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Abstract

Huntington’s disease (HD) is an autosomal dominant trinucleotide repeat disorder characterized by choreiform movements,
dystonia and striatal neuronal loss. Amongst multiple cellular processes, abnormal neurotransmitter signalling and
decreased trophic support from glutamatergic cortical afferents are major mechanisms underlying striatal degeneration.
Recent work suggests that the thalamostriatal (TS) system, another major source of glutamatergic input, is abnormal in HD
although its phenotypical significance is unknown. We hypothesized that TS dysfunction plays an important role in
generating motor symptoms and contributes to degeneration of striatal neuronal subtypes. Our results using the R6/2
mouse model of HD indicate that neurons of the parafascicular nucleus (PF), the main source of TS afferents, degenerate at
an early stage. PF lesions performed prior to motor dysfunction or striatal degeneration result in an accelerated dystonic
phenotype and are associated with premature loss of cholinergic interneurons. The progressive loss of striatal medium
spiny neurons and parvalbumin-positive interneurons observed in R6/2 mice is unaltered by PF lesions. Early striatal
cholinergic ablation using a mitochondrial immunotoxin provides evidence for increased cholinergic vulnerability to cellular
energy failure in R6/2 mice, and worsens the dystonic phenotype. The TS system therefore contributes to trophic support
of striatal interneuron subtypes in the presence of neurodegenerative stress, and TS deafferentation may be a novel cell
non-autonomous mechanism contributing to the pathogenesis of HD. Furthermore, behavioural experiments demonstrate
that the TS system and striatal cholinergic interneurons are key motor-network structures involved in the pathogenesis of
dystonia. This work suggests that treatments aimed at rescuing the TS system may preserve important elements of striatal
structure and function and provide symptomatic relief in HD.
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Introduction
Huntington’s disease (HD) is a progressive autosomal dom-
inant neurodegenerative disorder characterized by chorei-
form movements, dystonia and psychiatric symptoms [1, 2].
HD is caused by an abnormal expansion of CAG trinucleo-
tides in exon 1 of the huntingtin gene (mhtt) with larger
numbers of repeats leading to earlier age of onset and more
severe symptoms [3]. Despite ubiquitous expression of
mhtt, medium spiny projection neurons (MSNs) of the stri-
atum are a major target for degeneration [2]. Interneurons,
which comprise a small proportion of all striatal neurons,

were initially thought to be spared in HD [4]. However re-
cent work suggests that the density of GABAergic parvalbu-
min (PV) positive [5] and cholinergic interneuron subtypes
are reduced in HD [6] with relative sparing of other inter-
neuron groups [5–7]. Multiple pathophysiological mecha-
nisms may explain the predilection for striatal neuronal loss
including: hyperexcitability, loss of afferent-derived trophic
support, immune cell activation, and diverse intracellular
signaling abnormalities [8–16].
Loss of afferent-mediated trophic support contributes to

neuronal loss in common neurodegenerative diseases, in-
cluding Alzheimer’s disease [17, 18] and Parkinson’s disease
[19–21]. Trophic support from the major glutamatergic
striatal afferent systems may also play an important role in
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HD. In vivo imaging and autopsy studies suggest that the
cerebral cortex atrophies in prodromal HD along with the
striatum, and this atrophy is severe by late stages [2, 22].
Recent MRI studies indicate that the thalamus also under-
goes significant atrophy in early disease [23]. Post-mortem
analysis indicates that the posterior intralaminar thalamus,
or centromedian-parafascicular (CM-PF) complex, is an
important target for degeneration in HD [24].
The CM-PF in primates or the parafascicular (PF) in

rodents is a major source of glutamatergic afferents to the
striatum, specifically targeting MSNs of the matrix sub-
compartment of the neostriatal mosaic [25–27]. The PF
also provides dense input to two major striatal interneuron
subtypes implicated in HD: the cholinergic and PV positive
interneurons [28–30]. Recent ultrastructural studies in the
heterozygous Q140 mouse model of HD suggest early path-
ology in the thalamostriatal (TS) projection prior to corti-
costriatal degeneration [31, 32]. Further experiments show
coexistent ultrastructural pathology of striatal cholinergic
interneurons at early time-points in Q140 mice [31].
In order to determine whether thalamic inputs to the

