proportion of immune cells (scaled from 0 to 1) 
in the IDH-wt dataset. The results indicated the average 
fraction of immune cells was proportionally highest for 
monocytes (31% of all non-cancer cells) and endothelial 
cells (11%) followed by CD8T (6%), B-cells (5%), neu-
trophils (5%), Treg (4%), microglia (3%), NK cells (2%), 
CD4T (1%) and eosinophils (1%). We also observed a 
significant contribution of non-immune cell such as glial 
cells (28%) and a minor contribution of neurons (1%).

We first examined clustering of IDH-wt GBM based 
on the calculated immune cell proportions. K-means 
consensus clustering was performed to identify an opti-
mal number of clusters across all IDH-wt tumor sam-
ples (N = 2,072). The optimal number of clusters was 
determined by NbClust R package by providing 30 indi-
ces for determining the number of clusters [13]. Con-
sensus clustering suggested five major clusters in the 
IDH-wt dataset (Fig.  2a,b). Cluster 1 was defined by a 
high proportion of neutrophils (median = 0.38), mono-
cytes (median = 0.30), endothelial cells (median = 0.04) 
and B-cells (median = 0.02) (Fig.  2c). Interestingly, 
monocytes (median = 0.54) constituted the highest 
proportion in cluster 2 as compared to any other clus-
ter, in addition to endothelial cells (median = 0.08) and 
B-cells (median = 0.04) (Fig. 2c). Cluster 3 demonstrated 
high levels of monocytes (median = 0.15), endothe-
lial cells (median = 0.08), and CD8T (median = 0.07). 
Cluster 4 was defined by a high proportion of micro-
glia (median = 0.41). Cluster 5 was similar to cluster 
1 and was associated with high proportions of mono-
cytes (median = 0.33), endothelial cells (median = 0.12), 
and B-cells (median = 0.05) (Fig.  2c). We observed that 
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monocyte and endothelial proportions were dominant 
over any other cell type in the majority of clusters.

Immune cell proportions showed a distinct relationship 
with GBM methylation classes. As shown in Fig. 2d, the 
majority of samples in cluster 1 were GBM-MES (70%) 
and GBM-RTKII (16%). Conversely, cluster 5 showed an 
inverse pattern, with highest proportion of GBM-RTKII 
(54%) and a relatively low proportion of GBM-MES 
(22%). Representation of several of the less-common 
GBM subtypes, including GBM-G34, GBM-RTKII and 
GBM MYCN, were observed in cluster 3. A Sankey dia-
gram demonstrating this relationship between DNA 
methylation class and immune-based clustering is shown 
in Additional file 5: Fig. 5.

Immune clusters are associated with key oncogenic 
alterations in IDH‑wt glioblastoma
Next, we investigated select copy number alterations 
in IDH-wt gliomas with respect to the defined immune 
clusters (Table. 1). We used conumee R package to ana-
lyze frequent genomic aberrations (amplifications/dele-
tions) in GBM [40]. Cluster 5 showed a significantly 

higher proportion of samples harboring EGFR amplifica-
tion and was approximately twice as frequent as tumors 
in clusters 3 and 4 (Fig.  2e). Tumors with homozygous 
deletion of PTEN were relatively enriched in cluster 4, 
and MYCN or PDGFRA amplification were enriched in 
cluster 3. To understand the significance and associa-
tion of monocyte proportion in genomic aberrations we 
classified samples groups based on presence/absence of 
these alterations and compared the monocyte propor-
tion between these groups (Fig.  2f ). Interestingly, we 
found significant differences in monocyte proportions 
between sample groups (EGFR, p < 0.01; MYCN, p < 0.01, 
PTEN, p < 0.001, CDKN2AB, p < 0.05) based on genomic 
aberrations.

