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Abstract 

The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial fail-
ures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypothe-
ses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur 
early in many neurodegenerative diseases (NDDs), including Alzheimer’s disease, Parkinson’s disease, Huntington’s 
disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogen-
esis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic 
dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the 
literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and 
other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of 

mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
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Introduction
The brain consumes 20% of the body’s ATP at rest, 
although it accounts for only 2% of body mass [1]. The 
high-energy requirements of the brain support neuro-
transmission, action potential firing, synapse develop-
ment, maintenance of brain cells, neuronal plasticity, and 
cellular activities required for learning and memory [2, 
3]. In neurons, most of the energy is consumed for syn-
aptic transmission. Action potential signaling represents 
the second-largest metabolic need, and it is estimated 
that ~ 400–800  million  ATP molecules are used to rees-
tablish the electrochemical gradient (Na+  out, K+  in, at 
the plasma membrane) after production of the single 

action potential [4]. The energetic demand of neurons 
results in a substantial dependence on mitochondria 
for ATP production through oxidative phosphoryla-
tion (OxPhos) [4]. Any dysfunction in mitochondria can 
lessen the energetic capacity of OxPhos and may elicit a 
metabolic switch from OxPhos to glycolysis (Warburg-
like effect) as a compensatory attempt to maintain cel-
lular ATP in the context of neurodegenerative stress [5, 
6]. However, a long-term OxPhos-to-glycolysis shift can 
result in a bioenergetic crisis and make neurons more 
vulnerable to oxidative stress and neuronal cell death [7, 
8].

Neurodegenerative diseases (NDDs) are character-
ized by numerous cellular features, including the loss of 
neurons, neuronal dysfunction in specific brain regions, 
aggregation of distinct protein(s), impaired protein 
clearance, mitochondrial dysfunction, oxidative stress, 
neuroinflammation, axonal transport defects and cell 
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death. The myriad of cellular pathologies suggest that 
there are common/central molecular mechanisms driv-
ing NDDs [9, 10]. In addition to ATP production, the 
mitochondrion is an epicenter of many metabolic path-
ways and important cellular functions, including the 
fine-tuning of intracellular calcium (iCa2+) signaling, 
regulation of cell death, lipid synthesis, ROS signaling, 
and cellular quality control [11]. Disruption in mito-
chondrial function and metabolism appears to underlie 
several NDDs such as Alzheimer’s disease (AD), Par-
kinson’s disease (PD), Huntington’s disease (HD), and 
others [12, 13]. At present, most therapies for NDDs 
provide only symptomatic relief, and there remain no 
drugs to inhibit neurodegeneration [14–16]. Mitochon-
drial alterations/impaired brain energetics are thought 
to present in the asymptomatic stage of disease prior to 
the onset of clinical symptoms [14, 17, 18]. This sup-
ports the notion that mitochondrial metabolic defects 
may be drivers or even initiators of the neurodegen-
erative process. In addition, several therapeutics that 
improve mitochondrial function have been reported to 
be efficacious in NDD models [19–21].

Mitochondrial calcium (mCa2+) is a critical regulator 
of mitochondrial function. In the matrix, mCa2+ tightly 
regulates TCA cycle activity and augments metabolic 
output. However, an excess of mCa2+ can impair mito-
chondrial respiration, enhance reactive oxygen species 
(ROS) production and activate cell death [22]. Here, we 
hypothesize that dysfunction in mCa2+ is an early com-
mon cellular event that impairs mitochondrial metab-
olism and drives and exacerbates neuropathology. 
Defining the molecular basis of mitochondrial function 
and metabolism in NDDs will help define novel cel-
lular events and pathways and their temporal occur-
rence in NDD progression to identify new therapeutic 
targets for various neurological conditions. Here, we 
review recent advancements in our understanding of 
the essential role of mitochondrial metabolism and dis-
cuss how impaired mCa2+ signaling may be causal and 
central in neurodegeneration.

Evidence for impaired mitochondrial metabolism 
in NDDs
Strategies to combat NDDs have generally been unsuc-
cessful and are focused on reducing symptoms and 
disease modification. Both clinical and experimen-
tal studies suggest that impaired energy metabo-
lism correlates with various neurological deficits, 
highlighting new therapeutic opportunities [14]. 
Here we outline various mitochondrial metabolic 
defects that are strongly linked to the progression of 
neurodegeneration.

Alzheimer’s disease (AD)
AD is the most common form of dementia and is char-
acterized by irreversible memory loss due to neuronal 
dysfunction, dysconnectivity, and cell death. Familial 
AD (FAD) is caused by pathogenic mutations in amy-
loid precursor protein (APP) or presenilin (PS1 and PS2) 
that lead to overproduction, improper cleavage, and the 
accumulation of amyloid-beta (Aβ). Prognostic disease 
phenotypes are associated with the formation of Aβ 
plaques, neurofibrillary tangles (NFTs, consisting of the 
microtubule protein tau), synaptic failure, reduced syn-
thesis of the neurotransmitter acetylcholine, and chronic 
inflammation [9]. Most therapeutic strategies have been 
focused on Aβ metabolism and clearance due to exten-
sive preclinical and clinical data in support of a causal 
role in AD progression [23, 24]. According to the “amy-
loid cascade hypothesis,” Aβ aggregation can initiate a 
series of events, including tau pathology, oxidative stress, 
inflammation, neuronal calcium (Ca2+) dysregulation, 
and metabolic alterations, which culminate in neuronal 
cell loss and AD pathogenesis [25]. However, this hypoth-
esis does not fully explain the etiology of sporadic forms 
of AD (SAD) that account for 90–95% of AD-associated 
dementia.

An alternative hypothesis is that the microtubule-asso-
ciated protein tau becomes hyperphosphorylated, result-
ing in axonal transport defects of organelles (including 
mitochondria), synaptic dysfunction, and cell death [26]. 
In cortical brain tissue from AD patients and mouse 
models, tau is reported to interact with mitochondrial 
transporters and complexes, resulting in mitochondrial 
dysfunction and AD pathology [27, 28]. However, there 
appears to be a limited correlation between the severity 
of cognitive decline and amyloid or tau plaque formation 
[29, 30], suggesting Aβ/tau metabolism and processing 
may not be the cause, or at least the singular cause, of 
disease. Consistent with previous studies, RNA-sequenc-
ing data from AD patients also suggest that Aβ and tau 
accumulation may not be mediators of the disease [31, 
32]. Also, clinical trials of therapies targeting Aβ/tau 
production, metabolism, and clearance have universally 
shown little efficacy making it likely that other proximal 
mechanisms of AD pathogenesis exist [33, 34].

Mitochondrial dysfunction appears to be a primary 
occurrence in AD that precedes Aβ deposition, synap-
tic degeneration, and NFTs formation. In support of 
this concept, cytoplasmic hybrid cells (cybrids) gener-
ated from platelet mitochondria of SAD patients were 
reported to have a deficiency in complex I and complex 
IV of the electron transport chain (ETC), reduced mito-
chondrial membrane potential (Δψm), altered mito-
chondrial morphology, increased Aβ generation and 
tau oligomerization (reviewed in [35]). Transmission 
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electron microscopy (TEM) showed smaller mitochon-
dria with altered cristae structure and a decrease in mito-
chondrial content both in AD mice and patients [36–38]. 
Furthermore, fibroblasts derived from SAD patients also 
showed impaired mitochondrial dynamics, bioenerget-
ics, and Ca2+ dysregulation [17, 39]. This change in mito-
chondria morphology in AD may be due to a shift in the 
mitochondrial fission/fusion balance and a decrease in 
biogenesis [40].

Importantly, experimental evidence suggests that bio-
energetic alterations in AD precede the formation of Aβ 
plaques [41]. Data supporting metabolic deficits in AD 
were first published in the early 1980s from 2-[18F] fluoro-
2-deoxy-D-glucose (FDG) positron emission tomography 
(PET) studies, which showed reduced glucose metabo-
lism in the parietal, temporal and frontal cortex of AD 
patients [42–44]. Postmortem brain tissue isolated from 
AD patients displays reduced mitochondrial metabolic 
enzyme activity for pyruvate dehydrogenase (PDH) [45, 
46], alpha-ketoglutarate dehydrogenase (α-KGDH) [46], 
isocitrate dehydrogenase (ICDH) [47], and complex IV 
or cytochrome-c-oxidase (COX) [48–50]. In addition, 
succinate dehydrogenase (SDH) and malate dehydroge-
nase (MDH) activity are increased in AD patient’s brains 
[51]. Microarray data [52] and bioinformatics analysis of 
four transcriptome datasets [53] suggests a significant 
downregulation in nuclear-encoded OxPhos genes in the 
hippocampus of AD patients. More recent data confirm 
impaired ATP synthase activity due to loss of the oligo-
mycin sensitive conferring protein subunit in the brain of 
FAD and SAD patients [54].

Diminished PDH function, as noted in AD, limits the 
shuttling of pyruvate into the TCA cycle, causing pyru-
vate accumulation and favoring anaerobic metabolism. 
Anaerobic metabolism leads to the production of lactic 
acid and further reduces acetyl-CoA availability, which 
subsequently decreases OxPhos. These observations 
suggest a metabolic shift from OxPhos to glycolysis 
may occur with AD progression. This shift is perhaps a 
compensatory response to enhance energy production 
through glycolysis, which is noteworthy in the context 
of mitochondrial dysfunction [5, 6]. Interestingly, PDH, 
α-KGDH, and ICDH activity are all reported to be cal-
cium-controlled, suggesting a clear link between mCa2+ 
levels and AD pathogenesis, which will be discussed in 
the upcoming section. A recent study also indicates that 
reduced mitochondrial pyruvate uptake in FAD-PS2-
expressing cells may elicit impairments in bioenergetics 
and mitochondrial ATP synthesis [13]. The mechanism 
for defective mitochondrial pyruvate flux is associated 
with the hyper-activation of glycogen-synthase-kinase-3β 
(GSK3β), which decreases hexokinase 1 association 
with mitochondria and destabilizes the mitochondrial 

pyruvate carrier complexes [13]. Similarly, α-KGDH 
is sensitive to oxidative stress, and its reduced activity 
in PS1 mutant (M146L) fibroblasts suggests a possible 
mechanism for ROS-dependent metabolic deficiencies 
[18, 55]. Oxidative stress, as seen in AD brains [56], is 
reported to increase the expression of SDHA (one of the 
four nuclear-encoded subunits of complex II, SDH) [57, 
58], and the activity of MDH [59]. In summation, altera-
tions in key metabolic enzymes may compromise the 
neurons’ ability to generate ATP via OxPhos and be an 
early driver of cellular stress in AD.

