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CSF1R inhibition rescues tau pathology 
and neurodegeneration in an A/T/N 
model with combined AD pathologies, 
while preserving plaque associated microglia
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Abstract 

Alzheimer’s disease (AD) is characterized by a sequential progression of amyloid plaques (A), neurofibrillary tangles 
(T) and neurodegeneration (N), constituting ATN pathology. While microglia are considered key contributors to AD 
pathogenesis, their contribution in the combined presence of ATN pathologies remains incompletely understood. 
As sensors of the brain microenvironment, microglial phenotypes and contributions are importantly defined by 
the pathologies in the brain, indicating the need for their analysis in preclinical models that recapitulate combined 
ATN pathologies, besides their role in A and T models only. Here, we report a new tau-seed model in which amy‑
loid pathology facilitates bilateral tau propagation associated with brain atrophy, thereby recapitulating robust ATN 
pathology. Single-cell RNA sequencing revealed that ATN pathology exacerbated microglial activation towards 
disease-associated microglia states, with a significant upregulation of Apoe as compared to amyloid-only models (A). 
Importantly, Colony-Stimulating Factor 1 Receptor inhibition preferentially eliminated non-plaque-associated versus 
plaque associated microglia. The preferential depletion of non-plaque-associated microglia significantly attenuated 
tau pathology and neuronal atrophy, indicating their detrimental role during ATN progression. Together, our data 
reveal the intricacies of microglial activation and their contributions to pathology in a model that recapitulates the 
combined ATN pathologies of AD. Our data may provide a basis for microglia-targeting therapies selectively targeting 
detrimental microglial populations, while conserving protective populations.
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Introduction
Brains of AD patients are diagnostically characterized 
by amyloid plaques (A), neurofibrillary tangles (T) and 
neurodegeneration (N), which develop in a characteris-
tic spatiotemporal way [24, 47]. Amyloid pathology can 
precede AD-symptoms up to a decade in time, while 
progressive tau pathology closely correlates with symp-
tom progression and neurodegeneration [19, 27, 28]. To 
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develop a biological definition of AD, biomarkers are 
used as proxies for the respective pathological changes 
in the brain, as framed in the ATN classification (NIA-
AA framework) [27, 28]. Within this framework, differ-
ent pathological stages of AD are presented, which range 
from an amyloid-stage to those that include progressive 
tau pathology and neurodegeneration. While the differ-
ent pathological stages of the ATN continuum are well-
defined, their interrelation, interaction and synergisms 
remain incompletely understood, yet hold key insights 
for therapeutic design. A better understanding of these 
synergisms and its modulation by neuroinflammation 
requires detailed analysis in humans, but also in preclini-
cal models that recapitulate progressive combined ATN 
pathology, compared to models with A and T pathology 
only.

Mounting evidence of genetic studies and pathologi-
cal analyses have convincingly implicated inflammation 
in AD and tauopathies in general [22, 31, 47, 48, 52]. 
Within the genetic risk factors associated with AD, many 
genes are expressed in microglia or macrophages [31, 
52]. Furthermore, using pathological and imaging analy-
sis, microgliosis has been invariably associated with both 
amyloid and tau pathology [3, 5, 9, 26, 47]. The advent of 
single-cell RNA sequencing (scRNA-Seq) has started to 
reveal the nature of microglial responses to AD pathol-
ogy at single cell level. Seminal studies have shown that 
in mouse models of amyloid pathology, a subset of micro-
glia transition towards a disease-associated state, which 
is characterized by the induction of phagocytosis and 
lipid metabolism genes [29, 30, 65]. The transcriptional 
response in these disease-associated microglia or DAM 
is at least partly induced via an APOE-TREM2-mediated 
signaling pathway [29, 30]. Importantly, both APOE and 
TREM2 are key genetic risk factors for human AD. How-
ever, initial studies that have relied on single-nucleus 
RNA sequencing (snRNA-Seq) to profile brains from 
AD patients, were unable to confirm the core mouse 
DAM signature as a response to AD pathology in human 
microglia [18, 40, 43, 74]. This could point towards spe-
cies-related differences. Alternatively, it may result from 
a shortcoming of the snRNA-Seq approach, which may 
fail to detect many activation genes in microglia [62]. In 
this respect it must be noted that in a recent study, DAM-
like microglia have been identified in human AD brains 
[12], using a microglial enrichment strategy. Despite 
the current complexity in the field, snRNA-Seq analysis 
did consistently reveal the upregulation of APOE and 
TREM2, both risk genes in AD, in human AD microglia, 
similar to what is observed in mouse DAM [74]. Taken 
together, these data support a role for microglia in AD, 
while their exact role in the progression along the ATN 
axis requires further detailed analysis in preclinical 

models. As single-cell microglial profiling has currently 
only been performed under conditions of isolated amy-
loid or tau pathology in preclinical models, it remains to 
be investigated how microglia react in models that com-
bine amyloid plaque formation with tau propagation and 
neuronal atrophy.

While microglia are clearly implicated in AD, an ongo-
ing conundrum is whether they play a beneficial or 
detrimental role, or both. Preclinical studies that have 
employed tau models all point towards microglia as driv-
ers of pathology [2, 16, 25, 31, 35, 38, 39, 56, 72]. In set-
tings of isolated tauopathy, microglial depletion reduces 
disease severity [2, 31, 38]. Along the same line, TREM2 
deficiency and inactivating TREM2 mutations were 
shown to attenuate neuroinflammation and to attenu-
ate tau-mediated pathologies [16, 35] in tau only models. 
However, in the presence of amyloid pathology TREM2 
deficiency and inactivating TREM2 mutations, increased 
plaque-associated tau-positive dystrophic neurites, an 
early form of tau pathology [34]. It is clear that micro-
glial contribution to AD progression relies on the type 
of pathology (amyloid vs. tau) and on the disease stage 
(early to late). Studies that have investigated microglial 
contribution to amyloid pathology have yielded mixed 
conclusions, indicating detrimental and protective con-
tributions. However, a clear line of evidence suggests 
that microglia are critical for the formation of amyloid 
plaques. Microglial depletion at early stages reduces 
plaque load [53, 54]. In its extreme form, large scale and 
sustained microglial depletion starting from an early age 
could completely impair plaque formation [54]. Instead, 
Aβ deposits were now observed in cortical blood vessels, 
which was reminiscent of cerebral amyloid angiopathy 
[54]. This highlights the central role of microglia for deal-
ing with the accumulating amyloid load via the triggering 
of plaque formation. At later disease stages, when mature 
amyloid plaques are abundant, microglial depletion 
no longer affects plaque load [55]. However, microglia 
remain important for compacting plaques and limiting 
their toxicity [8, 68, 70, 73], a process in which TREM2 
has been shown to play a key role [68, 70, 73]. As it is 
emerging that microglia may limit amyloid toxicity and 
formation of plaque-associated dystrophic neurites, but 
also exacerbate tauopathy, a remaining question is how 
these cells shape overall disease pathology in combined 
models that recapitulate the human ATN spectrum. 
In an amyloid-facilitated tau seed model [21], TREM2 
deficiency reduces microgliosis around amyloid plaques 
resulting in an enhanced spreading of neuritic plaque tau 
aggregates [34]. This indicates the importance of plaque-
associated microglia in the early phase of induction of tau 
pathology. However, the role of microglia in combined 
presence of amyloid pathology, neurofibrillary tangles 
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and brain atrophy, remains to be further investigated, 
and strategies to specifically target detrimental microglia, 
while preserving activity of protective microglia, need to 
be developed.

Here we report the generation of a new model of amy-
loid facilitated tau-seeding, which results in strong tau 
pathology, primarily linked to the formation of neurofi-
brillary tangles. Importantly, mice exhibited severe hip-
pocampal and cortical atrophy, thereby reproducing the 
combined ATN spectrum. By relying on scRNA-Seq 
combined with microglial depletion we analyzed micro-
glial responses and contribution to pathology. This 
revealed that ATN pathology exacerbates microglial 
activation towards a DAM-like state, with a significant 
upregulation of Apoe as compared to amyloid-only mod-
els. Blocking CSF1R signaling via a small-molecule inhib-
itor differentially impacted plaque versus non-plaque 
associated microglia/DAMs, as revealed by scRNA-Seq 
analysis. This highlights how CSF1R inhibition can be 
used to selectively deplete specific microglial subsets. 
Importantly, this CSF1R-inhibition regimen significantly 
attenuated tau pathology and neuronal atrophy. Together, 
our data provide new insights that can form a basis for 
future treatment avenues for AD.