Immune clusters are associated with glioma cell states 
in IDH‑wt GBM
Previously, four main cellular states for IDH-wt GBM 
(AC-like, OPC-like, MES-like and NPC-like) have been 
identified based on single-cell RNA sequencing data 
[61]. Here, we used TCGA samples based on the avail-
ability of matched mRNA and methylation data and 
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Fig. 1  Signature matrix generation a t-SNE plot showing distinct clusters of methylation profiles of the pure reference cell types used to generate 
signature matrix. b Heatmap generated by all selected probes of signature matrix. c Scatterplot showing the estimated CIBERSORT cancer fraction 
(N = 4052) correlates significantly with purity (Estimate purity; R = 0.59; p value < 2.2 × 10–16, Absolute purity; R = 0.76; p value < 2.2 × 10–16)
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used CIBERSORTx to estimate the relative proportion of 
these cellular states. We observed significant differences 
in the proportion of cell states versus our immune cell-
defined clusters. Clusters 3 and 5 were associated with 
a high proportion of OPC-like and AC-like malignant 
states, respectively (Additional file  6: Fig.  6), and Clus-
ters 1 and 2 were populated by tumors with a high pro-
portion of tumors with predominant MES-like cell state. 
We also analyzed tumor-specific survival probabilities in 
relation to immune cell proportion in tumor subtypes of 
IDH-wt cohort (Additional file  7: Fig.  7). We compared 
two groups based on median monocyte proportion in 
GBM-MES (N = 121) and GBM-RTKI (N = 52) and we 
observed poor overall survival in monocyte-high sam-
ples (p < 0.01 and p = 0.05, respectively) (Additional file 7: 
Fig.  7a, b). Similarly, we compared high/low endothe-
lial proportion groups based on median proportion and 
found that samples with a high proportion of endothelial 
cells showed improved survival probability (p = 0.032) 
(Additional file 7: Fig. 7c) in GBM-MES.

IDH‑mutant diffuse gliomas
The IDH-mutant cohort (N = 1178) was next examined 
and comprised the methylation classes O-IDH (oligo-
dendroglioma), A-IDH (astrocytoma) and A-IDH-HG 
(high-grade astrocytoma). The presence of an IDH muta-
tion was inferred from the methylation data. Surprisingly, 
visualization (UMAP) revealed apparent discrimination 
of these three methylation classes according to rela-
tive immune cell proportion (Fig.  3a). K-means consen-
sus clustering revealed n = 2 optimal number of clusters 
across all IDH-mutant tumor samples (Fig. 3b), and cor-
responding differences in immune cell proportion were 
noted (Fig.  3c): cluster 1 was relatively overrepresented 
by monocytes and cluster 2 showing increased repre-
sentation of endothelial cells. Overall, cluster 1 showed 
higher infiltration of immune cells, and as expected 
based on the methylation classifier results, was enriched 

in non-1p19q codeleted samples (Fig. 3d). Cluster 1 con-
tained 62 co-deleted and 359 non-codeleted samples, as 
compared to cluster 2, which contained 437 co-deleted 
and 320 non-codeleted samples, revealing a significant 
difference in immune cell composition in these genom-
ically-defined groups (p < 2.2e−16, chi-square test). Our 
results are in line with a recent study described associa-
tion of IDH mutation and 1p19q co-deletion with tumor 
immune microenvironment [52]. Interestingly, we found 
that the overall immune cell proportions in IDH mutant 
tumors was lower than IDH wild type GBMs, although 
A-IDH-HG tumors had increased immune cell infiltra-
tion as compared to other IDH mutant gliomas (Addi-
tional file 4: Fig. 4a).

We next focused on oligodendroglioma samples in iso-
lation (N = 444), where consensus clustering on immune 
cell proportion indicated four major clusters (Fig.  4a). 
Differences in individual cell types were noted (Fig. 4b). 
Cluster 2 and cluster 3 showed high proportion of grade 
3 tumor samples as compared to cluster 1 and cluster 
4, which consist of both grade 2 and grade 3 samples 
(Fig.  4c). Interestingly, significant survival differences 
were noted among immune-based groups (Fig. 4d).