Beyond energetic compromise, diminished acetyl-CoA 
supply caused either by a reduction in glucose metabo-
lism or by reduced PDH activity impairs the synthe-
sis of the neurotransmitter acetylcholine (ACh). ACh 
is generated from choline and acetyl-CoA by choline 
acetyltransferase. After synthesis, ACh is transported 
via an ATP-consuming process and stored in synaptic 
vesicles [60]. The loss of ACh synthesis in AD results in 
defective cholinergic neurotransmission [61, 62]. This 
provides another tangible link between energetic com-
promise and neuronal dysfunction in AD.

Several of the mitochondrial dehydrogenases men-
tioned above (PDH, α-KGDH, and ICDH) are known to 
be regulated by the Ca2+ concentration within the mito-
chondrial matrix [63–65]. The reactions catalyzed by the 
Ca2+-regulated mitochondrial dehydrogenases are rate-
limiting steps in the TCA cycle, and therefore free-Ca2+ 
content in the mitochondrial matrix is a major regula-
tor of metabolic output. PDH activity increases upon 
dephosphorylation of its E1α subunit, which is mediated 
by the Ca2+-sensitive phosphatase (PDP1) [64]. In neu-
rons, Ca2+ influx through voltage-dependent Ca2+ chan-
nels is required for the fusion of synaptic vesicles with 
the plasma membrane and release of neurotransmitters 
at the synaptic cleft [66, 67]. Neuronal communication 
through synaptic transmission is an energy-demanding 
process, and mitochondria have a critical role in this pro-
cess by providing ATP (via OxPhos) and by buffering syn-
aptic Ca2+/iCa2+ to modulate neurotransmitter release 
[68]. The efficient regulation and buffering of iCa2+ is 
critical to prevent neuronal excitotoxicity. Mitochondria 
and the endoplasmic reticulum (ER) both are significant 
modulators of iCa2+ signaling and the role of ER in neu-
ronal iCa2+ buffering is well known [69, 70]. However, 
our understanding of mCa2+ buffering in neurons is lim-
ited and evolving. Ca2+ enters the mitochondrial matrix 
through the mitochondrial calcium  uniporter channel 
(mtCU) [71, 72] and is extruded via the mitochondrial 
Na+/Ca2+  exchanger (NCLX) [73, 74]. Any dysfunc-
tion in mCa2+ exchange or matrix buffering capacity can 
lead to impairments in mitochondrial Ca2+ homeostasis 
resulting in mCa2+ overload, oxidative stress, metabolic 
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dysfunction, and cell death that can cause or precede 
AD-pathology [75–78]. We and others have reported 
that mitochondrial and metabolic dysfunction is a pri-
mary contributor to AD pathogenesis, with dysfunction 
observable before the appearance of Aβ aggregates and 
NFTs [18, 77, 79, 80]. We found alterations in the expres-
sion of mCa2+ handling genes in samples isolated from 
the brains of SAD patients post-mortem and in the tri-
ple transgenic mouse model of AD (3xTg-AD) prior to 
observable AD pathology [77]. Our observations suggest 
mCa2+ overload caused by an age-dependent remodeling 
of mCa2+ exchange machinery contributes to the pro-
gression of AD by promoting metabolic and mitochon-
drial dysfunction. We also found a decrease in OxPhos 
capacity in APPswe cell lines (K670N, M671L Swed-
ish mutation), providing further evidence of impaired 
mitochondrial metabolism in AD [77]. Importantly, 
the genetic rescue of neuronal mCa2+ efflux capacity by 
expression of NCLX in 3xTg-AD mice was sufficient to 
block age-dependent AD-like pathology [77]. Employing 
quantitative comparative proteomics strategies in AD 
mice, other groups have reported significant alterations 
in the mitochondrial proteome, including the citric acid 
cycle, OxPhos, pyruvate metabolism, glycolysis, oxida-
tive stress, ion transport, apoptosis, and mitochondrial 
protein synthesis well before the onset of the AD pheno-
type [79–81]. Further evidence of mCa2+ dysregulation 
is from metabolomics in an Aβ-transgenic C. elegans 
model (GRU102), wherein the authors showed a reduc-
tion in TCA cycle flux before the appearance of signifi-
cant Aβ deposition, with the greatest reduction observed 
in α-KGDH activity. Knockdown of α-KGDH in control 
worms elicited reductions in both basal and maximal res-
piration like that observed in the AD worm model [18]. 
These observations suggest that reduced α-KGDH activ-
ity alone is sufficient to recapitulate the metabolic deficits 
observed in AD and is in line with a study by Yao et al. 
[46] wherein 3-month old 3xTg-AD mice were found to 
have reduced mitochondrial respiration and PDH activ-
ity, coupled with increased ROS generation [46]. Alto-
gether, these data indicate that mCa2+ dysregulation is 
likely an early event in AD.

Mitochondria are highly dynamic, and exhibit cell 
type-specific metabolism in the brain [37, 82]. Axonal 
mitochondria appear small and sparse whereas den-
dritic mitochondria are elongated and more densely 
packed [82]. To ensure appropriate energy supply, 
especially in distal regions of the axons, mitochon-
dria must be properly positioned. Indeed, mitochon-
dria undergo bi-directional axonal transport including 
anterograde transport  (from cell body to axon) and 
retrograde transport  (from axon to cell body) [83, 84]. 
Axonal transport is mediated by ATP‐hydrolyzing 

motor proteins (kinesin‐I for anterograde and dynein 
for retrograde) to move cargo along microtubule tracks 
[85] and defects in transport seem to present before 
evident AD hallmarks [86, 87]. Defects in anterograde 
transport result in an insufficient supply of ATP at the 
synapse, resulting in synaptic starvation and dysfunc-
tion, an early pathological feature of AD [36]. Similarly, 
defective retrograde transport can lead to the accumu-
lation of damaged mitochondria, which can compro-
mise mitochondrial quality control mechanisms, which 
is also noted to occur in AD [88]. Recently, data from 
the APP-PS1 mouse model showed a reduction in neu-
ronal mitochondria density around amyloid plaques, 
suggesting impaired mitochondrial transport and/
or quality control in  AD [37]. Further, several studies 
indicate that axonal transport of AD-associated pro-
teins becomes defective early in disease progression, 
resulting in the accumulation of toxic cargo which can 
elicit protein aggregation, axonal swellings, and neu-
ronal dysfunction [36, 87]. The mechanisms regulating 
axonal transport are not completely understood but 
some studies suggest that it is mediated by the interac-
tion of kinesin motor protein with the mitochondrial 
adaptor proteins, Miro and Milton (known as trafficking 
kinesin protein (TRAK) family) [89]. Miro is a GTPase 
with two Ca2+  binding EF-hand domains and is local-
ized to the outer mitochondrial membrane (OMM) and 
has an essential role in Ca2+-dependent regulation of 
mitochondrial transport. Intriguingly, Miro1 may also 
serve as a cytoplasmic Ca2+ sensor and may increase 
mCa2+ uptake via interaction with MCU’s N-terminal 
domain [90, 91]. An increase in mCa2+ has been shown 
to inhibit mitochondrial axonal transport and blocking 
mCa2+ influx into mitochondria by direct MCU inhibi-
tion enhances mitochondrial trafficking in axons [90].

While multiple molecular mechanisms likely contrib-
ute to AD pathogenesis, the data suggest that neuronal 
mCa2+ overload is a primary mediator of AD progres-
sion, causing impaired mitochondrial metabolism and 
ATP production, mitochondrial transport, and increased 
mitochondrial permeability transition pore (mPTP) 
opening (Fig.  1). This in turn results in loss of synaptic 
function, amyloid deposition, tau pathology, and cell 
death.

Parkinson’s disease (PD)
PD is the second most common NDD afflicing ~ 1% of 
the population above 60 years of age [92]. It is clinically 
characterized by both motor dysfunction such as tremor 
(involuntary shaking), bradykinesia (slowness of move-
ments), rigidity (resistance to movement), and akinesia, 
as well as non-motor disturbances such as depression, 
anxiety, fatigue, and dementia. These symptoms  are 
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caused by a diminishment of the neurotransmitter dopa-
mine due to degeneration of dopaminergic neurons in 
the pars compacta of the substantia nigra in the midbrain 
and the deposition of intraneuronal proteinaceous inclu-
sions known as Lewy bodies that are mainly composed 
of α-synuclein [93]. Most PD cases are sporadic with no 
known singular cause. Familial PD is associated with 
mutations in many genes including: SNCA (α-synuclein) 
[94], PRKN (parkin) [95], PARK7  (DJ-1) [96], LRRK2 
(leucine-rich repeat kinase 2) [97], and PINK1 (phos-
phatase and tensin homologue (PTEN)-induced kinase 1) 
[98]. Studies suggest that homozygous mutations in Par-
kin are the most common cause of juvenile PD, but their 
role in idiopathic PD is unclear. Mutations in Parkin are 
not reliably associated with Lewy body pathology. Post-
mortem examination of patients with Parkin mutations 
shows a clinical phenotype of dopaminergic neuronal loss 
and gliosis but lacking Lewy body pathology. However, 
this remains controversial as a few case reports demon-
strate the presence of Lewy pathology in patients with 

Parkin mutations. Further studies are needed to define if 
parkin and Lewy body pathology are in linear pathways 
(reviewed in [99]).

Drug therapy for PD is limited and is primarily focused 
on enhancing dopamine levels via administration of 
l-3,4-dihydroxyphenylalanine (L-DOPA or Levodopa), 
which is metabolized to dopamine after crossing the 
blood–brain barrier [100, 101]. However, this therapy is 
only effective in the early stages of disease, and provides 
symptomatic relief with many adverse side effects, and is 
insufficient to block the progression of PD [15, 102], sug-
gest a crucial need for new, effective therapies [103, 104]. 
Although the exact mechanisms of PD pathogenesis are 
not clear, many possible molecular events have been pro-
posed to contribute to this process.