Materials and methods
Animals
We crossed the in-house bred and well-characterized 
strains of hemizygous 5xFAD mice overexpressing 
mutant human APP695 carrying EOFAD mutations 
K670N/M671L (Swedish), I716V (Florida), V717I (Lon-
don) and mutant human PS1 harboring 2 EOFAD muta-
tions (M146L and L286V) driven by the thymocyte 
differentiation antigen 1 (ThyI) promoter, generated by 
the group of R. Vassar [42] (F+ mice), and hemizygous 
tau P301S transgenic mice (PS19), expressing human 
Tau-P301S (1N4R) driven by the mouse prion protein 
promoter (T+ mice), generated by the group of V. Lee 
[72], to generate heterozygous F+/T+ mice and the dif-
ferent single parental lines and non-transgenic strains. 
Animals were housed under regular conditions in a tem-
perature-controlled room (20 ± 3 °C) on a 12-h day-night 
light cycle and with access to food and water ad libitum. 
All experiments were approved by the ethical committee 
for animal welfare of Hasselt University.

Tau seeding and stereotactic surgery
Tau seeds were generated as described previously [58]. 
Tau fragments (tauP301L tau) containing the four repeat 
domain [K18; Q244-E373 (4RTau)], N-terminally Myc 
tagged were produced in Escherichia coli. Tau-PFFs (syn-
thetic preformed fibrils) were obtained by incubation of 
tau fragments (66 µM) at 37 °C for 5 days in the presence 

of heparin (133  µM) in 100  mM ammonium acetate 
buffer (pH 7.0). Following centrifugation (100 000  g, 
1 h, 4 °C) the pellet was resuspended in the same buffer 
(333 µM final) and sonicated before use. Tau fibrilization 
was confirmed using ThioT assay (ThioS, Sigma-Aldrich, 
St. Louis, MO, USA) and immunoblotting.

Mice were anaesthetized by intraperitoneal injection 
with a mixture of ketamine 10% w/v (Anesketin, Dechra), 
xylazine 2% w/v (Rompun, Bayer) and PBS (1 and 
0.12 mg/10 g body weight ketamine and xylazine, respec-
tively, dose volume 0.1 ml/10 g). After anaesthetizing the 
mice, PBS or sonicated pre-aggregated tau-PFFs (5µL; 
333  µM) were unilaterally (right hemisphere) injected 
in to 4  months old mice. Stereotactic injections were 
performed in the hippocampal region (A/P − 2.0  mm; 
L + 1.4 mm; D/V − 1.4 mm, relative to bregma) and fron-
tal cortex (A/P + 2.0  mm; L + 1.4  mm; D/V − 1.0  mm, 
relative to bregma), using a 10 µL Hamilton syringe at a 
speed of 1 µL per min. The needle was kept in place for 
an additional 5 min after injection.

Behavioral analysis
The inverted grid hanging test was used to evaluate the 
ability of the mouse to grasp an elevated horizontal grid 
and remain suspended for 2 min. The animal was placed 
on the grid (40  cm × 20  cm/0.5  cm meshes) and posi-
tioned 50 cm above a flat, soft surface. The latency for the 
animal to drop off was then measured (in seconds).

Immunohistological analysis
Three months after injection, animals were transcardially 
perfused with ice cold phosphate-buffered saline (PBS) 
for 2 min. The brains were dissected and immersion fixed 
in 4% paraformaldehyde (PFA) in PBS for 24  h at 4  °C 
for histological analyses. Sagittal sections of 40 µm were 
cut on a vibrating HM650V microtome (Thermo Fisher 
Scientific, Waltham, MA, USA). Immunohistochemistry 
was performed on free-floating sections with incubation 
of anti-tau P-S202/T205 (AT8; Thermo Fisher Scientific, 
Waltham, MA, USA), anti-Iba1 (Fujifilm Wako, Neuss, 
Germany), anti-neuronal nuclei (NeuN; Merck Mil-
lipore, Burlington, MA, USA) and anti-Aβ (W02; Invit-
rogen, Carlsbad, CA, USA) anti-bodies. The slices were 
then incubated with the appropriate AlexaFluor-488, 
AlexaFluor-568, and AlexaFluor-647 coupled second-
ary antibodies (Invitrogen). Staining with Thioflavin S 
(ThioS, Sigma-Aldrich, St. Louis, MO, USA) and Gallyas 
silver staining (all chemicals from Sigma-Aldrich) were 
performed as previously described [56], and are used to 
demonstrate mature NFTs by binding to β-sheet struc-
tures. Images were acquired with a Leica DM400 B LED 
fluorescence microscope (Leica, Diegem, Belgium), silver 
staining was assessed using a bright-field microscope. All 
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images were analyzed using ImageJ open-source soft-
ware (National Institutes of Health, Bethesda, MD, USA). 
Quantitative analysis of tau pathology was performed on 
AT8 stained vibratome sections. Well-defined sagittal 
sections at 1.32  mm lateral from bregma were selected 
for quantification of AT8 positive pathology. Tau pathol-
ogy was analyzed by measuring the area occupied by 
tau tangles relative to the total image area of the brain 
regions of interest, using Image J software (U.S. National 
Institutes of Health, Bethesda, MD, USA). Amyloid-
pathology and microgliosis were analyzed in a similar 
fashion by measuring the W02 and Iba1 positive area, 
respectively. The extent of amyloid-pathology, tau pathol-
ogy and microglia in the cortex were analyzed by meas-
uring the cortex, and measuring the positively stained 
W02, AT8 or Iba1 area % relative to the total cortex area. 
Hippocampal and cortical surface area were measured by 
delineating the brain structures as defined by the Mouse 
brain atlas and measuring the structure’s absolute surface 
area in µm2 on 5 × digital images using Image J software. 
Hippocampal volume was measured by tracing the hip-
pocampal surface every sixth sagittal section, resulting 
in 240 µm between each analyzed section. Hippocampal 
volume was calculated using the following formula: vol-
ume = (sum of area) * 0.24 mm. Quantification started at 
3.72 mm and ended at 0.48 lateral from bregma. Plaque-
associated microglia were measured as the Iba1 positive 
area colocalizing with and directly bordering W02 posi-
tive area. Generation of heat maps of tau pathology was 
performed on sagittal sections. In sagittal brain sections 
at 1.32 mm lateral from bregma, tau pathology was semi-
quantitatively analyzed per region based on the Mouse 
brain atlas. The extent of AT8 positive tau pathology was 
scored as 0–3 (with 0; no tau pathology and 3; extensive 
tau pathology) in tau-seeded and non-seeded F−/T+ and 
F+/T+ mice (n = 8; n = 6; n = 9; n = 9). Average scores 
from these mice were assigned colors accordingly and 
were filled in on a map based on the Mouse brain atlas to 
represent extent and distribution of tau pathology.

Brain single cell isolation and single‑cell RNA sequencing
Seven-month-old mice, 4 mice per condition (4 WT 
control mice (F−/T−), 4 5xFAD mice (F+/T−) and 4 
tau-seeded 5xFAD/PS19 tau transgenic mice (F+/T+) 
3  months post injection), were sacrificed for brain iso-
lation and single-cell processing. For single cell experi-
ments related to PLX3397 treatment, 2 mice per 
condition were used (2 tau-seeded 5xFAD/PS19 tau 
transgenic mice (F+/T+) which received PLX3397 chow 
1.5 months after tau-seeding for 1.5 months, and 2 tau-
seeded 5xFAD/PS19 tau transgenic mice (F+/T+) which 
received control chow 1.5  months after tau-seeding for 
1.5  months). All processing and tissue-collection was 