In IDH-mutant, non-1p/19q co-deleted gliomas 
(N = 734), we identified five optimal immune-based 
clusters (Fig.  5a, b). Significant differences were appar-
ent for monocytes, CD8 T-cells, CD4 T-cells and 
microglia (Fig.  5c). When examining the distribution of 
histologic grade (Fig.  5d), there was a notable absence 
of low-grade (2) in cluster 2, defined by a high propor-
tion of CD8 T-cells (Fig.  5c). As an additional analysis, 
we analyzed the proportion of tumors with homozy-
gous loss of CDKN2A/B (a clinically relevant marker in 
these tumors), showing a higher proportion in cluster 
2 consistent with the higher overall tumor grade in this 
cluster (Fig. 5e). Similarly, we also investigated heterozy-
gous and homozygous deletion by selecting a range of 
log2ratio(homozygous < −0.8; heterozygous < −0.3) as 
separate event [26] and we found cluster 2 with higher 

(See figure on next page.)
Fig. 2  IDH-wt immune clustering showed five distinct clusters associated with immune cell proportions and key genomic aberrations. a UMAP 
clustering of seven tumor subtypes of IDH-wt tumor cohort (N = 2072) based on immune cell proportion (Non-cancer part scaled from 0 to 1) 
showed subtype specific clustering. b Five optimum number of cluster obtained by using k-means clustering with Nbclust method. c Six major 
Immune cell type proportions shown by boxplots for each cluster indicated significant difference between immune cells distribution across 
all cluster. Y axis represents non-cancer cell proportion of particular immune cell scaled from 0 to 1. Each box plots depicted, boxes indicate 
interquartile range with central bar indicating median and whiskers indicating the range. Blue dot represents mean value of the proportion. T-test 
and Wilcoxon test (p value shown) were used to calculate statistical significance. d Sample proportions of seven tumor subtypes in each cluster 
of IDH-wt tumor cohort (N = 2072). Distribution of tumor subtypes in each cluster calculated as percentage of samples represent specific tumor 
subtype. e Cluster specific genomic aberrations represented as proportion of samples undergoes for genomic changes. Horizontal bars between 
cluster bars with asterisks represent chi- square test based comparison with significant p value < (0.0001, 0.001, 0.01, 0.05, 1; symbols = "****", "***", 
"**", "*", "ns”). f Monocyte proportion shown by boxplots for various sample groups with genomic aberrations. T-test and Wilcoxon test (p value 
shown) were used to calculate statistical significance
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number heterozygous/homozygous deletions as com-
pared to other clusters (Additional file  8: Fig.  8). Over-
all, increased numbers of CD8 T-cells were associated 
with higher grade and CDKN2A/B homozygous deletion, 
highlighting the relationship of the TME with somatic 
alterations.

Circumscribed and low‑to‑intermediate grade glial/
glioneuronal tumors
Immune-based clustering of low-to-intermediate grade 
glioneuronal tumors (LIGGNT) (N = 802) consisted of 
11 DNA methylation-based types: anaplastic pilocytic 
astrocytoma/high grade astrocytoma with piloid features 

Fig. 2  (See legend on previous page.)
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(ANA-PA), desmoplastic infantile ganglioglioma and 
astrocytoma (DIG-DIA), dysembryoplastic neuroepithe-
lial tumor (DNT), ganglioglioma (GG), low-grade glioma 
with MYB/MYBL1 alteration (MYB), midline pilocytic 
astrocytoma (PA-MID), pilocytic astrocytoma, posterior 
fossa (PA-PF), supratentorial pilocytic astrocytoma/gangli-
oglioma (PA/GG-ST), rosette-forming glioneuronal tumor 
(RGNT), subependymal giant cell astrocytoma (SEGA), 
and pleomorphic xanthoastrocytoma (PXA) (Fig.  6a). 
K-means clustering and Nbclust showed an optimum num-
ber of two clusters in the LIGGNT cohort (Fig. 6b). There 
were distinct differences in the proportion of immune cells 
according to cluster group (Fig. 6c), including monocytes, 
neutrophils, and NKcells. Cluster 1 was enriched for MYB, 
DNT and GG samples, while cluster 2 was enriched for 
PA/PF, PXA, PA/MID and ANA-PA.