Mitochondrial dysfunction and impaired cellular bio-
energetics have emerged as likely mechanisms driving 
PD pathogenesis in several studies [105, 106]. Dopa-
minergic neurons consume ~ 20-times more energy as 
compared to other neurons because of their anatomical 

Fig. 1  Hypothetical mechanisms of mCa2+ overload-induced cellular dysfunction in AD progression. Loss of NCLX and remodeling of the mtCU 
causes mCa2+ overload that leads to mPTP opening, loss of ATP, and interrupted axonal transport, resulting in AD progression
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structure (extensive long and branched axons), greater 
number of transmitter release sites, and their pacemak-
ing activity [107]. The high-energetic demand of dopa-
minergic neurons makes them more susceptible to 
mitochondrial dysfunction and eventually to cell death 
in comparison to other neuronal cells [108, 109]. Defects 
in mitochondrial respiration are supported by findings 
of reduced glucose utilization in PD patients [110], as 
well as reduced pyruvate oxidation in fibroblasts derived 
from PD patients [111], which suggest reduced acetyl-
CoA entry into the TCA cycle. The first study showing 
that defects in mitochondrial respiration may be causal 
in PD came in the early 1980s. In this study, experimen-
tal inhibition of complex I (NADH-ubiquinone reduc-
tase) of the ETC was sufficient to cause parkinsonism 
[112, 113]. This is consistently supported by observa-
tions of a profound reduction in ETC activity, mostly 
complex I, in the substantia nigra, platelets, and skeletal 
muscle of PD patients [114]. Furthermore, inhibitors of 
complex I, such as MPP+ (1-methyl-4-phenylpyridin-
ium), 6-hydroxydopamine, rotenone and annonacin all 
elicit PD-like phenotypes, suggesting that mitochondrial 
dysfunction is sufficient to promote neuronal dysfunc-
tion in PD [115–117]. Complex I is a key entry point for 
electrons into the respiratory chain and is responsible 
for ~ 40% of mitochondrial ATP production [118, 119]. In 
addition to complex I, a reduction in complex II and III 
activity and the mitochondrial DNA (mtDNA) transcrip-
tion factor, TFAM, has also been reported in PD patients 
[120–122]. Reduced ETC capacity in PD may cause a 
significant reduction in ATP [123] resulting in a cellular 
energy crisis that can impact various processes including: 
(1) ATP-dependent proton pumps that drive vesicular 
accumulation of dopamine [124, 125]; (2) axonal trans-
port of cargo [126]; (3) mitochondrial dynamics (fusion, 
fission, turnover, biogenesis and transport) [127, 128]; 
and (4) ATP-dependent protein degradation systems 
(e.g. ubiquitin–proteasome and autophagy) [129, 130]. 
In addition, complex I and III deficiency in PD is linked 
with increased production of free radicals that further 
impair mitochondria function, drive protein aggregation 
and culminate in cell death [131–133]. Dopamine is very 
unstable and sequestered inside synaptic vesicles via the 
ATP-dependent vesicular monoamine transporter. If not 
sequestered, it is metabolized by monoamine oxidase to 
the toxic dopamine metabolite 3,4 dihydroxyphenylac-
etaldehyde, which contributes to oxidative stress, mPTP 
opening, and dopaminergic neuronal cell death [134]. 
Over the past decades, many PD-associated genetic 
mutations have been found to elicit changes in mitochon-
drial function and metabolism, supporting the notion 
that mitochondrial dysfunction is implicated in neuronal 
cell loss associated with familial PD and vice versa [98]. 

Mutant α-synuclein localizes to the inner mitochon-
drial membrane [135] and inhibits complex I activity, 
and promotes oxidative stress [136]. The interaction of 
α-synuclein with mitochondria can result in cytochrome 
c release, increased mCa2+ levels, changes in mitochon-
drial morphology, and a decline in mitochondrial res-
piration. α-synuclein-mitochondrial interplay may also 
inhibit autophagic clearance and increase its aggregation 
propensity (reviewed in [137]).

A recent study suggested that mitochondrial impair-
ments occur with Lewy body formation [138]. Fur-
thermore, loss of function mutations in DJ-1 caused 
impairments in OxPhos, and complex I assembly result-
ing in decreased ATP production, oxidative stress, and 
increased glycolysis [139, 140]. These findings raise the 
possibility that mitochondrial dysfunction is causal in 
maladaptive protein aggregation. Furthermore, Parkin, 
as an E3 ubiquitin ligase, is directly involved in the pro-
teasomal degradation of protein aggregates. It localizes to 
mitochondria and prevents cytochrome c release, mito-
chondrial swelling, and the accumulation of α-synuclein, 
which may protect dopaminergic neurons from mito-
chondrial and neuronal dysfunction [141–143].

Parkin and PINK1 are required for mitochondrial 
quality control [144, 145]; thus, loss of Parkin/PINK1 
function is hypothesized to cause the accumulation of 
dysfunctional mitochondria that impair neuronal func-
tion. Previous work revealed that PINK1 deficient neu-
rons display reduced NCLX-dependent mCa2+ efflux 
resulting in matrix Ca2+ overload and subsequent mPTP 
opening, mitochondrial oxidative stress, lower Δψm, 
and diminished OxPhos [146]. Furthermore, fibroblasts 
derived from patients with PINK1 mutations also exhib-
ited impaired mitochondrial metabolism, low Δψm, and 
low respiration, which was linked to reduced substrate 
availability [147]. In addition, the activation of NCLX 
via protein kinase A (PKA)-dependent phosphorylation 
of serine 258, a putative NCLX regulatory site, increases 
mCa2+ efflux and protects PINK-1 deficient neurons from 
mitochondrial dysfunction and cell death [148]. This par-
adigm fits with previous reports where mCa2+ overload 
caused by increased mCa2+ uptake (via ERK1/2-depend-
ent upregulation of MCU) caused dendritic degeneration 
in a late-onset familial PD model (mutation in Leucine-
Rich Repeat Kinase 2) [149], and a report of MCU over-
expression eliciting excitotoxic cell death [78]. Along the 
same line, inhibition of  MCU is protective in zebrafish 
models of PD [150, 151]. These findings suggest mCa2+ 
overload is a contributor to PD progression.

In summary, increasing evidence supports the central-
ity of impaired mitochondrial function and metabolism 
in both sporadic and familial PD, resulting in oxidative 
stress, ETC dysfunction, defective mitochondrial quality 
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control, protein aggregation, progressive cellular dys-
function, and neurodegeneration.

Huntington’s disease (HD)
HD is an autosomal-dominant neurodegenerative disease 
resulting from an expansion of cytosine–adenine–gua-
nine (CAG) repeats (> 35 bp) within the coding sequence 
of the huntingtin gene (HTT). Mutant huntingtin protein 
(mHtt) is prone to proteolytic cleavage, misfolding, and 
aggregation. Clinically, HD is characterized by progres-
sive motor, cognitive, and behavioral dysfunction largely 
due to the loss of γ-aminobutyric acid (GABAergic) 
medium spiny neurons in the striatum [152]. The energy 
impairment hypothesis of HD was first proposed in the 
early 1980s from clinical observations, which revealed 
deficits in brain glucose utilization and weight loss in HD 
patients  [153, 154]. Consistently, compelling evidence 
from PET studies suggests decreased glucose utilization 
in HD brains [155, 156], suggesting a defect in metabo-
lism. In addition, compared to a control population, pre-
symptomatic HD children, with no manifest symptoms, 
revealed a lower body mass index suggesting energy dys-
regulation and impairments in anabolic growth [157].

In HD patients, many key enzymes of the TCA cycle 
and ETC display reduced expression, including PDH, 
SDH, complex II, III, and IV [158]. In addition, HD 
patients increase lactate production in the pre-symp-
tomatic phase of HD, indicating a possible reduction in 
oxidative mitochondrial metabolism and metabolic shift 
from OxPhos to glycolysis [159–162]. Irreversible inhi-
bition of SDH by chronic administration of 3-nitropro-
pionic acid in both rodents and non-human primates 
elicited regional lesions in the striatum accompanied by 
HD-like pathology [163–165]. These results suggest that 
defects in key TCA cycle enzymes are sufficient to drive 
HD-pathology. Furthermore, treatment of an HD mouse 
model with coenzyme Q and creatine for energy supple-
mentation resulted in increased longevity and improved 
motor function [166, 167], suggesting that  improving 
mitochondrial function and cellular bioenergetics is a 
viable therapeutic approach to treat HD.

Various other changes in mitochondrial function have 
been reported in HD. Recently, an examination of HD 
patient-derived induced pluripotent stem cells (iPSCs) 
and differentiated neural stem cells revealed altered 
mitochondria morphology (round and fragmented struc-
ture), lower mitochondrial respiration, decreased ATP 
levels and complex III activity, activation of apoptosis, 
and increased glycolysis [168]. Proteomic analysis in 
undifferentiated human HD embryonic stem cells found 
a decrease in key proteins involved in the ETC before 
observable differences in huntingtin protein [169]. These 
studies suggest that mitochondrial function is impaired 

early in HD pathogenesis. Also, mitochondrial dysfunc-
tion is linked with glutamate-mediated excitotoxicity in 
HD, and this is linked to defects in mCa2+ homeostasis. 
Studies indicate early abnormalities in mCa2+ that con-
tribute to HD pathology [170]. For example, mitochon-
dria from HD patients have an increased probability 
of mPTP opening, mitochondrial swelling, oxidative 
stress, and mCa2+ overload [170, 171]. As in other NDDs, 
impaired axonal transport is also reported in HD [172] 
and may be caused by mitochondrial dysfunction and 
impaired ATP production. Overall, these findings sup-
port a prominent role for mitochondrial and metabolic 
defects in HD pathogenesis.

Altogether, numerous studies support that mitochon-
drial dysfunction and energy impairments occur before 
overt pathological symptoms and appear to be central 
in driving the progression of various NDDs. We hypoth-
esize that metabolic and mitochondrial dysfunction is a 
result of iCa2+ dysfunction and remodeling of the mCa2+ 
exchange machinery, which, although initially meant to 
be compensatory, causes a series of events that culminate 
in neurodegeneration (Fig. 2).

