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Abstract 

Oligodendrogliomas are defined by mutation in isocitrate dehydrogenase (NADP(+)) (IDH)1/2 genes and chromo‑
some 1p/19q codeletion. World Health Organisation diagnosis endorses testing for 1p/19q codeletion to distinguish 
IDH mutant (Mut) oligodendrogliomas from astrocytomas because these gliomas require different treatments and 
they have different outcomes. Several methods have been used to identify 1p/19q status; however, these techniques 
are not routinely available and require substantial infrastructure investment. Two recent studies reported reduced 
immunostaining for trimethylation at lysine 27 on histone H3 (H3K27me3) in IDH Mut 1p/19q codeleted oligodendro‑
glioma. However, the specificity of H3K27me3 immunostaining in this setting is controversial. Therefore, we devel‑
oped an easy-to-implement immunohistochemical surrogate for IDH Mut glioma subclassification and evaluated a 
validated adult glioma cohort. We screened 145 adult glioma cases, consisting of 45 IDH Mut and 1p/19q codeleted 
oligodendrogliomas, 30 IDH Mut astrocytomas, 16 IDH wild-type (Wt) astrocytomas, and 54 IDH Wt glioblastomas 
(GBMs). We compared immunostaining with DNA sequencing and fluorescent in situ hybridization analysis and 
assessed differences in H3K27me3 staining between oligodendroglial and astrocytic lineages and between IDH1-
R132H and non-canonical (non-R132H) IDH1/2 Mut oligodendroglioma. A loss of H3K27me3 was observed in 36/40 
(90%) of IDH1-R132H Mut oligodendroglioma. In contrast, loss of H3K27me3 was never seen in IDH1-R132L or 
IDH2-mutated 1p/19q codeleted oligodendrogliomas. IDH Mut astrocytoma, IDH Wt astrocytoma and GBM showed 
preserved nuclear staining in 87%, 94%, and 91% of cases, respectively. A high recursive partitioning model predicted 
probability score (0.9835) indicated that the loss of H3K27me3 is frequent to IDH1-R132H Mut oligodendroglioma. 
Our results demonstrate H3K27me3 immunohistochemical evaluation to be a cost-effective and reliable method 
for defining 1p/19q codeletion along with IDH1-R132H and ATRX immunostaining, even in the absence of 1p/19q 
testing.
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Introduction
The current World Health Organisation classifica-
tion for CNS tumors recommends integrated diagnosis 
based on combined phenotypic and genotypic findings 
[1] Although originating from common progenitor cells 
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harboring Isocitrate Dehydrogenase (NADP(+)) (IDH) 
mutations, oligodendrogliomas differ from diffuse astro-
cytomas by combined whole-arm losses of chromosome 
1p and 19q (1p/19q codeletion) and frequent Telomerase 
Reverse Transcriptase (TERT) promoter mutations. In 
contrast, astrocytoma typically exhibits Tumor Protein 
P53 (TP53) and ATRX Chromatin Remodeler (ATRX) 
mutations [2–7]. From a clinical perspective, these glio-
mas require different treatments and have different out-
comes; therefore, the distinction of oligodendroglioma 
and astrocytoma is crucial. Subclassification of IDH 
mutant (Mut) glioma into astrocytomas and oligoden-
drogliomas requires testing for 1p/19q codeletion. Sev-
eral different methods have been used to identify 1p/19q 
status, but clear consensus guidelines or standard proto-
cols for practical use have not been established [8]. Fluo-
rescent in situ hybridization (FISH) is a commonly used 
method for detecting 1p/19q codeletion. PCR-based loss 
of heterozygosity analysis, multiplex ligation-dependent 
probe amplification, and array comparative genomic 
hybridization can also test 1p/19q status with high reli-
ability [9–12]. However, these techniques are labor-inten-
sive and require substantial infrastructure investment, 
making their global application difficult in countries with 
less developed healthcare systems.