performed as previously described [65], using the Act-
Seq method [71] to limit dissociation-induced gene 
expression. All steps were performed at 11  °C. In brief, 
the brain was extracted and placed in ice-cold RPMI 
(Gibco), containing 30  μM Actinomycin D (ActD) 
(Sigma, No. A1410). The brains of n = 4 F−/T−, and n = 4 
F+/T− mice were pooled, respectively. The F+/T+ brains 
were split per hemisphere: 4 hemispheres ipsilateral of 
the tau-seed injection were pooled and 4 hemispheres 
contralateral to the injection were pooled. For PLX3397 
single cell experiments, the hemispheres were not split. 
The brains were cut into small pieces and incubated with 
enzyme mix (30  U  ml−1 DNAse I (Roche), 10  U  ml−1 
collagenase type I (Worthington) and 400  U  ml−1 col-
lagenase type IV (Worthington) diluted in 1 × Hanks’ 
buffered salt solution (Gibco)), containing 15 μM ActD at 
11 °C for 40 min. Every 10 min the solution was cut and 
resuspended to ensure full dissociation of the tissue. Sub-
sequently, the solution was resuspended, filtered twice 
over a 100 μm nylon filter, using RPMI with 3 µM ActD 
and centrifuged. The pellet was resuspended in 5 ml 70% 
standard isotonic percoll (SIP, GE Healthcare) diluted in 
1 × Hanks’ buffered salt solution and gently overlaid with 
5 ml of 37% SIP, followed by a 5 ml layer of 30% SIP, form-
ing a three-layered density gradient (centrifuged at 800 g, 
4  °C, 30 min without acceleration/braking). All gradient 
buffers contained 3  µM ActD. The 70/37% interphase 
containing immune cells was collected, centrifuged and 
resuspended in fluorescent activated cell sorter (FACS) 
buffer (2 mM EDTA (Duchefa), 2% heat-inactivated fetal 
calf serum (Gibco) dissolved in 1 × Hanks’ buffered salt 
solution), containing 3  µM ActD. The dissociation pro-
cess required 4  h. Following single-cell isolation, cells 
were blocked with rat anti-mouse CD16/CD32 (clone 
2.4G2) for 15  min on ice. Subsequently, the cells were 
stained with anti-CD45-APCCy7 (30-F11, BioLegend) for 
20 min on ice and washed. All CD45+ immune cells were 
sorted in ME-medium (RMPI medium supplemented 
with 20% heat-inactivated fetal calf serum (Gibco), 
300 μg ml−1 l-glutamine (Gibco), 100 units ml–1 penicil-
lin and 100  μg  ml–1 streptomycin (Gibco), 1  mM non-
essential amino acids (Gibco), 1  mM sodium pyruvate 
(Gibco) and 0.05 mM 2-mercaptoethanol (Sigma)), con-
taining 3 µM ActD, using a BD FACS ARIA II, or FACS 
ARIA III, with a sorting nozzle of 85 µm. DAPI (Sigma) 
or 7-AAD (BioLegend) was used to exclude dead cells; 
cell viability before and after cell sorting exceeded 90%. 
Sorted cells were centrifuged at 4 °C at 400 g, then resus-
pended in PBS + 0.04% bovine serum albumin at room 
temperature to yield an estimated final concentration of 
1000 cells μl–1.

Cellular suspensions were loaded on a Chromium 
Chip B (10 × Genomics, No.1000074), or Chip G 
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(10 × Genomics, No. 2000177) on a GemCode Single 
Cell Instrument (10 × Genomics) to generate single-cell 
gel beads-in-emulsion (GEM). GEMs and scRNA-Seq 
libraries were prepared using the GemCode Single Cell 
3’ Gel Bead and Library Kit (v3 and v3.1, 10xGenom-
ics, No. 1000075) and the Chromium i7 Multiplex Kit 
(10 × Genomics, No. 120262) according to the manufac-
turer’s instructions. Briefly, GEM reverse-transcription 
incubation was performed in a 96-deep-well reaction 
module at 53 °C for 45 min, 85 °C for 5 min and ending at 
4 °C. Next, GEMs were broken and complementary DNA 
(cDNA) was cleaned up with DynaBeads MyOne Silane 
Beads (10 × Genomics, No. 2000048) and SPRIselect 
Reagent Kit (Beckman Coulter, No. B23318). Full-length, 
barcoded cDNA was PCR amplified with a 96-deep-well 
reaction module at 98 °C for 3 min, eleven cycles at 98 °C 
for 15 s, 63 °C for 20 s and 72 °C for 1 min, followed by 
one cycle at 72 °C for 1 min and ending at 4 °C. Following 
cleaning up with the SPRIselect Reagent Kit and enzy-
matic fragmentation, library construction to generate 
Illumina-ready sequencing libraries was performed by 
the addition of R1 (read 1 primer), P5, P7, i7 sample index 
and R2 (read 2 primer sequence) via end-repair, A-tail-
ing, adapter ligation, post-ligation SPRIselect cleanup/
size selection and sample index PCR. The cDNA content 
of pre-fragmentation and post-sample index PCR sam-
ples was analyzed using the 2100 BioAnalyzer (Agilent).

Sequencing libraries were loaded on an Illumina 
HiSeq4000 or Illumina NovaSeq6000 flow cell with 
sequencing settings following the recommendations of 
10 × Genomics (Read 1: 28 cycles, i7 Index: 8 cycles, i5 
Index: 0 cycles, Read 2: 91 cycles, 2.73 nM loading con-
centration). The Cell Ranger pipeline (10 × Genomics) 
was used to perform sample demultiplexing and to gen-
erate FASTQ files for read 0, read 2 and the i7 sample 
index. Read 2, containing the cDNA, was mapped to the 
reference genome (mouse mm10) using STAR. Subse-
quent barcode processing, unique molecular identifiers 
filtering and single-cell 3’ gene counting was performed 
using the Cell Ranger suite and Seurat v.3.0.1. The total 
number of cells across all libraries was 19,252 cells. The 
average of the mean reads per cell across all libraries 
was 69,801, with an average sequencing saturation of 
76,05%, as calculated by Cell Ranger. Digital gene expres-
sion matrices were preprocessed and filtered using the 
Scater R packages [37]. Outlier cells were first identified 
based on three metrics (library size, number of expressed 
genes and mitochondrial proportion); cells were tagged 
as outliers when they were four median absolute devia-
tions distant from the median value of each metric 
across all cells. Secondly, a principal component analy-
sis plot was generated based on multiple metrics: ‘pct_
counts_in_top_100_features’, ‘total_features_by_counts’, 

‘pct_counts_feature_control’, ‘total_features_by_counts_
feature_control’, ‘log10_total_counts_endogenous’ and 
‘log10_total_counts_feature_control’. Outlier cells in this 
principal component analysis plot were identified using 
the R package mvoutlier. Low-abundance genes were 
removed using the ‘calcAverage’ function and the pro-
posed workflow. By means of the seuratMerge function, 
a merge was created of the raw counts of the F−/T−, F+/
T−, F+/T+ ipsilateral hemispheres (ipsi) and F+/T+ con-
tralateral hemispheres (contra), and another merge was 
created of the F+/T+ which received PLX3397 and the 
F+/T+ which did not receive PLX3397. The two resulting 
datasets were normalized in Seurat by a global-scaling 
normalization and log-transform method ‘LogNormal-
ize’ that normalizes the gene expression measurements 
for each cell by the total expression, and multiplies it by 
a scale factor (10,000), and log-transforms the result. 
Highly variable genes were detected in Seurat according 
to the method described in Stuart et al. [60] and the data 
was scaled by linear transformation. Subsequently, the 
highly variable genes were used for unsupervised dimen-
sionality reduction techniques and principal component 
analysis. Unsupervised clustering of the cells was per-
formed using graph-based clustering based on SNN-Cliq 
and PhenoGraph as implemented in the Seurat v.3.0.1 R 
package (default parameters). Clustering was visualized 
in two-dimensional scatter plots (via UMAP) using the 
Seurat v.3.0.1 package. All scRNA-seq data are deposited 
at GEO (NCBI) with accession code GSE176032.

PLX3397 treatment
For the elimination of microglia, we used PLX3397 
(Adooq Bioscience, Irvine, CA, USA) a well characterized 
CSF1R inhibitor. PLX3397 was blended with mouse chow 
(V1524-000 Ssniff) to a concentration of 1000  mg/kg 
PLX3397 chow. Mice were randomly assigned PLX3397 
diet or control diet and were treated for 1.5 months start-
ing at 1.5 month post injection.

Statistical analysis
Data were statistically analyzed using GraphPad Prism 
version 9.0 (GraphPad Software Inc, San Diego, USA). 
Normal distribution was tested using Shapiro–Wilk test. 
Data were analyzed using unpaired t-test, two-way analy-
sis of variance (ANOVA) with Tukey’s test for multiple 
comparison, one-way ANOVA with Dunnett’s multiple 
comparison test or Tukey’s multiple comparison test for 
normally distributed data, or Kruskal–Wallis test with 
Dunn’s multiple comparison test for non-normally dis-
tributed data. Results were presented as mean ± standard 
error (SEM). Correlation was measured using Pear-
son’s correlation analysis. A probability of p < 0.05 was 
considered significant. *p < 0.05, **p < 0.01, ***p < 0.001, 
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****p < 0.0001. Differential gene expression was assessed 
using the Wilcoxon rank sum test (two-sided) as imple-
mented in the Seurat R package. p value adjustment was 
performed using Bonferroni correction based on the 
total number of genes in the dataset.