Molecular mechanisms of altered metabolism 
in NDDs
Above we outlined experimental evidence linking 
impaired energy metabolism to the initiation or progres-
sion of NDDs. This has led to the hypothesis that defects 
in mitochondrial energy production initiate a cascade 
of events that causes the neuronal cell death observed 
in NDDs [173]. However, additional work has raised the 
possibility that primary defects in other cellular processes 
may secondarily impair mitochondrial bioenergetics and 
contribute to NDD pathogenesis [10, 174]. Potential 
mechanisms that may alter metabolism in NDDs (Fig. 3), 
and the significance of such altered metabolism for 
NDDs etiology, are discussed below.

Calcium signaling
Calcium signaling is required for neuronal function and 
regulates a range of processes, including neuronal excitabil-
ity, neurotransmitter release, mitochondrial metabolism, 
and cell death. Tight control over iCa2+ flux is therefore 
essential for coordinated activity and neuronal homeosta-
sis. As discussed above, altered Ca2+ homeostasis has been 
reported in NDDs and may contribute to neuronal dysfunc-
tion and death (reviewed in [175]). This section discusses 
the impact of altered Ca2+ handling in various subcellular 
compartments and its impact on metabolism.

Intracellular calcium
Perturbation of global iCa2+ homeostasis alters Ca2+ 
content in compartments, including the ER and 
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Fig. 2  Mitochondrial and metabolic dysfunction in neurodegeneration. Mitochondrial dysfunction and energy impairments are central events in 
neurodegeneration

Fig. 3  Calcium-centric view of impaired mitochondrial metabolism in NDDs. (1–2) An increase in intracellular calcium by different Ca2+ transport 
systems in the plasma membrane and the endoplasmic reticulum promotes its entry into the mitochondrial matrix via the mtCU. (3) mCa2+ 
enhances the activity of key TCA enzymes, leading to elevated OxPhos and ATP generation. On the other side, insufficient or excessive mCa2+ 
content can impair mitochondrial metabolism in NDDs. The ER plays a crucial role in regulating cellular energetics via the regulated release of Ca2+ 
near sites of ER-mitochondrial contact to support ATP production. (4) The changes in mitochondrial dynamics alter respiratory complex assembly 
and affect the coupling between respiration and ATP synthesis. (5–8) The production of ROS and activation of AMPK signaling by Ca2+ and insulin 
signaling also constitute the diverse array of signaling pathways that elicit transcription regulation of energy metabolism genes
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mitochondria. Both organelles are implicated in the 
pathophysiology of NDDs, thus altered iCa2+ levels may 
contribute to NDD progression. Indeed, iCa2+ overload is 
a widely accepted feature of NDDs and is a likely cause 
of dysfunction and death of the neuronal populations 
affected by these diseases [176].

Elevated iCa2+ content is a common feature of AD and 
is especially pronounced in neurons containing NFTs 
[177]. Elevated iCa2+ in AD can exert detrimental effects 
by altering Ca2+-dependent signaling. Two examples of 
Ca2+-dependent proteins in neurons are the phosphatase 
calcineurin and Ca2+/calmodulin-dependent protein 
kinase II (CaMKII). Altered calcineurin and CaMKII 
signaling have been linked to memory impairment, syn-
aptic loss, and neurodegeneration, all features of AD 
progression [178]. Such findings have inspired the “Ca2+ 
hypothesis of AD,” which proposes that cellular Ca2+ dys-
regulation is a central driver of disease progression [179, 
180].

While Ca2+ dysregulation likely precedes neurode-
generation, several reports describe mechanisms by 
which Aβ directly elevates iCa2+ content, suggesting a 
vicious positive feedback loop that reinforces Ca2+ over-
load. First, Aβ can promote ROS production and sub-
sequent oxidation of membrane lipids that can disrupt 
cellular ion transport [181]. Second, Aβ peptides may 
form Ca2+-permeable pores in the plasma membrane, 
allowing for direct influx of Ca2+ into the neuron [182]. 
This idea is supported by the observation that neurites 
with more Aβ have greater levels of iCa2+ [183]. Aβ is 
also proposed to stimulate Ca2+ uptake through L-type 
voltage-gated Ca2+ channels [184], but this notion is 
still debated [185]. Finally, Aβ may hyperactivate the 
NMDA receptor, leading to cellular Ca2+ overload [186]. 
Dysregulated Ca2+ handling is also implicated in the 
pathophysiology of PD [187]. Neurons with α-synuclein 
mutations have increased plasma membrane ion perme-
ability, possibly due to the formation of pores by mutant 
α-synuclein [188]. Pharmacologic inhibition of Cav1.3 
L-type Ca2+ channels is protective in animal models of 
PD [189], suggesting that increased ion channel activity 
contributes to excess iCa2+ entry. Store-operated calcium 
entry is also impaired in PD and leads to the depletion 
of ER Ca2+ content [175]. Likewise, neuronal Ca2+ dys-
regulation is a common feature of HD [190]. mHtt can 
stimulate NMDA receptors in medium spiny striatal 
neurons, potentially leading to excess iCa2+ [176]. Also, 
mHtt binds to and potentiates IP3 receptor signaling, 
enhancing Ca2+ release from the ER [191]. These com-
bined effects all tend to deplete the ER of Ca2+ and can 
ultimately enhance store-operated Ca2+ entry [192], set-
ting up a continuous cycle that promotes increased iCa2+ 
load.

ER calcium
Alterations in iCa2 handling in NDDs can cause sec-
ondary changes in ER Ca2+ load. The ER plays a critical 
role in regulating cellular energetics via the regulated 
release of Ca2+ near sites of ER-mitochondrial contact. 
In brief, these discrete sites of ER-mitochondrial appo-
sition (examined further below under “MAMs” or mito-
chondrial associated membranes) create a microdomain 
where Ca2+ concentration can rise to levels as much 
as 20 × greater than in the bulk cytosol [193, 194]. This 
localized, high Ca2+ concentration is required for the 
activation of the mCa2+ uptake machinery (gating of the 
mtCU) and efficient ER-to-mitochondria Ca2+ trans-
fer [195]. Inter-organelle Ca2+ transport is especially 
important in regulating iCa2+ homeostasis in neurons 
and is implicated not only in energetic homeostasis but 
also vesicle trafficking and neurotransmitter release [196, 
197]. Thus, any structural disruption in ER-mitochon-
drial contact sites in NDDs and subsequent perturbation 
in ER-mitochondrial Ca2+ transfer has the potential to 
exacerbate iCa2+ stress and accelerate disease progres-
sion. Moreover, altered ER Ca2+ content and ER Ca2+ 
release will affect mCa2+ content. As discussed in the next 
section, either insufficient or excessive mCa2+ content 
can impair mitochondrial metabolism and signaling, thus 
underlying the significance of altered ER Ca2+ handling 
for cellular bioenergetics in NDDs.

Mitochondrial calcium
Given the central role of mCa2+ in regulating cellular 
metabolism and survival, it is not surprising that altered 
mCa2+ handling is reported in cellular NDD models. 
NDDs are universally associated with mCa2+ overload, 
which can impair cellular metabolism by inducing oxi-
dative stress, which itself can impair OxPhos; and by 
inducing mPTP, which compromises ATP production by 
collapsing Δψm [198, 199].

In AD, mCa2+ overload can result from excessive ER-
to-mitochondrial Ca2+ transfer induced by Aβ oligom-
ers [200]. There are also reports that Aβ accumulates in 
mitochondria and interacts with the matrix mPTP regu-
lator cyclophilin D, thus increasing permeability transi-
tion [201, 202] and impairing mitochondrial energetics 
in a Ca2+-independent manner. More recent results from 
our laboratory indicate that mCa2+ efflux is compromised 
in AD, due to downregulation of NCLX, which further 
promotes mCa2+ overload [77].

Signs of mCa2+ overload are observed in cellular mod-
els of PD induced by expression of mutant α-synuclein. 
These include loss of Δψm, cristae structure, and ATP 
content, features that are exacerbated by simultaneous 
expression of mutant PINK1 and rescued by pharmaco-
logic blockade of mCa2+ uptake [203]. α-synuclein can 
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accumulate within mitochondria and increases mCa2+ 
content, leading to increased ROS production [204]. 
However, conflicting reports [205] suggest that the effects 
of α-synuclein on mCa2+ homeostasis may be more 
nuanced. In some cases, α-synuclein may be beneficial by 
promoting ER-mitochondrial contacts to enhance ER-to-
mitochondrial Ca2+ transfer and support mitochondrial 
bioenergetics [206]. Altered mCa2+ handling has been 
suggested in HD, but existing reports have yielded dis-
parate conclusions on this point. The reader is referred 
to a recent review by Cali et al. [198] for a more detailed 
discussion.

Mitochondrial‑associated membranes
Mitochondrial-associated membranes (MAMs) are 
regions where the ER is in close proximation with the 
outer mitochondrial membrane to allow crosstalk 
between these organelles. MAMs are particularly impor-
tant for the exchange of Ca2+ and phospholipids, both 
of which impact ER/mitochondrial function and thus 
have profound effects on cellular metabolism and over-
all homeostasis (reviewed in [207]). MAMs are required 
for the synthesis of lipids such as phosphatidylcholine 
[208], with the mitochondrion serving as the site of phos-
phatidylethanolamine (PE) generation, an intermediate 
in phosphatidylcholine production. In turn, PE is cru-
cial for overall mitochondrial morphology and function 
[209]. MAMs are also enriched for proteins involved in 
mitochondrial fission and fusion [210, 211], and so can 
influence mitochondrial dynamics, morphology, and 
biogenesis. Likewise, MAMs are important sites for the 
regulation of mitophagy and the clearance of defective 
mitochondria [212].

MAMs are often found at synapses, where they may 
modulate synaptic activity [213]. Efficient ER-to-mito-
chondria Ca2+ transfer is necessary for ATP production 
and may be especially important for meeting the high 
energetic demands of synaptic transmission [214] and/
or serve as an important mechanism to buffer synaptic 
Ca2+. The ER and mitochondrial membranes are held 
in apposition at MAMs via a network of tether proteins 
[215, 216], some of which have been implicated in NDDs.