Trimethylation at lysine 27 on histone H3 (H3K27me3) 
is an epigenetic modification that mediates gene silencing 
by Enhancer Of Zeste 2 Polycomb Repressive Complex 2 
Subunit (EZH2), a component of the Polycomb complex 
(PcG) [13–15]. Loss of H3K27me3 has been reported in 
pediatric ependymoma with a poor prognosis, breast, 
ovarian and pancreatic cancer, and highly recurrent men-
ingiomas [16–19]. Loss of H3K27me3 was also seen in 
malignant peripheral nerve sheath tumors and is consid-
ered a useful diagnostic marker [20, 21]. Another study 
reported diagnostic relevance of decreased H3K27me3 in 
H3.3 Histone A (H3-3A) K27M-mutant GBM [22].

Although H3K27me3 has been reported to be involved 
in several brain tumor entities, comprehensive data 
about H3K27me3 in IDH Mut gliomas are controver-
sial. Recently, Filipski et  al. [23] reported that loss of 
H3K27me3 staining can potentially discriminate between 
oligodendroglial and astrocytic tumor lineages. Similarly, 
Feller et al. [24] and Kitahama et al. [25] reported lower 
H3K27me3 in oligodendroglioma by data-independent 
acquisition (DIA)-based mass spectrometry and immu-
nostaining, respectively. However, using sequential IHC, 
Pekmezci et al. [26] did not consider H3K27me3 to be a 
specific marker for the classification of diffuse gliomas. 
Therefore, we have assembled a cohort of adult diffuse 
gliomas to determine whether simple H3K27me3 immu-
nostaining can be a reliable method to triage cases for 
1p/19q testing.

Materials and methods
Tumor samples
Formalin-fixed paraffin-embedded (FFPE) glioma tissues 
from 145 adult patients were used, including 45 IDH Mut 
and 1p/19q codeleted oligodendrogliomas, 30 IDH Mut, 
and 16 IDH Wt astrocytoma, and 54 IDH Wt GBM. The 
Department of Cancer Pathology, Hokkaido University, 
diagnosed all cases between January 2008 and November 
2020. Tissue samples were obtained from the Nakamura 
Memorial Hospital, Kashiwaba Neurosurgical Hospital, 
Sapporo Asabu Neurosurgical Hospital, Keiwakai Ebetsu 
Hospital, Hokkaido Neurosurgical Memorial Hospital, 
Sapporo Shuyukai Hospital, Shinsapporo Neurosurgical 
Hospital, Iwamizawa General Hospital, and Tomako-
mai Neurosurgical Hospital. Diagnosis was performed 
according to the 2016 World Health Organisation clas-
sification of Tumours of the Central Nervous System 
(revised 4th edition). The cases prior to 2016 that were 
diagnosed based on previous versions of classification 
were reviewed according to the new integrated diagnos-
tic approach by three certified pathologists. Tissue and 
data collection was approved by and performed accord-
ing to the regulations of the ethics committee of Hok-
kaido University Faculty of Medicine (ethics approval 
number: 16-017).

Immunohistochemistry and evaluation
Immunohistochemistry (IHC) was performed on 4-µm 
FFPE tissue sections. Heat-mediated antigen retrieval 
was performed in Tris/EDTA buffer (pH 9.0) at 97 °C for 
20 min. The antibodies used in this study were a mouse 
monoclonal to anti-human IDH1-R132H (clone H09, 
1:200, Dianova, Hamburg, Germany), a rabbit poly-
clonal to anti-ATRX (HPA001906, 1:700, Sigma Aldrich, 
St.Louis, MO, USA), a mouse monoclonal to p53 (clone 
DO7, original concentration, Agilent (Dako), Santa 
Clara, CA, USA), and a rabbit monoclonal to H3K27me3 
(clone EPR18607, 1:150, Abcam, Cambridge, UK). IHC 
of IDH1-R132H, ATRX, and p53 were conducted using 
an Autostainer Link 48, Agilent (Dako), and IHC of 
H3K27me3 was conducted manually according to the 
manufacturer’s instructions. Light microscopy (Olympus 
BX53, Japan) observation was performed for histological 
and immunohistochemical evaluation.