Table 1  Genomic aberrations, Immune cell proportion and 
tumor subtype in IDH-wt GBM cohort (N = 2072)

* Most significant genomic changes as compared to other clusters

Cluster Major cell Type Genomic aberrations Major Subtype

1 Neutrophil Low CDKN2A/B deletion GBM-MES

2 Monocyte EGFR amplification GBM MES
GBM-RTKII

3 Monocyte
CD8T

PDGFRA amplification*
PTEN deletion
MDM2 amplification
MYCN amplification
EGFR amplification

Mix
RTK III

4 Microglia Mix

5 Monocyte
Endothelial
B-cell

EGFR amplification*
CDKN2A/B deletion*
MDM2 amplification*

GBM-RTKII

Fig. 3  IDH-mutant glioma immune clustering showed two distinct clusters associated with 1p/19q status and different immune cell proportions. 
a UMAP clustering of three tumor subtypes of IDH-mut tumor cohort (N = 1178) based on immune cell proportion (Non-cancer part scaled from 
0 to 1) showed subtype specific clustering. b Two optimum number of cluster obtained in IDH-mut cohort by using k-means clustering with 
Nbclust method. c Six major Immune cell type proportions shown by boxplots for each cluster indicated significant difference between immune 
cells distribution between two clusters. Y axis represents non-cancer cell proportion of particular immune cell scaled from 0 to 1. Each box plots 
depicted, boxes indicate interquartile range with central bar indicating median and whiskers indicating the range. Blue dot represents mean 
value of the proportion. T-test and Wilcoxon test (p value shown) were used to calculate statistical significance. d Copy number analysis of DNA 
methylation profile of IDH-mut cohort showed distinct distribution of samples with 1p/19q codeletion
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Monocyte proportion is associated with PD‑L1 and PD‑L2 
gene expression and promoter methylation in bulk 
methylation data
Consistent with prior studies [15, 35] we found that 
cells of the monocytic lineage were among the most 
abundant immune cell types in glial/glioneuronal 
tumors. Furthermore, the success of immune check-
point inhibitors in lung carcinoma and melanoma [64, 
65] has led to interest in characterizing the immuno-
logic milieu in brain tumors. We therefore investi-
gated the association between monocyte proportion 
and gene expression and promoter methylation of 
the immune checkpoints PD-L1 and PD-L2. Using a 

subset of samples (n = 594) with matched gene expres-
sion profiles, we observed a significant positive corre-
lation between monocyte proportion and expression 
of PD-L1 and PD-L2 (R = 0.54; p < 2.2e−16 and 0.68; 
p < 2.2e−16, respectively). Consistently, we found high 
negative correlations (R = − 0.51 and − 0.61, respec-
tively) between monocytes and promoter methylation 
of PD-L1 (Fig.  7a, b,c) and PD-L2 (Fig.  7d, e, f ). After 
sorting samples in decreasing order of PD-L1 and 
PD-L2 expression, we found an expected trend of pro-
moter methylation (low to high) and monocyte propor-
tion (high to low) (Fig. 7).

Fig. 4  Immune clustering of IDH-mut oligodendroglioma (N = 444) showed four distinct clusters associated with tumor grade and patient 
outcome. a UMAP clustering of OIDH tumor cohort (N = 444) based on immune cell proportion (Non-cancer part scaled from 0 to 1) showed 
distinct clusters. b Six major Immune cell type proportions shown by boxplots for each cluster indicated significant difference between immune 
cells proportion across all cluster. Y axis represents non-cancer cell proportion of particular immune cell scaled from 0 to 1. Each box plots depicted, 
boxes indicate interquartile range with central bar indicating median and whiskers indicating the range. Blue dot represents mean value of the 
proportion. T-test and Wilcoxon test (p value shown) were used to calculate statistical significance. c Tumor grade distribution of samples across 
all clusters. Significance based on Fisher’s exact test (cluster1-cluster3; p value = 0.000017, cluster3-cluster4; p value = 0.014). d Kaplan–Meier plot 
showing significant difference in overall survival between cluster 1 cluster 3 and 4
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Discussion
Here we report results of a large-scale deconvolution 
analysis of > 4000 methylation-defined, primarily glial 
and glioneuronal tumors. We observed significant 
diversity in the tumor microenvironment composition 
among tumor subtypes and demonstrate an association 
with specific genomic aberrations, tumor grade and 
prognosis. Similar to prior studies, we found mono-
cytes constitute one of the most abundant cell types 
in the immune microenvironment of gliomas [8, 16, 
35, 68, 69, 88]. This was particularly evident in IDH-wt 
tumors, where an association with EGFR and MDM2 
amplification and CDKN2A/B deletion was observed in 
monocyte-rich clusters. Conversely, we observed a low 

monocyte proportion in MYCN amplified and PTEN 
deleted groups. The proportion of CD8 T-cells, another 
prominent immune cell type in high-grade gliomas, 
was associated with oncogene amplifications in MYCN, 
PDGFRA, and MDM2.