ER-mitochondrial tethers include the ER-mitochon-
dria encounter structure (ERMES), which was identi-
fied in yeast [217]. Mammalian counterparts to the 
ERMES complex are still being validated, but may 
include the IP3 receptor, phosphofurin acidic cluster 
sorting protein-2 (PACS-2), B-cell receptor associated 
protein 31 (Bap31), PDZD8 in the ER, the mitochon-
drial fission protein Fis1, and the outer mitochondrial 
membrane protein VDAC [218]. PDZD8 is required 
for ER-mitochondria tethering, and loss of PDZD8 is 
sufficient to impact ER-mitochondrial Ca2+ dynamics 

in mammalian neurons [219]. Mitofusin 2 has also 
been proposed as a MAM tether [220], but this idea 
remains controversial [221, 222]. Additional proposed 
tethers include the oxysterol binding-related proteins 
ORP5 and ORP8, which can interact with mitochon-
drial protein tyrosine phosphatase interacting protein 
51 (PTPIP51) [223]. The OMM protein synaptojanin 
2 binding protein (SYNJ2BP) and the ER protein ribo-
some-binding protein 1 (RRBP1) are proposed to medi-
ate specific interactions between the rough ER and 
mitochondria [224]. Finally, a tethering complex that 
may have particular importance in NDDs is comprised 
of the ER vesicle-associated membrane proteins-asso-
ciated protein B (VAPB) and mitochondrial PTPIP51 
[225, 226].

Altered ER-mitochondrial contacts in NDDs may con-
tribute to disease pathology [227, 228]. Loss of MAM 
tethers can disrupt ER-mitochondrial Ca2+ transfer and 
so impair mitochondrial metabolism, leading to cellular 
energy depletion and the activation of autophagy [229, 
230]. MAM disruption in NDDs could also lead to ener-
getic compromise by impairing the synthesis of phospho-
lipids important for mitochondrial membranes, such as 
cardiolipin [208, 231, 232]. This species is enriched in the 
mitochondrial inner membrane and is critical for proper 
ETC and ATP synthase function [233–236]. Finally, ER-
mitochondrial associations regulate a number of pro-
cesses that are commonly disrupted in NDDs such as 
Ca2+ handling, inflammation, axonal transport, and 
mitochondrial function [237]. These observations sup-
port the hypothesis that altered ER-mitochondrial com-
munication is a common mechanism underlying NDDs.

The AD-related proteins APP and γ-secretase are 
all enriched at MAMs [238]. Observations of altered 
lipid metabolism and Ca2+ handling in both FAD and 
SAD suggest that these proteins may be associated with 
MAM dysfunction [228, 239]. Altered iCa2+ handling 
in AD could result from enhanced ER-mitochondrial 
Ca2+ transfer. The finding that ER Ca2+ concentration is 
increased in AD supports this view. Finally, altered lipid 
homeostasis resulting from dysfunctional ER/mitochon-
drial tethering may also impair mitochondrial energetics 
in AD. The MAMs of AD brain tissue and cells exhibit 
increased sphingomyelin hydrolysis by sphingomyeli-
nase, which leads to increased ceramide content [240]. 
Increased ceramide content in AD appears sufficient to 
impair mitochondrial respiration [241, 242], as pharma-
cologic reduction of ceramide levels in AD models can 
rescue mitochondrial respiration [240]. Specific mecha-
nisms by which elevated ceramide content in mitochon-
drial membranes may impair respiratory function and 
cellular bioenergetics have been detailed elsewhere [173].
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Furthermore, altered ER-mitochondrial contacts and 
signaling are reported in PD, leading some to propose 
that disrupted MAMs are a significant contributor to 
PD pathogenesis [228, 237]. Proteins that are implicated 
in familial PD such as α-synuclein, PINK1, and Parkin 
all alter ER-mitochondrial signaling [243–245]. How-
ever, the specific consequences of these alterations on 
PD pathology are still the subject of active investigation 
[207].

The protein α-synuclein localizes to MAMs [245] and 
is thought to influence Ca2+ signaling [205, 206] and 
lipid metabolism [246], ultimately leading to defective 
ER and mitochondrial function [206]. Whereas wild-
type α-synuclein promotes ER-mitochondrial contacts 
[206], the association of familial PD mutant α-synuclein 
with MAMs is disrupted. This change may represent one 
mechanism for compromised MAM structure and func-
tion in PD [246]. However, conflicting data suggest that 
overexpression of either wild-type or mutant α-synuclein 
can disrupt ER-mitochondrial contacts by binding to 
VAPB on the ER membrane and interfering with VAPB-
PTPIP51 interactions [245]. Disruption of this tether 
complex can impair mitochondrial energetics because it 
compromises Ca2+ exchange between the two organelles 
[245]. Similar mechanisms may explain how DJ-1 muta-
tions contribute to early-onset PD [247]. DJ-1 is normally 
localized to MAMs where it promotes ER-mitochondrial 
association and facilitates mCa2+ uptake [248]. Mutant 
DJ-1, as seen in PD, may disrupt MAM structure, ER-
mitochondrial contacts, mCa2+ uptake, and mitochon-
drial bioenergetics [249]. In addition, mutations in Parkin 
and PINK1 may initiate PD pathogenesis via effects at 
MAMs. PINK and Parkin are recruited to sites of contact 
between ER and defective mitochondria to coordinate 
their autophagic clearance [244, 250]. Thus, defective 
PINK or Parkin may disrupt mitochondrial quality con-
trol mechanisms that rely on MAM interactions. Over 
time, this could impair cellular metabolism and contrib-
ute to PD pathology due to the accumulation of dysfunc-
tional mitochondria.

Mitochondrial structural defects
Mitochondrial structure is determined by a precise bal-
ance between mitochondrial fusion and fission and mem-
brane dynamics that are mediated by several proteins 
including mitofusin 1 (MFN1), mitofusin 2 (MFN2), 
optic atrophy 1 (OPA1), dynamin-related protein 1 
(DRP1), mitochondrial fission factor (MFF), and fission 1 
protein [251]. During fasting or starvation mitochondria 
tend to fuse [252] due to inhibition of Drp1 by PKA and 
AMPK [253, 254]. These changes in mitochondrial struc-
ture alter respiratory complex assembly and affect the 
coupling between respiration and ATP synthesis [252], 

thereby increasing ATP production efficiency when fuel 
is scarce.

Defective mitochondrial fission and fusion have been 
implicated in NDDs [251], and abnormal mitochondrial 
structure and morphology are reported in AD, PD, and 
HD [255]. Increased mitochondrial fragmentation is 
often observed in these conditions. At first considera-
tion, this finding might indicate that neurons in NDDs 
are well-supplied with metabolic fuels and are fully capa-
ble of breaking them down to meet cellular demands for 
ATP. However, increased mitochondrial fragmentation 
may instead reflect or even contribute to metabolic dys-
function in NDDs. Cells adapt to prolonged starvation or 
chronic defects in metabolism with increased mitophagy, 
which requires mitochondrial fragmentation [256]. 
Therefore, excess mitochondrial fragmentation may 
reflect increased stimuli for mitophagy in NDDs (i.e., 
impaired fuel utilization and/or mitochondrial dysfunc-
tion). This is perhaps coupled with impairments in the 
mitophagic machinery and the consequent accumula-
tion of fragmented organelles. According to the model in 
which mitochondrial fusion enhances ATP production, a 
shift in mitochondrial dynamics that favors fission could 
limit mitochondrial bioenergetics and exacerbate meta-
bolic stress in NDDs.

Several mechanisms are proposed to explain the accu-
mulation of fragmented mitochondria in NDDs. In AD, 
some reports indicate that net mtDNA content and ETC 
protein expression are increased [257, 258], suggestive 
of a net increase in cellular mitochondrial content. This 
could occur with an increase in mitochondrial biogenesis 
and/or a decrease in clearance of defective, fragmented 
mitochondria. For example, APP mutant transgenic mice 
show upregulation of ETC genes, and Aβ has been shown 
to increase cellular mtDNA content [258, 259]. On the 
other hand, other studies report reduced mtDNA content 
and ETC gene expression in AD brains [260–262]. These 
disagreements likely reflect differences in the stage of 
disease examined in these reports. We observed a slight, 
but non-significant age-dependent decrease in mito-
chondrial content in AD-mice compared to control mice 
[77]. Finally, experiments in animal models of AD reveal 
increased S-nitrosylation of Drp1, which causes hyper-
activation of Drp1 and excessive mitochondrial frag-
mentation [263]. Similar effects of hyperactivated Drp1 
have been found in postmortem brain samples from AD 
patients [263].

The accumulation of fragmented mitochondria in PD 
could result either from primary mutations in PD-asso-
ciated genes such as PINK and Parkin [264] or from the 
pathogenic milieu associated with disease progression. 
PINK and Parkin cooperate to identify defective mito-
chondria and target them for degradation via mitophagy 



Page 12 of 31Jadiya et al. acta neuropathol commun           (2021) 9:124 

[265]. Therefore, impaired clearance and eventual accu-
mulation of dysfunctional mitochondria may be a pri-
mary consequence of PD mutations. PINK1 also controls 
structural plasticity of mitochondrial crista junctions 
via phosphorylation of the inner mitochondrial mem-
brane protein MIC60/mitofilin [266]. Mutation in PINK1 
could impact the PINK1-Mic60 interaction and prevent 
the recruitment of Parkin to damaged mitochondria in 
PD. Further, excessive reactive nitrogen species (RNS) 
production in PD may contribute to the accumulation 
of fragmented mitochondria by modifying the activ-
ity of proteins involved in mitochondrial fission/fusion 
and mitophagy. For example, S-nitrosylation of Par-
kin decreases it E3 ubiquitin ligase activity [267], lead-
ing to stabilization of its target, Drp1, which promotes 
mitochondrial fission [268]. Similarly, S-nitrosylation of 
PINK1 can impair mitophagy [269] and thereby allow 
fragmented mitochondria to accumulate.

The mechanisms behind altered mitochondrial struc-
ture in HD have received less attention. Studies in a 
transgenic mouse model expressing mutant human HTT 
suggest a direct transcriptional repression of PGC1α, 
which could impair mitochondrial biogenesis [270]. 
Like in AD, increased S-nitrosylation and activation 
of Drp1 is observed in mouse models of HD [271], and 
causes excessive mitochondrial fragmentation similar to 
that seen in HD brains [272]. Recent work suggests that 
mutant HTT impairs mitophagy in neurons [273], which 
would also favor the accumulation of dysfunctional mito-
chondria in HD.