All immuno-positive cases for IDH1-R132H were clas-
sified as IDH1 Mut. Negative immunostaining of ATRX 
in neoplastic cells in the presence of an internal positive 
control was considered to indicate a loss of ATRX expres-
sion. Immunohistochemistry for p53 was positive when 
more than 50% of tumor nuclei showed intense staining.

Scoring of H3K27me3. Human colonic mucosa was 
used as a positive control according to the antibody 
datasheet. Preserved H3K27me3 in endothelial cells 
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and immune cells served as an internal positive control. 
H3K27me3 immunostaining was assessed as H3K27me3-
positive (nuclear retention) or -negative (nuclear loss) 
in a blinded manner. Complete nuclear loss or dot-like 
H3K27me3 staining in neoplastic cells was regarded 
as nuclear loss, as described previously [23]. Each slide 
was scanned using a Nanozoomer XR Scanner (Hama-
matsu, Japan) and viewed using NDP. Scan version 3.2.4 
software. JPEG images for each case were captured from 
three randomly selected areas at 20× magnification using 
NDP.view 2 software. At first, using the PatholoCount 
software Ver 1.0 (Mitani Corporation, Tokyo, Japan), we 
scored H3K27me3 immunostaining positive when more 
than 25% of cells show diffuse staining and negative when 
more than 75% of cells show loss of staining. Later, an 
automated, blinded quantification was performed based 
on the previously described methodology [22]. Quanti-
fication of immunostaining in each JPEG was conducted 
using Matlab’s image processing toolbox. The algorithm 
used background-foreground separation with a global 
threshold set using Otsu’s method. We recorded the aver-
age intensity of extracted pixels of each area. A case’s 
final score was calculated by averaging three random 
areas chosen from a section. H3K27me3 staining patterns 
in different glioma subtypes are illustrated in Fig.  1a–l. 
To assess the variability between PatholoCount scoring 
and automated quantification, we evaluated the scoring 
results obtained from the same section. This compari-
son showed that the results were identical for all cases in 
terms of positive or negative. We used the scoring value 
of automated quantification for the analysis of our data.

DNA sequencing
DNA sequencing of IDH1 codon 132 and IDH2 codon 
172 was performed in IDH1-R132H immuno-negative 
cases using an Applied Biosystems 3130 Genetic Ana-
lyzer and Sequencing Analysis Finch TV 1.4.0 software. 

DNA was extracted from FFPE tumor tissue using a 
DNA tissue extraction kit (Qiagen; Cat: 56404). The 
extracted DNA was quantified using a NanoDrop 1000 
(Thermo Scientific). A fragment of 129 bp spanning the 
R132 codon of IDH1 was amplified using forward primer 
5′-CGG​TCT​TCA​GAG​AAG​CCA​TT-3′ and reverse 
primer 5′-GCA​AAA​TCA​CAT​TAT​TGC​CAAC-3′. Like-
wise, a fragment of 293 bp spanning the R172 codon of 
IDH2 was amplified using forward primer 5′-GCT​GCA​
GTG​GGA​CCA​CTA​TT-3′ and reverse primer 5′-TGT​
GGC​CTT​GTA​CTG​CAG​AG-3′.

Fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH) was performed 
on 3-µm thick FFPE tissue sections to assess the chro-
mosome 1p/19q status using the Vysis 1p36/19q13 Dual 
Color Probe Kit as described previously (Abbott Labora-
tories, Abbott Park, IL, USA) [8]. Briefly, paraffin sections 
were deparaffinized, permeabilized, and hybridized using 
a probe kit. Changes in the 1p and 19q probe signals com-
pared with controls were used to determine the presence 
of 1p/19q codeletion. For each sample, approximately 
100 well-defined nuclei were scored for signals from the 
probes 1p36 (red)/1q25 (green) and 19q13 (red)/19p13 
(green) under fluorescence microscopy at 1000× mag-
nification. FISH results are expressed as a percentage 
of tumor cells with a deleted signal. Established criteria 
for deletion (1)(p36)/deletion(19)(q13) were consid-
ered when 50% of nuclei or more displayed only one red 
(n × red signal) and two green signals (2n × green signal).