striatum play a critical role in survival of striatal neurons
and in development of motor dysfunction in HD, we
assessed the structural and functional effects of early PF
lesions in an animal model of HD. We used the R6/2
model, a transgenic mouse with approximately 125 CAG
repeats in the N-terminal portion of the mhtt gene [33].
The R6/2 mouse is a well-studied model and reproduces
many of the motor and morphological features of HD
[34]. Our results provide evidence for early degeneration
of PF neurons prior to striatal neuron loss in the R6/2
model. Early lesions of the TS in R6/2 mice result in an
acceleration of clasping movements suggesting worsened
dystonic behaviour. PF lesions do not accelerate the time
course of progressive loss of spontaneous locomotion in
an open field during the R6/2 lifespan. PF lesioned mice
regardless of genotype show decreased exploration using
the contralateral forelimb. Morphological analysis indi-
cates that PF lesions do not alter the extent of degener-
ation of striatal projection neurons and PV neurons in R6/
2 mice. In contrast, TS lesions in R6/2 mice lead to early
degeneration of striatal cholinergic neurons. Finally, early
unilateral striatal cholinergic ablation in R6/2 mice using
cell-specific immunotoxins also leads to an increase in
clasping suggesting an important link between TS inputs
to cholinergic neurons and dystonia in HD.

Materials and methods
Animals
The behavioural experiments were performed using R6/2
mice and WT littermate mice from a colony maintained
at the Facility for Neurological Disease Models of the
Montreal Neurological Institute. Ovarian transplanted R6/
2 females were obtained from a line maintained at The

Jackson Laboratory and were crossed with males of the
C57BL6J background. CAG repeat lengths were se-
quenced and found to be between 119 and 125 for R6/2
mice and normal for WT littermates.

Surgery and lesion verification
All surgical procedures were performed in accordance
with the Standard Operating Procedures (SOPs) for
stereotaxic mouse surgery at McGill University. Twenty-
eight day-old mice were anaesthetized using a ketamine
and xylazine (Rompun, Bayer, USA) cocktail. Stereotactic
lesions were made at coordinates corresponding to the PF
(Bregma − 2.20mm, − 3.3 mm below the cortical surface,
and 0.6mm lateral to midline) [35]. A loop-shaped re-
tractable leucotome [36] was inserted to the level of the
PF, deployed to a radius of 0.5 mm, rotated twice, closed
and then retracted. Sham-lesioned animals underwent the
same procedure except the leucotome was inserted 2.5
mm beneath the cortical surface but not deployed. Lesions
were verified on Nissl stain or Nissl-NeuN using the 4X
objective and the extent of each lesion was analyzed on
images captured on tiled images (StereoInvestigator (v10,
Microbrightfield, USA). Mice with lesions that either
crossed the midline or with large lesions extending beyond
the PF into the ventral thalamus were excluded.

Saporin injection and verification of effects in striatum
Use of anti-ChAT conjugated saporin toxins are well-
described for selectively ablating cholinergic interneurons
in the rodent striatum [37]. Using the same stereotactic
techniques mentioned above, 28-day-old R6/2 and WT
mice underwent unilateral, striatal injections with either
anti-ChAT-saporin or Rabbit IgG-saporin (ATS BIO,
USA). The total volume and concentration of either saporin
construct was the same (0.7 μL of 0.6 μg/μL solution). The
approximate center of mass of the neostriatum was targeted
(0.65mm from Bregma, 2.6mm from the cortical surface
and 2.15mm lateral to midline) [35]. The toxin was infused
at a rate of 0.1 μL /minute using an automated system
(Pump 11 Elite, Harvard Apparatus, USA) through a 5 μL
syringe (Hamilton 700 series, USA). Histological sections
were immunostained for ChAT protein and counterstained
with cresyl violet allowing visualization of the needle tract,
confirming injection placement in the neostriatum, and
allowing unbiased stereological analysis of striatal choliner-
gic cell morphology.