Oxidative stress
Impaired metabolism in NDDs is linked to the produc-
tion of RNS and ROS. Multiple hallmarks of NDDs 
including mitochondrial dysfunction, misfolded proteins, 
and inflammation are known consequences of elevated 
RNS/ROS production [274]. The relationship between 
mitochondrial dysfunction, aberrant ROS signaling, and 
neurodegeneration has been reviewed elsewhere [275]. 
Elevated RNS production in NDDs is thought to occur as 
a result of elevated iCa2+ concentration, which increases 
nitric oxide (NO) production by neuronal nitric oxide 
synthase (nNOS) and endothelial nitric oxide synthase 
(eNOS). Excess NO in turn promotes mitochondrial dys-
function, which can exacerbate bioenergetic compromise 
and accelerate neurodegeneration [276]. This may occur 
through reversible S-nitrosylation of cysteine residues 
on proteins important for mitochondrial homeostasis 
such as Parkin and Drp1, as well as proteins such as Pro-
tein disulfide isomerase (PDI) that help to ensure proper 
protein folding (reviewed in [276]). Nitric oxide can 
also react with superoxide to form peroxynitrite, which 

irreversibly modifies tyrosine residues via tyrosine nitra-
tion [277].

Nitric oxide inhibits numerous proteins involved in 
metabolism, providing a mechanistic link between ele-
vated iCa2+ levels and altered metabolism in NDDs. NO 
attenuates glycolysis and fatty acid oxidation via inhibi-
tory S-nitrosylation of key enzymes in these pathways 
such as GAPDH [274, 276]. Such effects would impede 
metabolism by limiting carbon input into the TCA cycle. 
Furthermore, S-nitrosylation of the TCA cycle enzymes 
citrate synthase, aconitase, isocitrate dehydrogenase, 
alpha-ketoglutarate dehydrogenase, succinyl-CoA syn-
thetase, succinate dehydrogenase, and malate dehydroge-
nase has been observed [278, 279] and is often inhibitory 
[280, 281]. In particular, isocitrate dehydrogenase is a 
rate-limiting step within the TCA cycle [282], and inhibi-
tory S-nitrosylation of this enzyme could limit TCA 
cycle flux and overall mitochondrial metabolism. Down-
stream of the TCA cycle, S-nitrosylation can inhibit ETC 
complexes I [283–285], IV [286], and V (ATP synthase) 
[287]. Tyrosine nitration also inhibits all ETC complexes 
[288, 289]. Thus, excessive RNS production in NDDs can 
impair mitochondrial metabolism by direct action on 
multiple targets and pathways.

Much remains to be determined regarding the spe-
cific role of mitochondrial RNS stress in the progression 
of NDDs. Some recent studies support a link between 
increased NO production and altered mitochondrial 
activity. Induced pluripotent stem cells expressing the 
A53T mutation in α-synuclein, which causes familial PD, 
exhibit decreased mitochondrial respiration that is attrib-
uted to aberrant S-nitrosylation of the transcription fac-
tor MEF2C, which leads to impaired PGC1α expression 
[290]. A similar effect of abnormal MEF2 S-nitrosylation 
is associated with neurodegeneration in AD [291]. Any 
initial impairment of mitochondrial respiratory activ-
ity can trigger excess ROS and RNS production, leading 
to further oxidative or nitrosative stress [112, 292, 293] 
that feeds back to impair mitochondrial metabolism. Fit-
ting with this notion, increased ROS production by the 
ETC is indeed observed in neurodegeneration [274, 294]. 
While increased ROS production in NDDs may be a 
direct consequence of increased mCa2+ concentration, it 
is tempting to speculate that increased cellular NO pro-
duction may also contribute to this effect by initiating 
ETC dysfunction.

Finally, it is worth noting that data also exist supporting 
a neuro-protective role for nitric oxide in some NDDs. As 
reviewed by Calabrese et  al., within the context of nor-
mal physiology, NO can exert neuro-protective effects via 
several mechanisms including stimulation of pro-survival 
Akt and cyclic-AMP-responsive-element binding protein 
(CREB) signaling pathways, S-nitrosylation of the NMDA 
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receptor to limit cellular Ca2+ uptake and excitotoxicity, 
inhibitory S-nitrosylation of caspases, and the upregula-
tion of heme oxygenase 1 to stimulate cellular antioxi-
dant production [295].

Transcriptional regulation
Several observations indicate that changes in transcrip-
tional programs contribute to altered metabolism in 
NDDs. The expression of key energy and metabolism 
genes, such as components of the ETC, are reduced 
at both the mRNA and protein level in autopsied AD 
brains [262]. Furthermore, transcriptional repression 
of PGC-1α, a transcription coactivator with a central 
role in mitochondrial biogenesis, is observed in mouse 
models of HD [270]. These examples illustrate a general 
phenomenon, common to NDDs, of decreased transcrip-
tion of genes involved in mitochondrial and oxidative 
metabolism [296]. Much work remains to determine the 
mechanisms responsible, but some evidence supports 
the notion that restoration of transcription is beneficial 
in NDDs. Specifically, activation of transcription fac-
tors including CREB, NF-κB, and NRF2 are protective in 
murine models of these diseases (reviewed in [174, 297]). 
It is interesting to note that exercise and aerobic activity 
can activate some of these neuroprotective transcription 
factors [174]. Thus, an interesting question is whether 
impaired locomotion and reduced physical activity in 
some NDDs diminish the activation of beneficial tran-
scriptional programs, and so drive further transcriptional 
and metabolic defects.

One example of how metabolic gene transcription may 
become disrupted in NDDs is by impairment of Peroxi-
some proliferator-activated receptor (PPAR)-γ co-activa-
tor 1α (PGC-1α). As reviewed elsewhere [298], PGC-1α 
is activated by AMPK during times of metabolic stress, 
and in concert with the transcription factor NRF-1 
increases the expression of nuclear genes involved in 
mitochondrial biogenesis [299, 300]. PGC-1α also upreg-
ulates mitophagic genes [301, 302] and thus can impact 
mitochondrial quality control, turnover, and net mito-
chondrial content. NDDs are generally associated with 
reduced expression of PGC-1α, which likely represents a 
common mechanism for metabolic impairment in these 
diseases.

Reduced expression of PGC-1α is observed in Alzhei-
mer’s patients and in the TG2576 mouse model of AD 
(transgenic expression of the APP Swedish mutation) 
[303]. Mutant forms of presenilin associated with famil-
ial AD are associated with reduced PGC-1α expression 
[304], while in  vitro restoration of PGC-1α in AD cell 
lines improves overall function [303, 305]. This sug-
gests that diminished PGC-1α function, and perhaps 
subsequent mitochondrial impairment, contributes to 

AD pathogenesis. Similar evidence for reduced PGC-1α 
activity is reported in Parkinson’s disease. PD patients 
exhibit reduced expression of PGC-1α target genes, such 
as components of the ETC [306]. In cell and animal mod-
els, loss of PGC-1α increases susceptibility to PD [307, 
308], while overexpression of PGC-1α protects against 
neuronal death [306, 309]. Recent work indicates that the 
protein PARIS (ZFN746 gene), which is normally ubiqui-
tinated by Parkin, can repress PGC-1α expression [310]. 
Thus, loss of Parkin in PD may elicit the accumulation of 
PARIS and downregulation of PGC-1α. In support of this 
notion, stereotactic injection of recombinant PARIS into 
the substantia nigra of mice causes neuronal death, but 
this is prevented by simultaneous injection of exogenous 
recombinant PGC-1α [310]. Together, these data support 
the idea that downregulation of PGC-1α is secondary to 
causative NDD gene mutations, but reduces mitochon-
dria content and disrupts quality control, thereby fur-
thering neuronal dysfunction and disease progression.

Huntington’s disease is more closely linked to defects in 
PGC-1α signaling than other NDDs. Deletion of PGC-1α 
in mice causes neurodegeneration and recapitulates 
symptoms of HD [311, 312], and induction of PGC-1α 
can rescue HD symptoms in mice[313]. Predictably, HD 
patients and mouse models display reduced PGC-1α 
expression and reduced expression of mitochondrial 
genes [314]. These features can be explained by binding 
of mutant huntingtin protein to the PGC-1α promotor, 
which represses PGC-1α transcription [270]. Deletion of 
PGC-1α in HD mouse models exacerbates neurodegen-
eration, whereas striatal overexpression of PGC-1α is suf-
ficient to protect against neuronal atrophy [270]. Overall, 
PGC-1α likely plays a central role in the progression of 
NDDs, and so is an attractive therapeutic target.

Insulin signaling
Multiple studies support an association between altered 
insulin signaling and NDDs. Altered glucose metabolism 
is common in both AD and PD [174, 315], and both of 
these diseases are linked to type 2 diabetes [316–318]. 
Indeed, many of the same risk factors for developing 
obesity or diabetes (lack of physical activity, excess calo-
rie consumption, etc.) predispose to the development of 
NDDs, especially AD and PD [319]. Variants in insulin 
signaling pathway genes, such as AKT [320] and GSK3β 
[321], increase the risk for PD. Thus, it is possible that 
diminished insulin responsiveness and impaired glucose 
utilization contribute to impaired neuronal metabolism 
in some NDD patients. This represents further evidence 
that a decline in metabolic health may initiate NDD 
development.

The glucose transporters GLUT1 (insulin-insensitive) 
and GLUT3 (insulin-sensitive) are decreased in AD 
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brains [322, 323]. These changes may limit brain glucose 
uptake and contribute to cognitive impairments in AD 
[324]. A report that reducing GLUT1 expression in AD 
mouse models worsens amyloid burden, neurodegen-
eration, and cognitive function [325] supports this idea. 
Additionally, insulin deficiency favors phosphorylation 
of tau and the development of neurofibrillary pathology 
[326], reinforcing the notion that disrupted insulin sign-
aling promotes AD progression.

In agreement, impaired glucose metabolism is a well-
documented feature of PD brains [174], and lower lev-
els of pyruvate oxidation are observed in PD fibroblasts 
[111]. These effects are recapitulated in animal models 
of PD [327–329] and may reflect impaired insulin signal-
ing. Activation of AKT, a classical downstream target of 
insulin signaling, is reduced in the substantia nigra of PD 
brains and in in  vitro cellular models of PD [330–333]. 
Genetic mutations in proteins linked to PD, including 
DJ-1 and PINK1, are also associated with diminished 
AKT signaling [334] and provide further evidence for 
altered insulin responsiveness in this disease. To the 
extent that altered insulin/AKT signaling limits carbon 
(i.e., glucose) metabolism within neurons, it would limit 
fuel input to the TCA cycle and decrease mitochondrial 
ATP production [335]. Limited mitochondrial energet-
ics may be just one consequence of diminished glucose 
uptake or utilization in PD. Dopaminergic neurons do 
not tolerate glucose starvation [336], and glucose dep-
rivation in vitro is sufficient to cause α-synuclein aggre-
gation and death of dopaminergic neurons [337]. These 
data support the idea that impaired glucose utilization is 
an early driver of PD pathology, and may lead not only to 
impaired mitochondrial metabolism, but also to amyloi-
dosis and neuronal death.