Statistical analysis
Statistical analysis was performed using JMP®Pro 15.2.0 
(SAS) software (Cary, North Carolina, USA). The associa-
tions among 1p/19q deletion with H3K27me3 and ATRX 
staining, IDH1/2 mutation, and histopathological param-
eters were determined using the chi-squared test/Fisher’s 

Fig. 1  Immunostaining and molecular analysis patterns in different glioma subtypes. Complete nuclear loss of H3K27me3 in tumor cells with 
retained staining in endothelial cells in IDH1 Mut 1p/19q codeleted oligodendroglioma (a, b). c Dot-like H3K27me3 staining in negative tumor 
cell nuclei was considered loss of H3K27me3 expression in IDH1 Mut 1p/19q codeleted oligodendroglioma. Arrows point to retained nuclear 
staining in endothelial cells and infiltrating lymphocytes (a–c). Retained nuclear H3K27me3 staining was observed in IDH1 Mut astrocytoma (d–f), 
IDH Wt Astrocytoma (g–i), and IDH Wt GBM (j–l). a–c 40× magnification (Scale bar = 20 μm); d–l 20× magnification (Scale bar = 50 μm). Mosaic 
plot analysis comparing the correlation between H3K27me3 (m, n) and ATRX immunoreactivity (o) among glioma subclasses. m IDH Mut 1p/19q 
codeleted oligodendrogliomas showed significantly lower H3K27me3 staining compared with other glioma subtypes. n Significant differential 
expression of H3K27me3 was seen between IDH1 and IDH2 Mut 1p/19q codeleted oligodendrogliomas. o Retained ATRX staining showing a 
statistically significant difference between the two IDH Mut glioma lineages. P ≤ 0.05 was considered significant. p–u Mutational analysis patterns 
among glioma subtypes. IDH1-R132H Mut oligodendroglioma cases showing a single amino acid transition from p arginine to histidine (R132H), q 
arginine to serine (R132S), and r arginine to leucine (R132L). IDH2-R172 Mut oligodendroglioma cases showing a single amino acid transition from 
s arginine to lysine (R172K), t arginine to serine (R172S), and u arginine to tryptophan (R172W). v–y Representative FISH images of IDH Mut glioma 
subtypes. A case of IDH Mut oligodendroglioma showing both 1p (v) and 19q (w) deletion. A case of IDH Mut astrocytoma showing intact 1p (x) 
and 19q (y). 1p/19q deleted cases show one red signal (target) and two green signals (control). NR nuclear retention, NL nuclear loss, Mut mutated, 
Wt wild type, GBM glioblastoma

(See figure on next page.)
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exact test. Association with age and gender for IDH Mut 
gliomas and IDH Wt gliomas was determined using the 
chi-squared test. A partitioning model was deployed to 
predict H3K27me3 expression in IDH Mut 1p/19q code-
leted gliomas. Hierarchical clustering based on the aver-
age intensity score was performed in R 3.6.3 (https://​
cran.r-​proje​ct.​org/) to visualize the relationship between 
IDH Mut 1p/19q codeleted gliomas and non-oligo glio-
mas (IDH Mut and Wt) with H3K27me3 staining.