Behavioural studies
All behavioural testing was performed during the first
five hours of the light phase in a standard 12-h light–
dark cycle [38]. Tests were performed at 4, 6, 9 and 11
wks ± 1 day (Additional file 1, Experimental Timeline),
with the open field and cylinder test at day 1, and the
clasping test at day 2 [38].
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Spontaneous locomotion in open field
Mice were placed in a four arena 50X50cm open field
with infrared backlighting for one-hour [34], and move-
ments were videotaped using an overhead camera [39]
and later analyzed using VideoTrack (Viewpoint, Mon-
treal, Canada). Spontaneous voluntary locomotor activity
was categorized as follows: inactivity or non-ambulatory
movements (< 1 cm/second), moderate speed (between 1
and 5 cm/second) or fast speed (> 5 cm/second).

Vertical exploratory behaviour
Mice were placed in a plexiglass cylinder (diameter 20
cm, height 30 cm) with two mirrors positioned behind
the cylinder in order to ensure a 360-degree view of the
animal’s forelimb wall touches. The session was video-
recorded and the number of vertical contacts on the cy-
linder wall with the right paw, left paw or both paws
simultaneously were scored on frame by frame analysis
with the viewer blind to operative status and genotype.

Clasping score
A tail suspension or clasping test was used to assess the
development of dystonic forelimb contractions previously
documented in the R6/2 mouse [14, 34]. Mice were sus-
pended by the tail at a height of at least 30 cm, for three
trials lasting 30-s each, while limb movements were video-
taped. Clasping was defined as a retraction of a limb to-
ward the body. In order to provide a semi-quantitative
index of abnormal involuntary movements, clasping at
each limb was graded as: none = 0, mild = 0.25, moder-
ate = 0.5, severe = 0.75 by an observer blind to genotype.
Clasping was rated as: “none” if the mouse did not retract
the limb towards the midline and “mild” if partial retrac-
tion of a limb occurred toward the midline but did not
reach the midline, and the contraction was not sustained.
“Moderate” clasping was a high-amplitude limb retraction
to or beyond the midline that was not sustained, or partial
limb retraction that was sustained for > 5 consecutive
seconds. “Severe” clasping was a high-amplitude limb
retraction to or beyond the midline sustained for > 5 s.
The score for the forelimbs and hindlimbs was summed
making the maximum score 3. The average value of all
three clasping trials was analyzed.

Tissue processing
R6/2 mice and WT mice were deeply anesthetized and
perfused transcardially with 0.9% heparinized saline
followed by 4% paraformaldehyde in phosphate buffer
(4% PFA) (0.1 M, pH 7.4) both at 4 °C. Brains were
removed, fixed in 4% PFA for 24 h then transferred to a
phosphate buffered 30% sucrose solution for 24–48 h.
Brains were sectioned at 40 μm in the coronal plane with
a freezing microtome. Free-floating sections were col-
lected serially in six vials containing phosphate-buffered

saline (PBS, 0.1 M, pH 7.4). One set of sections was
mounted out of distilled water onto glass slides, stained
in 0.1% cresyl violet (Nissl stain) and coverslipped using
Permount (Fisher Scientific, Whitby, ON, Canada). The
remaining vials were immediately placed in buffered
anti-freeze solution and stored at − 20 °C.

Immunohistochemistry
The following primary antibodies were used in these ex-
periments: mouse anti- NeuN (Millipore, Etobicoke,
Canada; MAB377, 1:1000), Rabbit anti-μ-opioid receptor
(Immunostar, Hudson, USA; #24216; 1:8000), mouse
anti-parvalbumin (Swant, Fribourg, Switzerland; #235; 1:
5000) and rabbit anti-ChAT (Millipore; AB143; 1:600).
Sections were removed from antifreeze, rinsed six times
in PBS, and then incubated for one hour in a blocking
solution (10% bovine serum albumin (BSA), 0.3%
Triton-X, 0.1M PBS, pH 7.4). Next the sections were in-
cubated in primary antibody in PBS containing 0.1%
Triton-X and either 2% BSA or 5% NGS for 24–48 h at
4 °C. After washes in PBS, sections were incubated in the
following biotinylated secondary antibodies: horse anti-
mouse IgG (Vector Laboratories, Burlingame, California,
USA; BA-2000; 1:200), goat anti-rabbit IgG (Vector La-
boratories; BA-1000; 1:200). Sections were washed once
more in PBS and then incubated for 1 h in 1:100 ABC
elite kit (PK6100, Vector Laboratories). Antibody bind-
ing was revealed using 0.05% 3,3′-diaminobenzidsine
(D5905, Sigma-Aldrich, Oakville, ON, Canada) in TBS
(pH 7.6) and hydrogen peroxide (0.01%). All slices were
then mounted out of distilled water onto slides, counter-
stained with 0.1% cresyl violet and coverslipped using
Permount (SP15, Fisher Scientific).