Altered glucose metabolism is an early feature of HD, 
even though the expression of glucose transporters is 
normal in initial stages of the disease [153, 338, 339]. 
This defect is explained by diminished localization of the 
glucose transporters at the neuronal plasma membrane 
[340]. Interestingly, defects in metabolism are observed 
prior to striatal atrophy, and reduced glucose metabolism 
strongly correlates with HD progression [341–343]. The 
finding that increasing expression of GLUT3 or enzymes 
involved in glucose metabolism can protect against the 
progression of HD [344, 345] strengthens this view.

AMPK
AMP-activated protein kinase (AMPK) is a master cel-
lular energy sensor and has a critical role in maintaining 
metabolic homeostasis. AMPK is activated in response 
to changes indicative of energetic stress (e.g. increased 
AMP/ATP ratio, hypoxia, a drop in cellular pH, increased 
iCa2+ concentration, etc.) and via phosphorylation by 

the kinases LKB1, CaMKKβ, and TAK-1 (reviewed in 
[346, 347]). AMPK exerts multiple effects to stimulate 
ATP production, such as stimulating glucose uptake, gly-
colysis, and glucose and fatty acid oxidation, while at the 
same time limiting cellular ATP consumption by inhib-
iting fatty acid and cholesterol production [298, 347]. 
AMPK also promotes long-term increases in mitochon-
drial energy production by phosphorylating PGC-1α and 
the fork-head box O (FOXO) transcription factor to stim-
ulate mitochondrial biogenesis [299, 300, 309, 348–351].

AMPK is activated by ROS, which as previously 
detailed are elevated in many NDDs [352, 353]. Since 
AMPK activation can exacerbate ROS production, this 
may set up a positive feedback loop leading to further 
oxidative stress and metabolic impairment [354]. Thus, 
AMPK has the potential to exert both positive and det-
rimental effects in NDDs. Data supporting both posi-
tive and negative aspects of AMPK activation exist for 
most NDDs, and the net positive versus detrimental out-
comes of AMPK activation likely varies between different 
disorders.

Elevated AMPK activity has been reported in the 
brains of the APPswe/PS1dE9 and APPswe,ind, mouse 
models of AD [355, 356]. Several mechanisms have been 
proposed to explain how this occurs. First, any exist-
ing mitochondrial dysfunction due to Aβ accumulation 
[201, 357, 358], or decreased mitochondrial biogenesis 
and increased fragmentation [359], could cause energetic 
stress and AMPK activation. Second, Aβ causes exces-
sive iCa2+ flux due to activation of the NMDA receptor, 
which can activate the AMPK-kinase, CaMKKβ [355, 
360]. Third, elevated ROS production [201] and elevated 
iCa2+ [361] downstream of mitochondrial dysfunction 
can increase AMPK activity in AD. Finally, increased 
NADPH oxidase activity is observed in AD brains and is 
proposed to activate AMPK [362].

Although AMPK activation may initially be an adap-
tive response to alleviate energetic stress in AD, most 
data indicate that abnormal AMPK activation eventually 
turns detrimental. For example, AMPK can increase Aβ 
expression, and Aβ can further activate AMPK, which 
can suppress long-term potentiation and impair memory 
[298]. Similarly, AMPK activation increases the phospho-
rylation of tau [363] and reduces the binding of tau to 
microtubules [360, 363], potentially accelerating tauopa-
thy. These effects help explain why pharmacologic inhibi-
tion of AMPK with compound C or genetic ablation of 
AMPKα2 subunits is beneficial in the APPswe/PS1dE9 
mouse model of AD [364]. Further data in support of 
a detrimental role of AMPK in AD comes from stud-
ies showing that treatment of AD mice with the AMPK 
activator metformin results in transcriptional upregula-
tion of β-secretase, leading to increased Aβ formation 
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and worsened memory [365, 366]. These studies suggest 
that AMPK activity furthers metabolic impairment and 
AD progression by contributing to, or propagating, the 
pathogenic milieu. It is worth noting that some benefi-
cial effects of AMPK activation have also been observed 
in AD models. In Drosophila, Aβ suppresses AMPK 
signaling [367], suggesting that insufficient rather than 
excessive AMPK activity may contribute to AD progres-
sion. Consistent with this notion, activation of AMPK 
by AICAR in rat cortical neurons decreases Aβ content, 
and knockout of the AMPKα2 subunit increases Aβ pro-
duction [368]. AMPK activation in response to leptin 
signaling reduces tau phosphorylation [369, 370], and 
compounds that activate AMPK, such as resveratrol and 
metformin, stimulate Aβ metabolism, reduce mitochon-
drial dysfunction, and improve AD pathology [371–373]. 
The conflicting data regarding the beneficial versus det-
rimental roles of AMPK in AD may reflect disparities 
among the various models and cell types studied with 
respect to differential expression of AMPK subunit iso-
forms and their regulation, relative activity, and specific 
cellular targets, or may be due to temporal differences in 
disease progression.

AMPK likely also has divergent effects on energetics 
and neurodegeneration in PD depending on the model 
or stage of the disease [374]. AMPK is activated in mice 
treated with MPP+, a common in vivo model for PD, as 
well as in SH-SY5Y cells (human neuroblastoma cell line) 
treated with MPP+ in vitro [375]. The available data sug-
gest that AMPK activation is beneficial and promotes cell 
survival [375, 376]. For example, pharmacologic inhibi-
tion of AMPK increases neuronal cell death in response 
to MPP+ treatment, whereas AMPK overexpression 
promotes cell survival [375]. In line with these findings, 
AMPK cooperates with Parkin to maintain mitochon-
drial quality control and promote neuronal survival [374]. 
However, the possibility of detrimental effects of AMPK 
activation to cellular energetics and survival in PD can-
not be fully excluded. For instance, AMPK activation in 
response to cellular ATP depletion is implicated in the 
degeneration of dopaminergic neurons [377]. Thus, more 
work is needed to elucidate the precise role of AMPK 
activation in PD and clarify whether it promotes or 
impairs metabolic function and overall cellular viability.

The brains of HD patients and HD mouse mod-
els exhibit excessive AMPK activation [354, 378, 379]. 
Both mitochondrial dysfunction and oxidative stress 
are reported in HD [380], and these defects may both 
contribute to AMPK activation, or vice-versa be conse-
quences of excessive AMPK activity. mHtt protein likely 
initiates metabolic stress leading to downstream AMPK 
activation. mHtt can aggregate on mitochondrial mem-
branes and disrupt mCa2+ flux, causing Ca2+-dependent 

oxidative stress [381, 382]. mHtt aggregates also decrease 
Complex II and Complex III activity [170, 383, 384] and 
impair mitochondrial trafficking [385]. All these effects 
can disrupt cellular energy balance and trigger AMPK 
activation. The existing literature suggests that AMPK 
activation is detrimental in HD, culminating in neuronal 
apoptosis [354, 379]. This effect may be related to the 
suppression of the survival gene Bcl-2 [379]. Whether 
excess AMPK activity is also toxic due to metabolic per-
turbations remains to be determined.

Neuroinflammation
Previous studies have indicated that optimal brain func-
tion requires coordinated signaling between neurons and 
glial cells, and disturbances in paracellular communica-
tion can contribute to NDDs development. In addition, 
the inflammatory hypothesis suggests that the activation 
of microglia is a driving force for neuroinflammation and 
mitochondrial dysfunction in NDDs. In turn, mitochon-
drial dysfunction can promote inflammation (reviewed in 
[386, 387]).

Microglia are specialized  brain macrophages with a 
primary function in host defense including the removal 
of cellular debris, metabolic waste, pathogens, and neuro-
toxins [388]. Microglia are dynamic cells that can change 
their shape and undergo phenotypic transformation 
(activation) in response to infection or injury. In the rest-
ing homeostatic state, microglia exhibit a ramified struc-
ture with branching processes for surveillance of the local 
environment [389]. After activation, microglia become 
highly mobile, assuming an amoeboid form with short 
thickened processes, and phagocytose cell debris, secrete 
proinflammatory mediators, such as cytokines, and gen-
erate ROS to potentiate acute inflammation [389]. While 
thought to serve a protective role during acute inflam-
mation, persistent microglia activation contributes to 
chronic neuroinflammation and redox imbalance associ-
ated with NDDs, resulting in mitochondrial dysfunction 
[390, 391]. This elicits a positive feedback loop where 
mitochondrial-generated superoxide potentiates micro-
glial activation, initiating further ROS production. As 
previously discussed ROS can promote posttranslational 
modifications of TCA cycle enzymes and induce mtDNA 
mutations, which in turn can compromise energetics and 
trigger mitochondrial dysfunction [392].

Fuel sources are thought to be altered in NDDs, result-
ing in cell-specific metabolic shifts to maintain ATP 
production [393]. The minimal experimental data avail-
able suggests that similar metabolic pathway switching 
occurs during microglial activation. Transcriptomic stud-
ies suggest that microglia express all the required genes 
for OxPhos and glycolysis [394]. Limited data suggest 



Page 16 of 31Jadiya et al. acta neuropathol commun           (2021) 9:124 

that microglia undergo reprogramming during activation 
to favor glycolysis over OxPhos [395–397]. Lipopolysac-
charide (LPS) activation of transformed mouse micro-
glial cells (BV-2 cells) decreased OxPhos and lowered 
ATP production with a concomitant increase in lactate 
production [397]. These observations are bolstered by 
the finding of increased lactate production and glu-
cose uptake (high expression of GLUT1 and GLUT4) in 
activated microglia, favoring aerobic glycolysis and an 
increase in pentose phosphate pathway flux [396].