Results
Clinical information and immunoreactivity of gliomas
Patients with an IDH mutation, in either oligodendro-
glioma or astrocytoma, were younger (mean ages 46.6 
and 45.7 years, respectively) than patients with IDH Wt 
astrocytoma or GBM (mean age 65.1 and 63.6  years, 
respectively) (P ≤ 0.05). No specific differences in sex 
were observed among the groups. The demographics of 
cases are summarized in Table 1. Among IDH Mut glio-
mas, 80% (36/45) of oligodendrogliomas and 13% (4/30) 
of astrocytomas exhibited a loss of H3K27me3, with a 
statistically significant association between 1p/19q code-
letion and H3K27me3 loss (P ≤ 0.05). Retained nuclear 
H3K27me3 staining was observed in 94% (15/16) and 
91% (49/54) of IDH Wt astrocytoma and GBM cases, 
respectively (Fig. 1m). However, all IDH2 Mut oligoden-
drogliomas showed retained H3K27me3 staining, indi-
cating a differential methylation status between IDH1 

and IDH2 Mut groups (P ≤ 0.05) (Fig. 1n). Likewise, 96% 
(43/45) of oligodendrogliomas and 37% (11/30) of astro-
cytomas had retained ATRX staining, with a statistically 
significant differential expression between the two IDH 
Mut glioma lineages (P ≤ 0.05) (Fig. 1o). The correlation 
between H3K27me3 and ATRX immunoreactivity among 
gliomas is summarized in Additional file 1: Table S1.

H3K27me3 absence is prevalent in IDH1‑R132H Mut 
1p/19q codeleted oligodendrogliomas
All 45 cases of oligodendroglioma showing 1p/19q code-
letion also presented with an IDH gene mutation (40/45 
IDH1-R132H, 1/45 IDH1-R132L, 4/45 IDH2). The 
most common mutation identified in astrocytomas was 
IDH1-R132H (29/30 IDH1-R132H, 1/30 IDH1-R132S). 
H3K27me3 has reduced in 90% (36/40) of IDH1-R132H 
Mut oligodendrogliomas (Additional file  1: Table  S1). 
Interestingly, in non-canonical IDH1-mutated (IDH1-
R132L) or IDH2-mutated (IDH2-R172K, IDH2-R172W, 
IDH2-R172S) oligodendrogliomas with 1p/19q codele-
tion, loss of H3K27me3 was never observed. H3K27me3 
retention was observed in 87% (26/30) of IDH1 Mut 
astrocytomas (25/29 IDH1-R132H, 1/1 IDH1-R132S) 
regardless of the mutation type. Mutational analysis pat-
terns in different glioma subtypes are shown in Fig. 1p–u 
and Table  2. Representative FISH images of IDH1 Mut 
1p/19q codeleted oligodendroglioma and 1p/19q intact 
astrocytoma are shown in Fig. 1v–y.

Table 1  Demographics of cases

Mut mutated, Wt wild type, DA diffuse astrocytoma, AA anaplastic astrocytoma, GBM glioblastoma

Diagnosis Number of cases (n = 145) Gender Age

Male Female Range Mean Median

Oligodendroglioma 45 23 22 23–72 46.6 46

IDH Mut. astrocytoma (n = 30) DA (II) 16 10 06 25–68 43.7 41

AA (III) 14 08 06 25–86 47.8 46

IDH Wt. astrocytoma (n = 16) DA (II) 04 01 03 57–84 70.2 70

AA (III) 12 07 05 31–84 60 60.5

GBM IDH Wt 54 29 25 28–86 63.6 70

Table 2  Types of IDH mutation in glioma cases

Mut mutated

Diagnosis IDH1-R132H Mut IDH Mut other than R132H

Oligodendroglioma (n = 45) 40/45 IDH1 Mut (1/45) IDH1-R132L

IDH2 Mut (4/45) R172K (n = 2)

R172S (n = 1)

R172W (n = 1)

Astrocytoma (n = 30) 29/30 1/30 IDH1-R132S

https://cran.r-project.org/
https://cran.r-project.org/
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This phenomenon was confirmed by hierarchical 
clustering based on the average intensity score, which 
showed two clusters as H3K27me3 nuclear loss (NL) and 
nuclear retention (NR). Although H3K27me3 expression 
was significantly different between IDH1 and IDH2 Mut 

1p/19q codeleted oligodendroglioma (Fig.  2a), the clus-
ter patterns were not different among non-oligo gliomas 
regardless of IDH mutation type (Fig. 2b).