Results
Tau‑seeding in 5xFAD/PS19 mice results in a bilateral 
propagation of tau pathology associated with neuronal 
atrophy, recapitulating the ATN pathological features 
of human AD
Previous seminal work has shown that injection of 
human AD-tau in mice that harbor amyloid plaques 
results in the propagation of endogenous tau aggregates 
that surround Aβ plaques (NP tau) or develop into neu-
rofibrillary tangles (NFTs) [21, 66]. While this approach 
elegantly models amyloid-facilitated propagation of 
tau aggregates and provides key insights into the link 
between amyloid and tau pathology, no progression to 
neuronal atrophy was observed. Therefore, we aimed to 
generate a tau-seed model that captures the complete 
ATN spectrum, including robust neurodegeneration. 
Hereto we used crosses of PS19 mice (F−/T+) and 5xFAD 
(F+/T−) transgenic mice. PS19 transgenic mice display 
age-dependent development of tau pathology, starting 
from 11.5 months onwards, associated with a progressive 
neurodegenerative phenotype, including development 
of progressive motoric problems, clasping, hunchback 
development and premature death [58, 72]. 5xFAD trans-
genic mice develop robust amyloid pathology starting at 
the age of 2.5  months onwards in subiculum and sub-
sequently extending in cortical and other brain regions, 
providing an excellent model to study Aβ-related pathol-
ogy [42]. We assessed the consequences of tau-seed-
ing in PS19 mice (F−/T+) and in 5xFAD/PS19 double 
transgenic animals (F+/T+) in which overexpression of 
human tau is combined with amyloid pathology. Intrac-
erebral injections of pre-aggregated tau fragments (tau 
seeds) were performed at four months of age (Fig.  1a), 
when amyloid plaques are abundant in the cortex and 
hippocampus (Additional file  1: Supplementary Fig.  1). 
Three months post injection, tau pathology was assessed 

via immunostaining with the anti-phospho-tau (Ser 202, 
Thr205) antibody AT8. As we have shown previously [44, 
58], tau-seeding significantly increased tau pathology in 
the cortex and hippocampus of PS19 mice, both in the 
ipsilateral and contralateral hemispheres (Fig. 1b, c). This 
confirms that tau seeds efficiently shorten the long lag-
phase of tau aggregation. Importantly, tau-seeded F+/
T+ mice exhibited significantly higher AT8 staining as 
compared to seeded F−/T+ mice (Fig.  1b, c, Additional 
file 3: Supplementary Fig. 3a,b), indicating that the pres-
ence of amyloid plaques strongly enhanced tau pathol-
ogy. While AT8 pathology was strongly increased in F+/
T+ brains, the AT8 staining patterns were comparable in 
both strains. Indeed, we did not observe NP tau in seeded 
F+/T+ mice. Furthermore, AT8 staining clearly corre-
lated with Gallyas silver and Thioflavin S (Fig. 1d), which 
is indicative of mature NFTs. Mapping of AT8 staining 
showed a more extensive spreading of tau pathology in 
tau-seeded F+/T+ mice, both in the ipsi- and contralat-
eral hemispheres and in brain regions distal from the 
initial injection site (Additional file  2: Supplementary 
Fig.  2a), including the brain stem and thalamus (Addi-
tional file 2: Supplementary Fig. 2b).

To assess for neuronal atrophy, we performed a quan-
titative analysis of the hippocampal and cortical areas 
following NeuN staining. Tau-injected F−/T+ mice 
did not display significant hippocampal (Fig.  2a, b) or 
cortical (Additional file  4: Supplementary Fig.  4a,b) 
shrinkage as compared to non-seeded F−/T+ or F+/
T+ littermates at 7  months of age. In contrast, strong 
hippocampal and cortical atrophy was observed in 
tau-seeded F+/T+ mice (Fig.  2a, b, Additional file  4: 
Supplementary Fig.  4a,b). Hippocampal shrinkage 
was macroscopically observable, and quantification 
indicated a significant reduction in hippocampal area 
and volume (Fig.  2b). Cortical and hippocampal atro-
phy was also observed in the contralateral hemisphere 
(Additional file  4: Supplementary Fig.  4d). Pearson’s 
correlation analysis revealed a significant negative 
correlation between AT8 staining and hippocampal 
(Fig.  2c) or cortical (Additional file  4: Supplementary 
Fig. 4c) area, suggesting a clear association between tau 

(See figure on next page.)
Fig. 1  Amyloid pathology aggravates tau-seeded tau pathology and propagation. a Schematic overview of the tau-seed model. Tau-seeding 
is performed at 4 months of age in F−/T+ (PS19) or F+/T+ (5xFAD/PS19) mice. Pathological analysis occurs at 7 months of age. b Representative 
images of the ipsi- and contralateral frontal cortex (scale bar = 250 µm) and hippocampus (scale bar = 500 µm) of F−/T+ and F+/T+ mice following 
tau-seeding, and their non-seeded controls at 7 months (3 months post-injection), immunohistochemically stained with anti-phospho-tau 
(pSer202/Thr205) antibody AT8. c Quantitative analysis of AT8 signal in the ipsi- and contralateral cortex and hippocampus of tau-seeded F−/T+ 
(n = 8) and F+/T+ mice (n = 6) compared to non-seeded F−/T+ and F+/T+ mice (n = 9, n = 9). Two-way ANOVA, Tukey’s test for multiple comparison. 
Data are presented as mean ± SEM; **p < 0.01; ***p < 0.001; ****p < 0.0001 d Gallyas Silver and Thioflavin S (ThioS) staining concurred with AT8 
staining, indicating formation of mature NFTs. ThioS, binding β-sheet structures, and silver staining, both stain Aβ pathology and tau pathology 
concomitantly, preventing quantitative analysis of tau pathology only. These stains are presented to demonstrate the presence of aggregated tau. 
Scale bar = 100 µm. (FrCx = frontal cortex; CA1 = cornu ammonis 1; Sub = subiculum)
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pathology and neuronal atrophy. Finally, we analyzed 
whether the development of motor deficits, character-
istic for PS19 mice, were accelerated in tau-seeded F+/
T+ mice. Motor coordination and grip strength were 
measured using the inverted grid hanging test. While 
scoring of hind limb clasping did not reveal significant 
differences in clasping scores, the inverted grid hanging 
performance, a more sensitive test, displayed a signifi-
cant impairment in tau-seeded F+/T+ mice as com-
pared to F−/T+ and non-seeded littermates (Additional 
file 4: Supplementary Fig. 4e).

We conclude that tau-seeding in 5xFAD/PS19 dou-
ble transgenic mice results in amyloid-facilitated seed-
ing and propagation of tau pathology, associated with 
hippocampal and cortical atrophy. This model thereby 
recapitulates the cardinal ATN pathological features of 
human AD and is hereafter referred to as ATN model.

Single‑cell analysis reveals that ATN pathology exacerbates 
microglial activation with elevated expression of Apoe 
as compared to amyloid only models
Brains of AD patients are invariably characterized by 
microgliosis throughout the different stages of disease 
progression. Microglial activation is also observed in 
5xFAD mice, where single-cell analysis has revealed the 
existence of DAMs, which are enriched around amyloid 
plaques [29]. We wondered whether microglial activation 
would be altered under conditions of amyloid-facilitated 
tau propagation and neuronal atrophy, which is more 
reminiscent for the sequential changes that are observed 
in AD patients. To assess how pathology affects micro-
glial activation, we assessed Iba1 immunostaining in the 
frontal cortex and hippocampus in conditions of amy-
loid and tau pathology and combined ATN pathology. 
Both amyloid (Fig. 3a, b; Additional file 5: Supplementary 