Unbiased stereology
An unbiased stereological probe, the optical fractionator
[40], was used to estimate the number of neurons in the
areas of interest. The stereology apparatus consisted of a
light microscope (BX40, Olympus, Japan) coupled with a
video camera (DC200, DAGE, USA), motorized X–Y
stage (BioPoint XYZ, LEP, USA), Z-axis indicator
(MT12 microcator, Germany), and a computer running
Stereo Investigator software (v11.06.2, Microbrightfield,
USA). The neostriatum was delineated according to pre-
viously defined boundaries [34] using the mouse brain
atlas of Paxinos and Franklin [35] and a 4X objective.
Rostral and caudal limits were determined by the first
and last coronal sections with visible caudate–putamen
(Bregma 1.7 mm to − 2.0 mm) [35]. Every sixth serial
histological section within this zone was examined
(240 μm intervals). The dorsal, medial and lateral limits
of the neostriatum are well defined in the mouse brain
atlas [35]. The ventral limit of the striatum at the post-
commissural part is well delineated on Nissl stains. At
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the pre-commissural levels, we delimit the dorsal stri-
atum from the nucleus accumbens with a line that ex-
tends from above the ventral most part of the lateral
ventricle medially, to the tapered external capsule lat-
erally, at an angle of 25–30° below the axial plane [34,
41]. The PF was delineated using the same mouse brain
atlas [35] using a 10X objective. All sections with a
clearly distinguishable PF were delineated (Bregma − 2.0
mm to − 2.5 mm) [35]. Every other section within the PF
reference range was examined (80 μm intervals).
Systematic random sampling of neurons was performed

by randomly translating a grid onto the section of interest.
At each intersection of grid lines an optical fractionator
counting frame with exclusion lines was applied. A
150X150 μm grid size and a 60X60 μm counting frame
was used for the PF neuron optical fractionator analysis
(Gunderson CE (m= 1) = 0.038 ± 0.001). A 300X300 μm
grid size and a 25X25 μm counting frame was used for op-
tical fractionator analysis in the neostriatum (Gunderson
CE (m = 1) = 0.029 ± 0.001). A 250X250 μm grid size and
a 70X90 μm counting frame was used for the parvalbumin
interneuron optical fractionator analysis (Gunderson CE
(m= 1) = 0.064 ± 0.001). A 175X175 μm grid size and a
70X90 μm counting frame was used for the cholinergic
interneuron optical fractionator analysis (Gunderson CE
(m= 1) = 0.080 ± 0.003). All randomly assigned sample
sites were then examined using a 100X objective (oil; nu-
merical aperture, 1.3). Section thickness was assessed
every ten counting sites using the Z-axis indicator (MT12
microcator, Germany). The top of the neuron was used as
a unique identifier in all analyses. Neurons falling in the
counting frame were counted only if they came into focus
within a predetermined 8-μm-thick optical dissector posi-
tioned 1-μm above and below the surface of the mounted
section as indicated by the Z-axis indicator. For the neos-
triatal mosaic analysis, neurons were distinguished on
Nissl-stains based on cell diameter (> 7 μm), and a lighter
cytoplasm containing a dense nucleus [34].
Neuron soma area and volume of the PF and striatum

were estimated using a four-ray nucleator probe [42] or
the Cavalieri probe [40] respectively. For the Cavalieri
probe, a grid of 40X40 μm squares was randomly trans-
lated over the delineated structures of interest and
markers were placed at the intersection of grid lines that
fell within the delineated structure. Estimates of the total
number of neurons, soma area and Cavalieri volume
were calculated by the Stereo Investigator software (v10,
Microbrightfield, USA).