Fig. 2  Hierarchical clustering based on the average intensity score. a Hierarchical clustering visualizes the relationship between IDH Mut 1p/19q 
codeleted oligodendrogliomas and H3K27me3 staining. b Hierarchical clustering visualizes the relationship between non-oligo gliomas (IDH Mut/
Wt) and H3K27me3 staining. *Denotes one outlier NR sample with a low score (65) and another NL sample with a borderline score (152) grouped 
with NR samples. NR nuclear retention, NL nuclear loss, Mut mutated, Wt wild type, GBM glioblastoma
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Assessment of the predictive value of H3K27me3 in diffuse 
gliomas
To explore possible implications for clinical practice, we 
employed a recursive partitioning model to assess the 
value of H3K27me3 expression in diffuse gliomas to pre-
dict IDH Mut, and 1p/19q codeleted oligodendroglioma. 
Immunohistochemical analysis for H3K27me3, ATRX, 
and IDH1-R132H revealed that diffuse gliomas with 
a loss of nuclear H3K27me3 staining, retained ATRX 
staining, and IDH1-R132H positivity can be predicted as 
1p/19q codeleted oligodendrogliomas with a probability 
score of 0.9835. In addition, glioma with retained nuclear 
H3K27me3, loss of ATRX staining, and IDH1-R132H 
positivity can be predicted as 1p/19q non-codeleted gli-
oma with a probability score of 0.9823. Five of nine glio-
mas with preserved H3K27me3 were oligodendrogliomas 
that harbor non-canonical IDH1-R132L or IDH2-R172 
mutations. Among 20 cases of 1p/19q, non-codeleted gli-
omas with preserved H3K27me3 staining, IDH1-R132H 
immunostaining did not provide additional information 
beyond that of ATRX (Fig. 3).

Discussion
Here we present an approach for H3K27me3 immu-
nostaining for adult diffuse glioma and demonstrate its 
application in a routine diagnostic procedure. We show 
differences in H3K27me3 staining between oligodendro-
glial and astrocytic lineages and between IDH1-R132H 
and non-canonical IDH1/2 Mut oligodendrogliomas. 
While the loss of nuclear H3K27me3 was predominantly 
seen in IDH1-R132H Mut oligodendrogliomas, retained 
nuclear staining was mostly observed in IDH1 Mut 
astrocytoma regardless of the mutation type. However, 

H3K27me3 staining was always present in non-canonical 
IDH1/IDH2 Mut oligodendrogliomas (Fig. 1n; Additional 
file  1: Table  S1). Unsupervised hierarchical clustering 
showed two primary clusters, H3K27me3 nuclear loss 
(NL) and nuclear retention (NR), for both IDH Mut 
1p/19q codeleted oligodendroglioma and non-oligo glio-
mas. Although complete differentiation was observed 
between NL and NR in IDH1 Mut 1p/19q codeleted oli-
godendroglioma, the cluster patterns show no difference 
in non-oligo gliomas between the groups (Fig.  2a, b). 
Therefore, H3K27me3 staining in non-oligo gliomas did 
not provide additional information between subgroups.

1p/19q codeletion is mutually exclusive with ATRX 
mutation, which characterizes glial tumors of astrocytic 
lineage. ATRX immunostaining tends to be positive for 
oligodendrogliomas and is useful to distinguish between 
IDH Mut oligodendrogliomas and astrocytomas [27–30]. 
However, we observed a loss of ATRX staining in 4% 
(2/45) of oligodendrogliomas and retained ATRX stain-
ing in 37% (11/30) of IDH Mut astrocytomas. Therefore, 
classification by ATRX IHC alone might mislead the 
diagnosis of this tumor lineage (Fig. 1o).