Studies of cell states in glioblastoma have previ-
ously demonstrated an association with chromosomal 
alterations [61]. We therefore investigated whether the 
immune-based clusters identified in the present study 
were associated with these cellular states. In the current 
study, we found the AC-like cell state was associated with 
immune clusters harboring EGFR amplification, while 
the OPC-like cell state was associated with PDGFRA 
amplification. The association of immune-based clusters 

Fig. 5  IDH-mut astrocytoma immune clustering showed five distinct clusters associated with tumor grade and CDKN2A/B deletion. a UMAP 
clustering of IDH-mutant astrocytoma cohort (N = 734) based on immune cell proportion (Non-cancer part scaled from 0 to 1) showed subtype 
specific clustering. b Five optimum number of cluster obtained in IDH-mut cohort by using k-means clustering with Nbclust method. c Six major 
Immune cell type proportions shown by boxplots for each cluster indicated significant difference between immune cells distribution across 
all cluster. Y axis represents non-cancer cell proportion of particular immune cell scaled from 0 to 1. Each box plots depicted, boxes indicate 
interquartile range with central bar indicating median and whiskers indicating the range. Blue dot represents mean value of the proportion. 
T-test and Wilcoxon test (p value shown) were used to calculate statistical significance. d Sample proportions as tumor grade 1, 2 & 3 in each 
cluster (N = 370; significance based on Fisher’s exact test; p value < (0.0001, 0.001, 0.01, 0.05, 1; symbols = "****", "***", "**", "*", "ns”). e Cluster 2 and 5 
showed significant difference between sample proportion with CDKN2A/B deletion. Horizontal bars between cluster bars with asterisks represent 
chi- square test based comparison with significant p value (< 0.001)
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with somatic alterations and cell states described by Suva 
et al. suggest a role of tumor microenvironment cellular 
constituents (monocytes, T/B-cells, endothelial cells) 
in contributing to these malignant cell states, suggest-
ing cross-talk between tumor cell states and the immune 
microenvironment.

A recent study showed that IDH wild-type tumors 
associated with high degree of immune cell infiltra-
tion, and were suggested as immune-hot phenotype, 
whereas IDH mut-tumors with 1p/19q codeletion 
cohort showed low degree of immune cell infiltration as 
immune-cold phenotype [51]. Our Immune cell based 
clustering of IDH-mutant tumors also revealed low 
infiltration of immune cells in IDH-mut-codel associ-
ated with1p/19q codeletion.

Recently, it has been shown that CDKN2A homozy-
gous deletion was associated with poorer outcome 
among IDH-mutant gliomas lacking 1p/19q codeletion 
(IDH-mutant astrocytoma) as well as among anaplastic 

oligodendrogliomas, IDH-mutant-1p/19q codeleted [3]. 
We also observed two major clusters with significant dif-
ference in CDKN2A/B deletion in IDH mutant astrocy-
toma cohort associated with high proportion of CD8 T, 
B-cell, and endothelial cells. We found in IDH-wt cohort 
that the cluster with high proportion of endothelial cells 
and B-cells prominently showed a greater number of 
samples with CDKN2A/B deletion and similarly in IDH-
mut astrocytomas we found that in cluster 2 significant 
number of samples presented CDKN2A/B deletion.

Immune clustering of low-to-intermediate grade gli-
oneuronal tumors (LIGGNT) (N = 802, 11 tumor sub-
types) showed some promising outputs regarding tumor 
subtype specific overall infiltration of immune cells. 
We observed that several tumor subtypes, including 
MYB, DNT, GG and RGNT showed lower infiltration of 
immune cells as compared to other subtypes and these 
observations are in line with a recent study [35].