Fig. 2  Amyloid pathology aggravates tau-induced atrophy. a Representative images of the hippocampus of tau-seeded F−/T+ and F+/T+ mice and 
their non-seeded littermates at 7 months (3 months post-injection), immunohistochemically stained with anti-NeuN antibody. Scale bar = 500 µm. 
b Quantification of hippocampal area and hippocampal volume of tau-seeded F+/T+ mice (n = 6) compared to tau-seeded F−/T+ mice (n = 8) and 
non-seeded F−/T+ and F+/T+ mice (area: n = 9; n = 9). Two-way ANOVA, Tukey’s test for multiple comparison. Data are presented as mean ± SEM; 
**p < 0.01; ***p < 0.001; ****p < 0.0001 c Correlation analysis between tau pathology in the hippocampus and hippocampal atrophy in 7 months old 
tau-seeded and non-seeded F−/T+ and F+/T+ mice. Pearson’s correlation analysis
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Fig. 3  ATN pathology exacerbates microgliosis. a, b Representative images of (a) frontal cortex (Scale bar = 250 µm) and (b) hippocampus (Scale 
bar = 500 µm) of wildtype F−/T−, F+/T− and tau-seeded F+/T+ mice at 7 months of age, immunohistochemically stained with anti-Aβ antibody 
W02, anti-phospho-tau (pSer202/Thr205) antibody AT8 and anti-Iba1 antibody. Quantitative analysis of W02, AT8 and Iba1 signal in F−/T− (n = 6), 
F+/T− (n = 6) and tau-seeded F+/T+ (n = 6) mice. One-way ANOVA with Tukey’s multiple comparison test (normally distributed); Kruskal–Wallis test 
with Dunn’s multiple comparison (non-normally distributed). Data are presented as mean ± SEM; *p < 0.05; ***p < 0.001; ****p < 0.0001
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Fig.  5a,b) and tau pathology (Additional file  5: Supple-
mentary Fig.  5a,b) significantly increased microglial 
activation compared to control mice. We next analysed 
microglial activation in subsequent stages of the ATN 
continuum, by comparing control mice (F−/T−), 5xFAD 
mice (F+/T−), which exhibited only amyloid pathology, 
and tau-seeded 5xFAD/PS19 double transgenic mice 
(F+/T+), which exhibited both amyloid and tau pathol-
ogy (Fig. 3a, b). This showed a significant increase in Iba1 
staining intensity in tau-seeded F+/T+ as compared to 
F+/T− mice, suggesting an increase of microglial activa-
tion under ATN conditions (Fig. 3a, b).

To further characterize microglia at single-cell reso-
lution, we performed scRNA-Seq analysis on CD45+ 
cells sorted from 7-month-old F−/T−, F+/T− and tau-
seeded F+/T+ mice, for which the tau-injected ipsi- and 
contralateral hemispheres were separately processed 
(Fig.  4a). This resulted in 842 captured cells from F−/
T− brains, 2666 cells from F+/T− brains and 2966 and 
4814 cells from the ipsi- and contralateral F+/T+ brains, 
respectively. The individual samples were combined in 
a single dataset on which we performed unsupervised 
clustering and dimensionality reduction via the Uniform 
Manifold Approximation and Projection (UMAP) tech-
nique (Fig.  4b). Immune cell clusters, which included 
microglia, border associated macrophages (BAMs), den-
dritic cells (DCs) and various lymphocyte subsets, were 
identified based on previously described gene expres-
sion signatures [65], for which a selection of genes are 
shown in Fig. 4c. Microglia were identified based on the 
expression of macrophage (e.g. C1qa, Fcgr1, Aif1) and 
microglial signature genes (Sall1, Sparc, Tmem119). We 
observed four main microglia subsets (clusters 1–4), 
in addition to a fraction of microglia that were actively 
proliferating (cluster 5) as indicated by the expression 
of cell cycle genes (Mki67, Top2a). Microglia in clus-
ter 4 expressed interferon-induced genes (e.g. Oasl2, 
Ifitm3, Isg15) (Fig. 4c), suggestive of an interferon-medi-
ated signaling response. Homeostatic microglia were 

contained within cluster 1, while microglia in clusters 2 
and 3 exhibited a gradual reduction of homeostatic signa-
ture genes (e.g. Tmem119, P2ry12, Selplg) and an induc-
tion of DAM genes (e.g. Apoe, Cst7, Lpl) (Fig.  4d). This 
was further confirmed by differential expression analy-
sis, revealing the upregulation of DAM genes in clus-
ter 2 (Fig.  4e), which was further increased in cluster 3 
(Fig.  4f ). This indicates that cells in cluster 2 represent 
an intermediate state in between homeostatic microglia 
(cluster 1) and DAMs (cluster 3) and were termed reac-
tive microglia. To better capture the gradual changes in 
microglial activation, we performed trajectory inference 
analysis on the homeostatic, reactive and DAM clusters 
using the Scorpius pipeline. This revealed a trajectory 
starting from homeostatic microglia and moving towards 
reactive microglia and subsequently DAMs (Fig. 4g). The 
most predictive genes that were up- or downregulated 
could be clustered across three gene modules (Fig.  4h), 
revealing genes that are induced (module 1), upregulated 
(module 2) or downregulated (module 3), as homeostatic 
microglia transform into DAMs (Fig.  4h). Importantly, 
the percentage of reactive microglia and DAMs were 
strongly increased in tau-seeded F+/T+ brains, totaling 
more than 50% of microglia (Fig.  5a, b). This indicates 
that ATN pathology results in a more global microglial 
activation as compared to amyloid only models. The per-
centages of proliferating and IFN-induced microglia were 
comparable across the different groups, suggesting that 
these microglial states were not AD-driven.

While the percentage of non-homeostatic microglia 
was increased in tau-seeded F+/T+ mice, we wondered 
whether the distinct microglial subsets would also exhibit 
model-specific transcriptional differences. Therefore, 
we compared the microglial subsets from tau-seeded 
F+/T+ mice with their counterparts from F+/T− mice 
(Fig.  5c–e). Remarkably, this showed that for homeo-
static and reactive microglia, the gene expression pro-
files were comparable across the two models, except for 
a significant upregulation of Apoe in tau-seeded F+/T+ 

Fig. 4  scRNA-Seq analysis of F−/T−, F+/T− and tau-seeded F+/T+ brains reveals microglial activation and progression towards a DAM state. a 
Schematic overview of the 10 × chromium scRNA-Seq setup used on brains from F−/T−, F+/T−, and tau-seeded F+/T+ mouse models. Brains 
were collected from n = 4 mice for each condition. b UMAP-projection containing 842 F−/T− cells, 2666 F+/T− cells, and 1500 ipsilateral and 1500 
contralateral tau-seeded F+/T+ cells which were randomly downsampled for visualization purposes in the UMAP plot. Clusters 1 to 5 correspond 
to different activation states of microglia populations. 1: homeostatic microglia, 2: reactive microglia, 3: DAM, 4: IFN-sign. microglia, 5: proliferative 
microglia. c Dot plot visualizing expression of key marker genes for each of the clusters that were identified in (b). d UMAP plots showing the 
expression of homeostatic microglia marker genes (top) and DAM marker genes (bottom). e Volcano plot showing genes that are DE between 
reactive microglia and homeostatic microglia. f Volcano plot showing genes that are DE between homeostatic microglia and DAM. DE threshold: 
-log10(adjusted p) > 5, log2(FC) > 1; p value adjustment was performed using Bonferroni correction (e–f). g SCORPIUS trajectory inference was run 
on microglia clusters 1, 2 and 3 from (b). Cells were automatically ordered along a linear trajectory and colored according to the cluster colors 
visualized in (b). h The top 100 genes that were found to define the trajectory in panel g, were clustered into three gene modules (normalized 
expression) that are down-or upregulated as homeostatic microglia transition towards DAM

(See figure on next page.)
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mice (Fig. 5c, d). Both the expression level and percent-
age of Apoe-expressing cells was increased in cluster 1 
and cluster 2 microglia from the ipsi- and contralateral 
hemispheres of tau-seeded F+/T+ brains (Fig.  5f ). Even 
for DAMs in cluster 3, where Apoe levels were high, its 
expression was slightly increased in tau-seeded F+/
T+ brains. These data were further corroborated by 

immunohistological analysis, demonstrating increased 
total ApoE staining, and ApoE staining in microglia, in 
tau-seeded F+/T+ brains compared to F+ brains (Addi-
tional file 6: Supplementary Fig. 6a–c). These DAMs also 
showed an increase of Complement component 1q genes 
as compared to their counterparts in F+/T− mice (Fig. 5e, 
g).