We applied a recursive partitioning model to assess the 
clinical utility of H3K27me3 immunostaining to predict 
IDH Mut 1p/19q codeleted oligodendroglioma. Our pre-
diction models indicate the clinical utility of H3K27me3 
IHC for the prediction of IDH1-R132H Mut 1p/19q 
codeleted oligodendroglioma along with IDH1-R132H 
and ATRX IHC. Consistent with a previous report [23], 
the high predicted probability score (0.9835) indicated 
that the loss of H3K27me3 with ATRX positivity is fre-
quent to IDH1-R132H Mut 1p/19q codeleted oligo-
dendroglioma (Fig.  3). However, our data contradict 

Fig. 3  Decision tree of recursive partitioning model providing the best split of the immunostaining. Blue bars correspond to IDH Mut 1p/19q 
codeleted oligodendrogliomas, and orange bars correspond to not IDH Mut 1p/19q codeleted gliomas. We considered IDH Mut 1p/19q codeleted 
oligodendroglioma as a dependent variable, and immunostaining (H3K27me3, ATRX, and IDH1-R132H) as predictors. NR nuclear retention, NL 
nuclear loss, Mut mutated
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the previous report, which suggested that the retained 
nuclear expression of H3K27me3 is only seen in astrocy-
toma [23]. Moreover, using the same sequential immu-
nostaining, we found a discrepancy over the sensitivity 
of H3K27me3 immunostaining, as reported previously 
[26]. This discrepancy may be because our cut-off point 
to decide the loss of H3K27me3 staining was 20% lower 
than Pekmezci et  al. Moreover, Pekmezi considered 
only complete loss as significant and patchy/mosaic 
staining as a retained expression [26]. However, follow-
ing Filipski et al., [23], complete nuclear loss or dot-like 
nuclear retention was combined as the nuclear loss in 
our study. Filipski and Kitahama et al. [23, 25] mentioned 
that dot-like nuclear staining corresponds to the inacti-
vated X chromosome, which presumes to label the Barr 
body in the female subgroup of oligodendrogliomas. We 
also observed dot-like staining in eleven female cases of 
oligodendrogliomas.

An alternative decision tree starting with IDH1-R132H 
staining identified 50/69 IDH1-R132H-positive gliomas 
that showed ATRX nuclear retention and that required 
1p/19q testing to identify 39 oligodendrogliomas. In 
addition, five of 45 IDH1-R132H-negative gliomas 
were oligodendrogliomas, which carried non-canon-
ical IDH1/2 mutations (1 IDH1-R132L, 4 IDH2-R172 
Mut). Therefore, H3K27me3-positive staining as a single 

affirmation against 1p/19q codeletion would cause mis-
classification of five oligodendrogliomas as astrocytomas 
(Additional file 1: Figure S1).

When the integrated diagnosis approach was used to 
assess previous histological diagnoses, among 45 oligo-
dendrogliomas, 39 showed oligodendrogliomas, and six 
showed mixed morphology. Thirty-five out of 39 oligo-
dendroglioma cases that were positive for IDH1-R132H 
and ATRX, and reduced H3K27me3, exhibited 1p/19q 
codeletion. However, oligodendrogliomas with IDH2 
mutations, retained ATRX, and preserved H3K27me3 
expression showed classical oligodendroglial morphol-
ogy and did not provide additional information about 
1p/19q codeletion (Fig.  4). Thirty-three out of 46 cases 
showing astrocytic morphology were astrocytomas, and 
nine cases showed mixed features (formerly oligoastrocy-
toma). Four IDH Mut astrocytoma cases exhibited classic 
oligodendroglial morphology, and the integrated diagno-
sis was confirmed by intact 1p/19q chromosome status 
by FISH staining (Fig. 5).