Fig. 6  Immune clustering of Low-to-intermediate grade glioneuronal tumors (LIGGNT) showed distinct clusters associated with tumor type and 
different immune cell proportions. a UMAP clustering of eleven tumor subtypes of the LIGGNT cohort (N = 802) based on immune cell proportion 
(Non-cancer part scaled from 0 to 1) showed subtype specific clustering. b Two optimum number of cluster obtained in the LIGGNT cohort by 
using k-means clustering with Nbclust method. c Six major Immune cell type proportions shown by boxplots for each cluster indicated significant 
difference between immune cells distribution between two clusters. T-test and Wilcoxon test (p value shown) were used to calculate statistical 
significance
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Given that cells of the monocyte lineage are one of 
the most dominant and key modulator of tumor micro-
environment in glio-neuronal tumors, we examined 
the association of monocytes with programmed cell 
death ligands such as PD-L1 and PD-L2 gene expres-
sion, which plays crucial role in immunotherapy. It 

has been shown in literature that GBM EVs (extracel-
lular vesicles) induce immunosuppressive monocytes, 
including myeloid-derived suppressor cells (MDSCs) 
and nonclassical monocytes (NCMs) [38] and glioblas-
toma stem cell-derived exosomes can induce M2 mac-
rophages and PD-L1 expression on human monocytes 

Fig. 7  Association of monocyte proportion with PD-L1 and PD-L2 gene expression and gene promoter methylation (N = 594). a Scatterplot of 
Monocyte proportion against the gene expression of PD-L1 showed significant positive correlation. b Scatterplot of Monocyte proportion against 
the promoter methylation of PD-L1 showed significant negative correlation. c Bar plot of 594 sample arranged from high to low expression of 
PD-L1. Arranged samples showed probe methylation low to high (Opposite to gene expression) and monocyte proportion high to low, similar to 
gene expression. d Scatterplot of Monocyte proportion against the gene expression of PD-L2 showed significant positive correlation. e Scatterplot 
of Monocyte proportion against the promoter methylation of PD-L2 showed significant negative correlation as compared to PD-L1. f Bar plot of 594 
sample arranged from high to low expression of PD-L2. Arranged samples showed probe methylation low to high (Opposite to gene expression) 
and monocyte proportion high to low, similar to gene expression
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[30]. Accordingly, it has been suggested that blocking 
PD-1/PD-L1 pathway could be potential new treatment 
study in glioma [92]. We investigated the possible role 
of monocyte proportion-relative gene expression and 
promoter methylation of the immune checkpoint PD-L1 
and PD-L2 genes, we used a data subset (n = 594) sam-
ple with matched gene expression profiles. We observed 
significantly high positive correlations (R = 0.54 and 0.68, 
respectively) between monocyte proportion and expres-
sion of PD-L1 and PD-L2, in line with prior reports that 
monocytic cells can express these immune markers [38, 
97]. Consistent with this, we found high negative cor-
relations (R = − 0.51 and − 0.61, respectively) between 
monocytes and promoter methylation of PD-L1 and 
PD-L2 respectively. These results suggest a role of mono-
cytic-lineage cells in immunotherapy response of glio-
mas, which warrants further investigation.

Conclusion
In conclusion, our analysis relies on a large sample set 
of glial/glioneuronal tumors to demonstrate relation-
ships of tumor immune microenvironmental factors 
with tumor type and key genomic aberrations. We also 
highlight the prominent role of monocytic lineage cells 
in these tumors, including associations with expression 
of immune checkpoint ligand PD-L1 and PD-L2 in these 
tumors. Results of this investigation provides insights for 
future investigation into glioma biology and immuno-
therapeutic approaches in gliomas.
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 Additional file 1: To validate our MethylCIBERSORT output we selected 
a data subset (N=394) with available gene expression data. CIBERSORTx 
method was used with LM6 signature matrix to get fraction of six major 
cell types. We found significant positive correlations between MethylCIB-
ERSORT fraction and CIBERSORTx derived fraction of six major cell types. 