Fig. 5  ATN conditions increase microglial transformation towards DAMs and result in a global upregulation of Apoe. a UMAP plots of the merged 
dataset of the F−/T−, F+/T− whole brains and contra-and ipsilateral tau-seeded F+/T+ hemispheres as shown in Fig. 4b, where each UMAP plot 
highlights the cells from each condition separately. Clusters are colored according to the cluster colors shown in Fig. 4b. Only cells belonging to one 
of the 4 conditions are colored per panel, cells belonging to other conditions are depicted in grey. b Pie charts representing the percentages of the 
5 distinct microglia subsets as identified in Fig. 4b, within total microglia, per condition. c Volcano plot showing genes that are DE in homeostatic 
microglia between F+/T− and tau-seeded F+/T+ conditions. d Volcano plot showing genes that are DE in reactive microglia between F+/T− and 
tau-seeded F+/T+ conditions. e Volcano plot showing genes that are DE in DAM between F+/T− and tau-seeded F+/T+ conditions. DE threshold: 
− log10 (adjusted p) > 1.5, log2(FC) > 0.5; p value adjustment was performed using Bonferroni correction (c–e). f Violin plots showing the normalized 
gene expression of Apoe per cell in each of the 4 conditions for homeostatic microglia, reactive microglia and DAM. g Violin plots showing the 
normalized gene expression of C1qb per cell in each of the 4 conditions for homeostatic microglia, reactive microglia and DAM
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We conclude that upon ATN pathology a higher per-
centage of microglia is driven towards an activated or 
DAM state. As amyloid pathology is comparable between 
F+/T− mice and tau-seeded F+/T+ mice (Fig.  3), this 
suggests that under ATN pathology, some DAMs are 
not associated with amyloid plaques and likely arise in 
response to tau pathology and/or neurodegeneration 
[30]. While the transcriptional programs of reactive 
microglia or DAM were comparable between the amy-
loid-only or ATN model, the latter exhibited an upregula-
tion of Apoe across all microglial clusters.

CSF1R inhibition preferentially depletes non‑plaque 
associated microglia during ATN pathology
To further assess the contributory role of microglia under 
conditions of ATN pathology, we relied on microglial 
elimination via PLX3397 administration, a well-char-
acterized CSF1R inhibitor [10]. PLX3397 was mixed 
in the chow at a concentration of 1  g/kg and adminis-
tered to mice starting from 1.5 months post tau-seeding 
and maintained for 1.5  months. With this regimen we 
observed 81 ± 6% reduction of Iba1 + microglial area in 
the cortex (Fig.  6a, b). Remarkably, microglia that were 

Fig. 6  CSF1R inhibition preferentially depletes non-plaque associated microglia during ATN pathology. a Representative images of the frontal 
cortex of tau-seeded F+/T+ mice treated with control, or PLX3397 chow and PBS-injected littermates at 7 months of age (3 months post-injection), 
immunohistochemically stained with anti-Iba1 antibody. Scale bar = 250 µm. b Quantitative analysis of Iba1 signal in the cortex of PLX3397 treated 
tau-seeded F+/T+ mice (n = 6) compared to non-treated tau-seeded F+/T+ mice (n = 8). Unpaired t-test. c Representative images of the frontal 
cortex of tau-seeded F+/T+ mice treated with control or PLX3397 immunohistochemically stained with anti-Aβ antibody W02 and anti-Iba1 
antibody and their respective overlay, demonstrating that remaining microglia after PLX3397 treatment reside in the vicinity of amyloid plaques. 
Scale bar = 100 µm. FrCx = frontal cortex. d Quantitative analysis of Iba1 signal associated with W02+-plaques in the frontal cortex of tau-seeded F+/
T+ mice treated PLX3397 (n = 6), non-treated tau-seeded F+/T+ mice (n = 8). Plaque-associated Iba1 signal was quantified as the colocalizing signal 
and Iba1+ signal immediately bordering W02 positive area. Unpaired t-test. Data are presented as mean ± SEM; **p < 0.01; ****p < 0.0001



Page 14 of 21Lodder et al. acta neuropathol commun           (2021) 9:108 

not depleted following PLX3397 treatment displayed an 
activated morphology and were mostly associated with 
amyloid plaques (Fig. 6c), suggesting an increased resist-
ance of plaque-associated microglia to CSF1R inhibition. 
Quantification of the plaque-associated Iba1 + area indi-
cated 31 ± 8% reduction upon PLX treatment (Fig. 6d).

The selective survival of plaque-associated micro-
glia can be functionally relevant, as these cells may 
play an important role in plaque compaction and limit-
ing toxicity [8, 68, 70, 73]. To further understand how 
PLX3397 treatment affects microglia under conditions 
of ATN pathology, we performed scRNA-Seq analysis on 
CD45 + immune cells isolated from brains of tau-seeded 
F+/T+ that were or were not treated with PLX chow for 
1.5 months (Fig. 7a). 4102 immune cells from untreated 
brains and 2130 cells from PLX treated brains were 
pooled in a single dataset followed by UMAP projection 
and unsupervised clustering (Fig. 7b). In agreement with 
our previous results, a large fraction of microglia exhib-
ited a clear activation signature (clusters 2, 3), with down-
regulation of homeostatic genes (Tmem119, P2ry12, 
Sall1) and an increase of DAM genes (Apoe, Cst7, Itgax) 
(Fig.  7c). Additionally, microglia with a proliferation 
(cluster 5) or an IFN-induced signature (cluster 4) were 
once again observed. PLX treatment clearly depleted 
microglia, as their percentage within the CD45 + brain 
immune compartment fell to 3% as compared to 71% 
in the untreated group (Fig.  7d). Importantly, nearly all 
remaining microglia in the PLX treated group exhibited 
a DAM or reactive phenotype (Fig. 7e, f ). Other micro-
glial subsets were nearly completely depleted in the PLX-
treated mice (Fig. 7f ). The remaining DAMs and reactive 
microglia in PLX treated brains showed an elevated 
expression of Apoe, as compared to their counterparts in 
untreated mice (Additional file 7: Supplementary Fig. 7). 
Together our data suggest that DAMs that associate 
with amyloid plaques are more resistant to CSF1R inhi-
bition, with a significant fraction surviving high doses of 
PLX3397.

CSF1R inhibition attenuates amyloid‑facilitated tau 
pathology and neurodegeneration in tau‑seeded 5xFAD/
PS19 mice
To assess the net effect of PLX3397 treatment and micro-
glial depletion on ATN disease pathology, mice were 
analyzed after 1.5  months of treatment at 7  months of 
age. Immunohistochemical analysis revealed no signifi-
cant change in amyloid pathology in the cortex or hip-
pocampus (Fig.  8a). A tendency for decreased amyloid 
pathology was noted in cortex while not in hippocampus, 
displaying more mature plaques. The absence of signifi-
cant inhibition in both regions is in line with previous 
work showing that microglial depletion does not affect 

mature plaque load, in contrast to early plaque develop-
ment [55]. However, we observed that PLX3397 treat-
ment significantly decreased tau pathology both in the 
cortex and hippocampus of tau-seeded mice (Fig. 8b, c). 
Importantly, microglial elimination also rescued corti-
cal and hippocampal atrophy in tau-seeded mice, as the 
cortical area and hippocampal volume were significantly 
increased upon PLX3397 treatment (Fig.  8d). Our data 
show that in a model of amyloid-facilitated tau propa-
gation and neuronal atrophy, CSF1R inhibition, which 
primarily depletes non-plaque-associated microglia, 
ameliorates tau pathology and neurodegeneration. This 
indicates that some microglial populations, targeted by 
CSF1R inhibition, exacerbate disease progression in the 
presence of combined ATN pathology.

Discussion
The amyloid cascade hypothesis suggests a causal link 
between amyloid and tau pathology [20]. In human AD 
patients, the development of amyloid pathology is con-
sidered to be an early event that subsequently triggers 
and facilitates tau pathology and symptom progression. 
Mouse models support the notion of amyloid-facilitated 
tau pathology. Mouse lines that combine both amyloid 
and tau pathology have confirmed that amyloid pathol-
ogy accelerates tau pathology [4, 6, 14, 15, 23, 33, 36, 45, 
57]. Recent work has also shown that amyloid plaques 
facilitate tau-seeding, thereby enhancing aggregation of 
endogenous mouse tau upon seeding with human AD 
tau filaments [21, 66]. A model put forward by He et al. 
thereby showed that dystrophic neurites near amyloid 
plaques precede and may function as the initial hub for 
tau misfolding and aggregation [21]. Endogenous tau 
would accumulate within amyloid-associated dystrophic 
axons, and subsequently the formation of NP tau is trig-
gered. The recruited tau seeds may thereby translocate 
to neuronal somas where they, at a slower rate, develop 
into NFTs. This represents a compelling model for amy-
loid-facilitated progressive tau pathology as observed 
in AD patients, and emphasizes the importance of this 
early process in AD. However, in this model no progres-
sion to robust atrophy was observed. In order to facili-
tate secondary effects and to boost amyloid-facilitated 
tau pathology beyond thresholds sufficient for neurode-
generation, we performed tau-seeding in tau transgenic 
mice in the presence of amyloid plaques to mimic ATN 
pathology. Our results now confirm that amyloid plaques 
strongly accelerate tau pathology in our tau-seeding 
model, which also progressed towards robust neuronal 
atrophy. The tau pathology we observed manifested itself 
as NFTs in neuronal somas. This suggests that under con-
ditions of human mutant tau overexpression, NFT forma-
tion is strongly accelerated and overtakes NP tau. The use 
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of mutant tau overexpression and tau-seeding presents 
concomitantly the limitation and the strength of our 
model. While this renders the model more artificial, it 
enables the generation of a setting that recapitulates com-
bined ATN pathology, enabling analysis of amyloid-facil-
itated tau pathology and accelerated neurodegeneration. 
The efficient development of tau pathology in tau-seeded 