Three IDH mutations (IDH1-R132x, IDH2-R172K, and 
IDH2-R140Q) occur predominantly in subsets of cancers 
and regulate central circuitry metabolism by producing 
the oncometabolite, 2-hydroxyglutarate (2-HG) [31]. Lu 
et  al. [32] reported that 2-HG in IDH Mut tumors pre-
vents the demethylation of repressive histone marks, 

Fig. 4  Histological and immunohistochemical features of IDH2-R172K Mut and 1p/19q codeleted anaplastic oligodendroglioma. Hematoxylin and 
eosin stained section at 20× (Scale bar = 50 μm) (a) and 40× magnification (Scale bar = 20 μm) (b). c IDH1-R132H staining is negative. d Retained 
nuclear ATRX staining. e p53 staining is negative. f Retained nuclear H3K27me3 staining. Magnification is 20× for c–f 



Page 9 of 11Habiba et al. acta neuropathol commun            (2021) 9:95 	

such as H3K9me3 and H3K27me3, resulting in increased 
histone methylation. While IDH1 mutation causes a 
marked increase in hypermethylation at many genes, a 
small group of hypomethylated genes was also reported 
[33]. Papaemmanuil et  al. [34] reported that IDH2-
R172K-mutated acute myeloid leukemia (AML) showed 
severe disruption to central metabolism and was associ-
ated with different gene expression and DNA methyla-
tion compared with other IDH1 or IDH2 mutated AML. 
Although IDH1-R132H is the most frequent IDH muta-
tion, other IDH mutations found in oligodendrogliomas 
have received less attention. Moreover, it is unknown 
whether IDH1-R132H and non-canonical IDH1/2-
mutated oligodendrogliomas have different prognostic 
and therapeutic characteristics. Genome-wide analyses 
would help to determine the underlying mechanism.

Immunohistochemistry is a cost-effective and acces-
sible technique that can be readily adapted for detecting 
molecular surrogates [17]. Immunohistochemistry for 
the mutant specific IDH1-R132H is routine for diffuse 
adult glioma [35]. Moreover, H3K27me3 immunohis-
tochemistry is used as a molecular surrogate to iden-
tify pediatric midline gliomas [1], malignant peripheral 
nerve sheath tumors [20], and H3K27M mutant glio-
mas [22]. Therefore, H3K27me3 immunostaining can be 
regarded as a sensitive and specific molecular surrogate 

for defining IDH1-R132H Mut 1p/19q codeleted oligo-
dendroglioma in the absence of molecular testing.

Limitation of this study
The number of non-canonical IDH1/2 mutated 1p/19q 
codeleted oligodendrogliomas is small (n = 5). Thus, 
further investigations of the differential expression of 
H3K27me3 between IDH1-R132H and non-canonical 
IDH1/2 mutant oligodendrogliomas are required for 
prognostic and therapeutic application.

Conclusion
Our study revealed that loss of H3K27me3 nuclear stain-
ing among 1p/19q codeleted oligodendrogliomas is fre-
quent in cases harboring IDH1-R132H mutation.  We 
consider that H3K27me3 immunoreactivity could predict 
the 1p/19q codeletion status along with IDH1-R132H 
and ATRX immunostaining.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40478-​021-​01194-7.

Additional file 1: Table S1. Correlation between H3K27me3 and ATRX 
immunoreactivity among gliomas; Figure S1. Decision tree of recur‑
sive partitioning model starting with IDH1-R132H staining followed by 

Fig. 5  Histological and immunohistochemical features of IDH1-R132H Mut astrocytoma. The hematoxylin and eosin-stained section demonstrate 
a low-grade glioma with classic oligodendroglioma morphology 20× (Scale bar = 50 μm) (a) and 40× (Scale bar = 20 μm) (b) magnification. 
c Positive IDH1-R132H staining. d Retained ATRX staining. e Scattered positive nuclear p53 staining. f Retained H3K27me3 nuclear staining. 
Chromosome 1p and 19q were confirmed by FISH. Magnification is 20× for c–f 
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ATRX and H3K27me3 staining. Blue bars correspond to IDH Mut 1p/19q 
codeleted oligodendrogliomas, and orange bars correspond to not IDH 
Mut 1p/19q codeleted gliomas. We considered IDH Mut 1p/19q code‑
leted oligodendroglioma as a dependent variable and immunostaining 
(H3K27me3, ATRX, and IDH1-R132H) as predictors. NR nuclear retention, 
NL nuclear loss, Mut mutated.
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