Additional file 2: Assessment of clustering pattern in all three major 
cohorts IDH-wt (N=2072), IDH-mutant (N=1178) and Low-to-interme-
diate grade glioneuronal tumors (LIGGNT) (N=802) by including and 
excluding cancer part and scaling non-cancer part from 0 to 1. (a) UMAP 
clustering for IDH-wt cohort with all cell type (including cancer). (b) UMAP 
clustering for IDH-wt cohort with all normal cell type scaled 0 to 1 (non-
cancer part). (c) UMAP clustering for IDH-wt cohort with all immune cells 
type scaled 0 to 1 (non-cancer part). (d) UMAP clustering for IDH-mutant 
cohort with all cell type(including cancer). (e) UMAP clustering for IDH-
mutant cohort with all normal cell type scaled 0 to 1 (non-cancer part). (f ) 
UMAP clustering for IDH-mutant cohort with all immune cells type scaled 
0 to 1 (non-cancer part). (g) UMAP clustering for LIGGNT cohort with all 
cell type (including cancer). (h) UMAP clustering for LIGGNT cohort with all 
normal cell type scaled from 0 to 1 (non-cancer part). (i) UMAP clustering 
for LIGGNT cohort with all immune cells type scaled 0 to 1 (non-cancer 
part). 

Additional file 3: Cluster selection process was based on the major-
ity rule, which is available in the NbClust package. We compared three 
different methods; kmeans, ward.D and ward.D2. (a) For each method 
we selected optimum number of clusters (given in brackets) proposed 
by maximum number of indices out of 30. We compared output of each 
method and found similar results. Finally, we selected kmeans clustering 
as a uniform approach to select optimum number of cluster (proposed 
by maximum number of indices out of 30) in each cohort. (b) In IDH wild 
type 11 indices proposed five cluster. (c) In IDH mutant type 8 indices 
proposed two cluster. (d) In O-IDH cohort, 6 indices proposed two and 
four clusters respectively. In this case we selected four cluster as ward.D2 
method also suggested four clusters in O-IDH cohort. (e) In A-IDH/A-IDH-
HG 8 indices proposed five clusters. (f ) In LIGGNT 10 indices proposed two 
clusters. 

Additional file 4: (a) Tumor subtype specific bar plot distribution of mean 
Immune cell proportion (Non-cancer part scaled 0 to 1, Glia and Neuron 
excluded). (b) Overall cell fractions of each cell type (Including Cancer, Glia 
and Neuron). (c) Cancer proportion shown by boxplots for each tumor 
subtype indicated significant differences. T-test and Wilcoxon test (p value 
shown) were used to calculate statistical significance. 

Additional file 5: Sankey diagram-based associations between immune 
cells and tumor subtype in IDH-wt cohort (N=2072). Sankey plot showing 
proportions shared between each immune clusters and tumor subtype. 

Additional file 6: Analysis of the IDH-wt glioblastoma cohort (N=100) 
shows cluster specific distribution of AC-like, OPC-like, MES-like and NPC-
like cellular states, respectively. Tumor cell states were derived from single 
cell data of IDH-wild type GBMs (PMID: 31327527). A signature matrix was 
derived and applied to TCGA samples for which gene expression data 
were available. Cell state estimations for each sample were performed 
using CIBERSORTx. T-test and Wilcoxon test (p-value shown) were used to 
calculate statistical significance. 

Additional file 7: Kaplan-Meier plot of (a) GBM-MES for Monocyte propor-
tion high and low groups (High>median, Low<median). (b) GBM-RTK-I 
dataset with high and low proportion of monocytes (High>median, 
Low<median). (c) Kaplan-Meier plot for Endothelial cell high and low 
groups in GBM-MES (High>median, Low<median). 

Additional file 8: To investigate homozygous and heterozygous deletion 
of CDKN2AB as a separate event we selected a range of log2ratio and 
annotated samples as an event of homozygous deletion, heterozygous 
deletion, and no deletion. Significance was calculated by applying Fisher’s 
exact test; p-value <(0.0001, 0.001, 0.01, 0.05, 1; symbols ="****", "***", "**", 
"*", "ns”).
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