Multiple inflammatory mediators resulting from 
chronic neuroinflammation can affect mitochondrial 
energy metabolism and mitochondrial dynamics, thereby 
contributing to NDDs (reviewed in [387]). However, the 
direct molecular mechanisms are still not precise in neu-
ronal and glial cells by which these inflammatory factors 
impact mitochondrial metabolism. Few reports in non-
neuronal cells suggest that inflammatory mediators, TNF 
and IL-1β, reduce the activity of TCA cycle enzymes 
including PDH and α-KGDH, with a concurrent reduc-
tion in Complex I and II activity [398]. α-KGDH activity 
is reported to be reduced by an inflammation-derived 
oxidant, myeloperoxidase, that is upregulated in micro-
glia in AD brain tissue [399]. This suggests that inflam-
matory factors can impact mitochondrial metabolism in 
glial cells in AD. In addition, TNF has been reported to 
reduce the expression of PGC-1α in non-neuronal cells 
[400]. However, the direct interplay between neuroin-
flammation and mitochondrial metabolism in different 
NDDs remains poorly understood and thus warrants fur-
ther investigation.

Peroxisomal lipid metabolism
Metabolic dysregulation associated with peroxisome dys-
function may contribute to the development of NDDs. 
Peroxisomes are highly dynamic and important metabolic 
organelles that can directly communicate with mitochon-
dria and contribute to cellular lipid metabolism, e.g., the 
oxidation of very-long-chain fatty acids (VLCFAs), syn-
thesis of phospholipids, such as plasmalogen/ether lipids 
(myelin sheath lipids) and docosahexaenoic acid (DHA), 
and the regulation of redox and inflammatory signaling. 
Furthermore, the brain is a lipid-rich organ, and myelin 
sheaths are rich in plasmalogens/ether lipids synthesized 
in peroxisomes. Therefore, slight alterations in peroxiso-
mal lipid metabolism may represent significant mecha-
nisms contributing to changes in neuronal function 
(reviewed in [401]).

In AD, alternations in lipid homeostasis/peroxisome 
function include significantly decreased levels of plasm-
alogens and DHA and increased levels of VLCFA. The 
severity of these alternations correlates with the progres-
sion of disease [402, 403] and has been shown to change 

cell membrane properties and increase intracellular 
cholesterol levels. These changes increase β-secretase 
and γ-secretase activities, resulting in enhanced Aβ gen-
eration, tau hyperphosphorylation, synaptic dysfunction, 
and neuroinflammation [404, 405]. In addition, peroxi-
somal β-oxidation inhibition increased Aβ generation in 
rat brains (reviewed in [405]). Similarly, severe alterations 
in lipid composition (reductions in DHA and plasmalo-
gens) of frontal cortex lipid rafts from PD patients have 
been reported [406]. Reductions in ether lipids decreased 
Ca2+-dependent neurotransmitter release and the respir-
atory capacity of synaptic mitochondria [407]. Therefore, 
it is possible that the decrease of ether lipids in mito-
chondrial membranes might disrupt OxPhos complexes 
and thus ATP generation sufficiently to compromise neu-
rotransmission. However, overall the role of peroxisomal 
lipid metabolism in NDDs is poorly described. Further 
studies are required to determine whether peroxisomal 
lipid dysfunction directly contributes to disease etiol-
ogy or is a secondary phenomenon. We refer the reader 
to another recent review for a detailed overview of the 
peroxisomal lipid metabolism in NDDs and its metabolic 
cooperation with mitochondria [405, 408].

Modulation of mitochondrial function as a possible 
therapeutic target for neurodegeneration
As discussed earlier, dysregulation in mCa2+ homeostasis 
might be an upstream event causing mitochondrial dys-
function in NDDs. For this reason, various combinations 
of modulators aimed at targeting or correcting defects 
in mCa2+ exchange or restoring mitochondrial function/
energy metabolism may serve as therapies to prevent the 
development of NDDs. Possible therapeutic strategies, 
summarized in Table 1, include reducing mCa2+ uptake, 
enhancing mCa2+ efflux, and preserving mitochondrial 
architecture/functions (such as the assembly of respira-
tory chain complexes and the ATP synthase), bioenerget-
ics, axonal transport of mitochondria, and mitochondrial 
proteostasis. However, it is still unclear whether increas-
ing mCa2+ efflux or reducing mitochondrial mCa2+ 
uptake will be superior for neuroprotection. Both are 
sufficient to limit mCa2+ overload and correct mCa2+ dys-
regulation. Still, a few points need careful consideration, 
such as if modulators of mitochondrial mCa2+ homeo-
stasis will negatively impact Ca2+-dependent physiologi-
cal functions, such as TCA cycle flux and mitochondrial 
dynamics. It should also be noted that different NDDs 
might have disease-specific regulation of mtCU chan-
nel activity, which requires more detailed experimenta-
tion. Beyond this, cellular heterogeneity in mitochondrial 
function should also be considered; for example, axonal 
and synaptic mitochondria are reported to be involved 
in Ca2+ buffering and presynaptic transmission, whereas 
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the soma is the primary site for mitochondrial quality 
control. Therefore, a proper understanding and regula-
tion of the mtCU, or a combination of modulators that 
aim to increase mCa2+ buffer capacity and still maintain 
energetics may be necessary to maintain efficient synap-
tic transmission and effectively treat NDDs.

Challenges, conclusions, and future research 
directions
A more detailed and nuanced understanding of the cel-
lular and molecular mechanisms altering neuronal mito-
chondrial metabolism in NDDs is still needed. Several 
challenging questions remain to be answered, such as 
(1) How can mitochondrial defects be central in so many 
different NDDs with diverse etiologies and pathologies? 
(2) How does mitochondrial dysfunction contribute to 
protein aggregation? (3) Do metabolic defects cause neu-
rodegeneration, or does neuronal dysfunction result in 
metabolic defects? (4) What are the cellular and molecu-
lar events that initiate mitochondrial dysfunction in neu-
rodegeneration? (5) How do neurons sense bioenergetic 
crisis during stress or in pathology? (6) How do cell spe-
cific metabolic profiles impact cellular crosstalk in the 
context of disease progression? 8) What upstream and 
downstream signaling pathways are involved at the time 
of bioenergetic crisis in different NDDs? 9) What are the 
best models to decipher these events for translation into 
humans?

Here we summarized how numerous cellular events 
that are compromised during neurodegeneration all 
require high levels of ATP (e.g., postsynaptic signaling, 
axonal transport, protein clearance mechanisms and 
neurotransmission). We also reviewed the evidence that 
supports the notion that mCa2+ and metabolic impair-
ments are primary cellular defects in NDD pathogen-
esis. Interestingly, all NDDs share common mechanisms 
of disease pathology and mitochondrial defects may be 
a central mechanism in NDD progression. However, it 
remains enigmatic how mitochondrial dysfunction con-
tributes directly to protein aggregation and brain region- 
and cell type-specific dysfunction in NDDs and whether 
mitochondrial dysfunction is causal or the consequence 
of the underlying pathology. Here, we propose a posi-
tive feedback loop between mitochondrial defects and 
disease pathology that explains numerous mechanisms 
of NDDs. It’s plausible that early mitochondrial dysfunc-
tion directly affects protein aggregation through ATP-
dependent proteostasis machinery (protein synthesis, 
folding, and degradation) together with oxidative stress 
and inflammation and promotes cell-type-specific loss 
due to mitochondrial death signaling or due to metabolic 
and energetic dysfunction. Recent reports suggest that 
aggregation-prone proteins shuttle to mitochondria and 

mitochondrial protein quality control may alleviate pro-
tein aggregation. Mitochondrial dysfunction leading to 
the failure of mitochondrial proteostasis could be another 
crucial factor for pathology-specific protein aggregation. 
For a detailed mechanism by which mitochondrial dys-
function leads to protein aggregation, we refer the reader 
to other recent reviews [409, 410]. A cell type/brain 
region-specific regulation of mitochondrial function 
and mCa2+ signaling is lacking and how this contributes 
to different disease pathologies is entirely unexplored. A 
complete understanding and precise regulation of mtCU 
function in different NDDs could eventually help define 
mechanisms in tissue- and cell-type-specific NDDs.

Another major challenge in NDDs research is selecting 
experimental models that recapitulate the pathological 
features of human disease. For decades, animal models 
have been essential because they are sufficient to recapit-
ulate human genetic mutations and mimic critical clini-
cal features. These model systems have provided access 
to define in vivo systemic interactions, and study devel-
opmental, metabolic, and behavioral outcomes, which 
is not possible in cellular systems or patients. Arguably, 
discoveries in animal models have led to a better under-
standing of the molecular mechanisms of disease patho-
genesis but failed to translate in humans. However, the 
failure to translate insights gained from mouse mod-
els into humans is not always due to flaws of the animal 
model per se. For example, many of these studies lacked 
detailed causal experimentation and did not exclude 
other variable factors. Other viable alternatives that can 
help recapitulate human pathophysiology such as the 
study of postmortem human brains and human iPSCs, 
and organoids may help as translational stepping stones 
to therapy. The postmortem human brain is particularly 
helpful to quantify cellular and molecular markers of dis-
ease and the pathology of neural processes. However, the 
access of these samples is limited, and the quality of the 
tissue is impacted by the donor’s condition pre-mortem, 
postmortem interval, collection time, and maintenance 
conditions all of which can introduce confounding vari-
ables. Human iPSCs are a versatile tool to model human 
neurons and suitable for human in vitro studies, such as 
high-throughput drug screening. Still, they cannot ena-
ble in  vivo cellular physiology which takes into account 
organ and cellular crosstalk and the complex milieu 
of the complete organism. We believe an assortment 
of models, including robust animal models and three-
dimensional cellular systems, will help better define the 
pathogenesis of NDDs and enable more thorough testing 
of drugs and therapies for clinical translation. Indeed, it is 
critical to generate robust animal models that phenocopy 
either the familial or non-familial forms of these disor-
ders. An increase in proper causal experimental design 
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using robust engineered animal models that recapitulate 
the complexity of an entire nervous system, including 
a full complement of neuronal circuits, glial complex-
ity, and the vascular and immunologic components, will 
provide valuable insight into how mitochondrial metabo-
lism impacts disease pathogenesis. In conclusion, a better 
understanding of metabolic regulation, identification of 
mitochondrial targets (see Table 1), and determining the 
precise temporal order of pathological cellular events is 
of paramount importance to development of novel thera-
peutic targets to combat NDDs.
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