5xFAD/PS19 mice likely explains the high level of atro-
phy we observed, while synergistic effects of amyloid and 
tau pathology must also be considered, in line with previ-
ously published models [36, 45]. We report a significant 
correlation between the level of tau pathology and hip-
pocampal and cortical brain atrophy. This is in line with 
findings in AD patients where NFTs also correlate with 

Fig. 7  scRNA-Seq analysis of tau-seeded F+/T+ brains upon PLX3397 treatment. a Schematic overview of scRNA-Seq analysis in tau-seeded F+/T+ 
mice that were or were not treated with PLX3397 for 1.5 months following tau-seeding. Brains were collected from n = 2 mice for each condition. 
b UMAP-projection containing 4102 CD45+ cells originating from tau-seeded F+/T+ mice which had received control chow following tau-seeding, 
and 2130 CD45+ cells originating from tau-seeded F+/T+ mice which had received PLX chow following tau-seeding to deplete microglia. Clusters 
1 to 5 correspond to different activation states of microglia population. c UMAP plots showing the expression of homeostatic microglia marker 
genes (top) and DAM marker genes (bottom). d Pie charts showing the percentages of each of the CD45+ subsets within the total CD45+ fraction 
in control (left) and PLX3397 treated (right) tau-seeded F+/T+ brains. e UMAP plots of the merged dataset of the control treated (left) and PLX3397 
treated (right) tau-seeded F+/T+ whole brains as shown in b, where each UMAP plot highlights the cells from each condition separately. Clusters 
are colored according to the cluster colors shown in b. Only cells belonging to one of the 2 treatment conditions are colored per panel, cells 
belonging to the other treatment condition are depicted in grey. f Bar graphs showing the percentages of microglia subsets within total microglia 
per treatment group (red: control, blue: PLX)
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Fig. 8  CSF1R inhibition attenuates amyloid-facilitated tau-seeded pathology and neurodegeneration. a Quantitative analysis of W02 signal 
in the cortex and hippocampus of PLX3397 treated tau-seeded F+/T+ mice (n = 6) compared to non-treated tau-seeded F+/T+ mice (n = 8) 
and non-seeded littermates (n = 9). b Quantitative analysis of AT8 signal in the cortex and hippocampus of PLX3397 treated tau-seeded F+/T+ 
mice (n = 6) compared to non-treated tau-seeded F+/T+ mice (n = 8 Cx, n = 9 HC) and non-seeded littermates (n = 9). Analyses were done at 
7 months of age (3 months post-injection). Data are presented as mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001 ****p < 0.0001. one-way ANOVA, 
Dunnett’s multiple comparison test. c Representative images of frontal cortex (scale bar = 250 µm) and hippocampus (scale bar = 500 µm) of 
PLX3397 treated tau-seeded F+/T+ mice, non-treated tau-seeded F+/T+ mice and non-seeded littermates at 7 months (3 months post-injection), 
immunohistochemically stained with anti-phospho-tau (pSer202/Thr205) antibody. d Quantification of cortical area and hippocampal volume in 
PLX3397 treated tau-seeded F+/T+ mice (n = 6) compared to non-treated tau-seeded F+/T+ mice (Cx n = 8, HC n = 9) and non-seeded littermates 
(n = 9). Data are presented as mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001 ****p < 0.0001. one-way ANOVA, Dunnett’s multiple comparison test. 
FrCx = frontal cortex; HC = hippocampus
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symptom progression and atrophy [7, 19, 47]. While tau 
aggregation correlates with the neurodegenerative pro-
cess, tau forms ranging from small oligomers to larger 
aggregates, may be the toxic culprit [13]. Several mecha-
nisms may contribute to amyloid-facilitated seeding and 
propagation of tau-pathology [21, 59]. These include 
alterations of tau seed and/or tau acceptor properties, 
changes in tau post-translational modifications and alter-
ations of seed homeostasis (clearance-uptake routes). 
And Aβ-induced-neuroinflammation, including micro-
glial activation, may also exacerbate tau aggregation and/
or propagation [59].

Neuroinflammation has been increasingly implicated 
in the pathogenesis of AD. Microglia are the key-sensors 
in the brain and react to danger signals that arise during 
AD progression [48]. Hence microglial profiles may be 
differentially modulated along the various stages of AD 
and may require distinct therapeutic approaches pending 
on the disease stage. Most importantly, fine-tuned thera-
peutic approaches targeting detrimental microglial popu-
lations, while conserving protective populations will need 
to be defined at different stages of the disease process, or 
ATN axis. Single-cell analysis first revealed the existence 
of DAMs in mouse amyloid models [29, 30, 65]. However, 
induction of DAMs is not restricted to amyloid pathol-
ogy, as these cells are also observed in tau models of AD 
and exhibited a comparable gene expression profile as 
compared to DAMs from amyloid models [51]. DAMs 
are furthermore identified in models with neurodegen-
eration. Our results now reveal how microglia respond to 
settings of ATN pathology, showing an increased activa-
tion and transformation towards DAMs as compared to 
amyloid-only models. This is likely a result of the high 
levels of neurodegeneration and cell death, which is a 
known driver of the DAM state in microglia [30]. We 
also observed an increase in Apoe expression globally 
across all microglia in our ATN model. Upregulation of 
Apoe in microglia may contribute to their subsequent 
transformation towards DAMs, as this has been shown 
to rely on TREM2-APOE-mediated signaling [30]. APOE 
expression is also increased in microglia from human AD 
patients, as observed via snRNA-Seq [18, 40, 74]. The 
upregulation of APOE may have important functional 
consequences. ApoE may independently affect amyloid 
and tau pathology, while it can also be involved in the 
link between both pathologies. APOE may contribute 
to tau propagation, as its deletion rescues tau pathol-
ogy and neurodegeneration in tau transgenic mice [50]. 
Importantly, APOE-dependent pathology was shown 
to be driven by microglia [49]. Furthermore, knock-in 
of the human APOE4 variant exacerbates tau pathol-
ogy and neurodegeneration as compared to APOE2 and 
APOE3. In humans, APOE4 carriers display a higher 

level of neurodegeneration for a similar level of amyloid 
pathology [11, 63] and seem to progress faster to more 
advanced stages of the disease [67]. A PET-study in 
humans also demonstrated a combined effect of APOE 
status and amyloid load on tau pathology and spread-
ing [61]. Importantly, recent work identified a protective 
APOE mutation in a human autosomal dominant AD set-
ting. An APOE3 Christchurch (R136S) mutation carrier 
did not develop strong tau pathology and neurodegen-
eration and remained symptom free until late age [1]. In 
the same vein, the APOE2 allele is associated with a lower 
risk of AD dementia [46]. In conclusion, a central dis-
ease-modifying role for APOE is emerging. The increased 
microglial production of Apoe upon ATN settings may 
exacerbate tau pathology and neurodegeneration.

Microglia may differentially affect disease progres-
sion at different stages along the ATN axis. Until now 
most preclinical studies have assessed their contribution 
either in an amyloid or tau model of AD. As stated in the 
introduction at early stages of amyloid pathology, CSF1R 
inhibition decreases amyloid plaque pathology and also 
decreases early forms of accumulating amyloid including 
intraneuronal and soluble Aβ forms, and Aβ oligomers 
[32, 53–55]. These are also considered important con-
tributors of cognitive and synaptic dysfunction in AD 
and preclinical AD models [32, 41]. However, it remained 
unclear how microglia would modulate disease progres-
sion in a combined ATN setting, which mimics human 
AD progression. To assess the net effect of microglia on 
disease progression in our ATN model, we attempted to 
deplete them via CSF1R inhibition. While CSF1R inhi-
bition is a well accepted approach to assess the role of 
microglia in neurodegenerative diseases [17], poten-
tial side-effects must be considered, as well as potential 
contributing roles of perivascular and meningeal mac-
rophages, which are also eliminated. However the use of 
CSF1R inhibitors provides a versatile approach enabling 
the elimination of microglia at a chosen time-point. We 
have chosen a time point for CSF1R inhibition, character-
ized by mature plaque pathology in our cohort and after 
initiation of tau-seeding, to assess the effect on amyloid 
facilitated tau-seeding and subsequent neurodegenera-
tion. Importantly, while non-plaque associated microglia 
were efficiently depleted, plaque-associated microglia 
were partially resistant. Previous work has also shown 
that in amyloid-only models, plaque-associated microglia 
were more resistant to CSF1R inhibition [55, 64]. By rely-
ing on scRNA-Seq analysis we now reveal that the sur-
viving plaque-associated microglia were DAMs. As our 
data suggest that under ATN conditions not all DAMs 
associate with amyloid plaques, it is intriguing that pri-
marily the plaque-associated DAMs were more resistant 
to PLX3397 treatment. DAMs that are in close contact 
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to amyloid plaques may have active signaling pathways 
that provide a survival signal and thus render them less 
dependent on CSF1R signaling. A possible candidate is 
TREM2 signaling [69], which is likely more pronounced 
around amyloid plaques. A near complete depletion of 
non-plaque associated microglia and a less than two-
fold reduction in plaque-associated DAMs significantly 
ameliorated tau pathology and neuronal atrophy. This 
reveals the detrimental contribution of microglia to dis-
ease pathology during ATN progression and is in line 
with previous work that has reported their detrimen-
tal role in tau models of AD [2, 16, 25, 31, 35, 38, 39, 56, 
72]. However, it is possible that plaque-associated DAMs 
compact amyloid plaques and limit amyloid toxicity 
[8, 68, 70, 73]. While this needs to be further examined 
under conditions of ATN progression, their incomplete 
depletion may thus be an asset for therapeutic targeting. 
Our results highlight how CSF1R inhibition allows for 
depletion of microglial subsets, while selectively sparing 
other subsets, i.e. plaque associated microglia. Indeed, we 
envisage that a certain dosage of inhibitor may spare the 
majority of plaque-associated DAMs—which may poten-
tially limit amyloid toxicity—while efficiently depleting 
non-plaque associated microglia populations that may 
exacerbate tau pathology. Taken together we here show 
that CSF1R inhibition rescues tau pathology and neuro-
degeneration, while preserving plaque associated micro-
glia, in an ATN model, recapitulating amyloid-facilitated 
tau propagation and neurodegeneration. Microglia-
directed treatments that specifically target detrimental 
populations, while sparing and/or promoting beneficial 
microglial responses may yield new therapeutic opportu-
nities. Our work offers a framework that can be used in 
this endeavor.
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Additional file 1: Fig. S1. Progressive development of amyloid pathology 
in 5xFAD mice. Representative images of the frontal cortex and hippocam‑
pus of F+/T− mice stained with W02 antibody showing the evolution of 
amyloid pathology in subiculum from 2.5 months to extension of amyloid 
pathology to the frontal cortex at 4 months and robust pathology at 7 
months. Scale bar = 500 µm (FrCx = frontal cortex; HC = hippocampus). 
Quantitative analysis of W02 staining in frontal cortex and hippocampus 
of 2.5 months (n = 3), 4 months (n = 3) and 7 months (n = 3) old F+/
T− mice. Data are presented as mean ± SEM; *p < 0.05; **p < 0.01; ***p < 
0.001 one-way ANOVA with Tukey’s multiple comparison test

 Additional file 2: Fig. S2. Tau-seeding induces propagation of tau 
pathology to brain regions remote from the injection site. a AT8 staining 
of tau pathology was semi-quantitatively scored from 0-3 in different 
brain regions generating heat maps of in sagittal brain slices of 7 months 
old tau-seeded F+/T+ and F−/T+ mice and their non-seeded littermates. 
b Immunohistological staining of tau pathology with anti-phospho-
tau (pSer202/Thr205) antibody AT8 on the brain stem and thalamus of 
tau-seeded F−/T+ and F+/T+ mice. Scale bar = 250 µm. Quantitative 

analysis of tau pathology (measured as AT8 stained area) in the ipsi-lateral 
brainstem and thalamus of tau-seeded F−/T+ and F+/T+ mice (n = 8; n 
= 6) compared to non-seeded F−/T+ and F+/T+ mice (n = 9; n = 9). Data 
are presented as mean ± SEM; ****p < 0.0001 two-way ANOVA, Tukey’s 
test for multiple comparison

Additional file 3: Fig. S3. Amyloid-pathology facilitates propagation of 
tau-seeded tau pathology and tau-induced atrophy. a,b Representative 
images of sagittal brain sections of 7 months old tau-seeded F−/T+ and 
F+/T+ in frontal cortex and hippocampus at 3 months post injection, and 
their non-seeded littermates, immunohistochemically stained with (a) 
anti-phospho-tau antibody AT8 and (b) anti-NeuN antibody. Scale bar = 
2 mm

Additional file 4: Fig. S4. Amyloid-pathology aggravates tau-induced 
cortical atrophy. a. Representative images of the cortex of tau-seeded 
F−/T+ and F+/T+ mice and their non-seeded littermates at 7 months (3 
months post-injection), immunohistochemically stained with anti-NeuN 
antibody. Scale bar = 500 µm. b Quantification of cortical area of tau-
seeded F+/T+ mice (n = 6) compared to tau-seeded F−/T+ mice (n = 8) 
and non-seeded F−/T+ and F+/T+ mice (n = 9; n = 9). Two-way ANOVA, 
Tukey’s test for multiple comparison. c Correlation analysis between tau 
pathology in the cortex and cortical atrophy in 7 months old tau-seeded 
and non-seeded F−/T+ and F+/T+ mice. Pearson’s correlation analysis. d 
Quantitative analysis of cortical and hippocampal atrophy in the contra-
lateral hemisphere of tau-seeded F+/T+ compared to tau-seeded F−/
T+ mice (n = 6; n = 8) and non-seeded F+/T+ and F−/T+ mice (n = 9; n 
= 9). Two-way ANOVA, Tukey’s test for multiple comparison. e Quantita‑
tive analysis of inverted grid hanging of tau-seeded F−/T+ and F+/T+ 
mice (n = 8; n = 6) 3 months post-injection, as well as their non-seeded 
littermates (n = 9; n = 9). Two-way ANOVA, Tukey’s test for multiple 
comparison. Data are presented as mean ± SEM, **p < 0.01; ***p < 0.001; 
****p < 0.0001

Additional file 5: Fig. S5. Microgliosis in the presence of amyloid pathol‑
ogy, tau pathology and combined ATN pathology. a, b Representative 
images of (a) frontal cortex (Scale bar = 250 µm) and (b) hippocampus 
(Scale bar = 500 µm) of wildtype F−/T−, non-seeded F−/T+, tau-seeded 
F−/T+, F+/T− and tau-seeded F+/T+ mice at 7 months of age, immunohis‑
tochemically stained with anti-Iba1 antibody, anti-phospho-tau (pSer202/
Thr205) antibody AT8 or anti-Aβ antibody W02. Quantitative analysis of 
Iba1 signal in F−/T− (n = 6), F−/T+(n = 9), tau-seeded F−/T+ (n = 8), F+/T− 
(n = 6) and tau-seeded F+/T+ (n = 6) mice. One-way ANOVA with Tukey’s 
multiple comparison test. Data are presented as mean ± SEM; *p < 0.05; 
**p < 0.01; ****p < 0.0001

Additional file 6: Fig. S6. ATN pathology increases general and microglia-
related expression of ApoE. a, b Representative images of frontal cortex of 
F−/T−, F+/T− and tau-seeded F+/T+ mice at 7 months of age, immuno‑
histochemically stained with anti-ApoE antibody, anti-Aβ antibody W02, 
and (a) anti-CD68 antibody or (b) anti-Iba1 antibody. Scale bar = 100 µm. 
Quantitative analysis of total ApoE staining and ApoE staining in microglia 
in F−/T− (n = 6), F+/T− (n = 6) and tau-seeded F+/T+ (n = 6) mice. One-
way ANOVA with Tukey’s multiple comparison test. Data are presented 
as mean ± SEM; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 c 
Representative images of the frontal cortex of tau-seeded F+/T+ mice at 7 
months of age, immunohistochemically stained with anti-ApoE antibody, 
anti-Aβ antibody W02, and anti-Iba1 antibody showing non-plaque asso‑
ciated microglia containing ApoE (white arrows). Scale bar = 25 µm

Additional file 7: Fig. S7. Apoe expression in PLX-treated versus control-
treated reactive microglia and DAM isolated from whole brains of tau-
seeded F+/T+ mice. Violin plots showing the normalized gene expression 
of Apoe per cell in reactive microglia, and DAM isolated from tau-seeded 
F+/T+ mouse models which had received PLX treatment (blue) or control 
treatment (red)
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