Statistical analyses
Normality was assessed prior to performing comparative
tests using the Shapiro-Wilks test. An analysis of vari-
ance (ANOVA) was performed on normal data using the
aov function in R [43]. Post hoc analysis of normal data

consisted of a two-tailed, paired or unpaired t-test based
on whether the samples were dependent or independent
respectively. Post hoc tests on normal data were cor-
rected for multiple comparisons using Tukey’s Honestly
Significant Difference test (HSD). A non-parametric
ANOVA was performed on non-normally distributed
data or ordinal data using the art function from the
‘ARTool’ package [44] in R. Post hoc analysis for non-
parametric data included a two-tailed Mann-Whitney U-
test or a Wilcoxon signed-rank test for independent and
dependent samples respectively. Non-parametric post
hoc tests were corrected for multiple comparisons using
the Bonferroni correction. For behavioural tests, the
main factors of the ANOVA were time as a within-
subject factor, and genotype and lesion status as
between-subject factors. The main ANOVA factors for
morphological studies, genotype and lesion status were
analyzed as independent groups. All data are expressed
as averages ± standard error of the mean (SEM). The
SEM is represented graphically as error bars. P-values
≤0.05 were considered significant.

Results
The PF degenerates in the R6/2 model of HD
To determine if the PF is susceptible to degeneration in
HD, we quantified neuron numbers and soma size in the
PF throughout the lifespan of the R6/2 mouse model
using unbiased stereology. Application of the nucleator
probe demonstrated that soma size of PF neurons was re-
duced in R6/2 mice compared to WT at 9 and 13weeks
(wks) (Fig. 1a, w (43) = 0.954, p = 0.086, F(GenotypeX-
Time)4,33 = 1.45, p = 0.24, F(Time)4,33 = 3.85, p = 0.01,
F(Genotype)1,33 = 8.46, p = 0.006, post hoc comparison: 9
wks p = 0.03 and 13 wks p = 0.01). Analysis using the op-
tical fractionator probe revealed a significant 29% decrease
in the number of PF neurons in R6/2 mice at 11 wks com-
pared to WT (Fig. 1b, w (43) = 0.972, p = 0.37, F(Genoty-
peXTime)4,33 = 7.65, p = 0.00018, post hoc: 11 wks p =
0.00014; 13 wks p = 0.00015). Neuronal degeneration pro-
gressed at later timepotins, and by 13 wks the Cavalieri
volume estimate of the PF was 31% smaller in R6/2 mice
compared to WT at 13 wks (Fig. 1c-e, w (43) = .948, p =
0.05, F(GenotypeXTime)4,33 = 3.34, p = 0.021; post hoc
p = 0.0007). In summary, the main source of TS projec-
tions, the PF, shows an early reduction in neuronal size in
R6/2 mice at 9 wks, followed by progressive neuronal loss
at 11 and 13 wks of age.

The effect of PF lesions on motor behavior in R6/2 and
WT mice
The open field test assesses spontaneous voluntary loco-
motor activity [39]. To determine the effect of PF lesions
on locomotor activity, R6/2 and WT mice were placed in
an open field for one hour at 4, 6, 9 and 11 wks. In keeping
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with previous studies [34], we found a progressive increase
in inactivity time over the R6/2 mouse lifespan starting at 6
wks in both sham-lesioned and lesioned groups compared
to their respective WT groups (Fig. 2a, f (TimeXGenoty-
peXLesion)3201 = 2.82, p = 0.04, post hoc all p < 0.02 for
sham R6/2 mice vs. WT sham as of the 6-week time-
point). Lesioned R6/2 mice spent significantly less time
resting at 6 wks compared to sham R6/2 mice (p = 0.01),
but not at later time-points. Periods of fast movement time
reflected inactivity time, with progressive decrease in loco-
motion in R6/2 compared to WT mice. There was a non-
significant (p = 0.07) trend to increased locomotion at 6
wks in lesioned compared to sham-lesioned R6/2 mice (Fig.
2b, f (TimeXGenotypeXLesion)3201 = 4.64, p = 0.004). Thus,
PF lesioned R6/2 mice progress to the same hypokinetic
state with poverty of spontaneous voluntary movement as
sham-lesioned counterparts.
The cylinder test assesses exploratory vertical paw

reaching limb asymmetry, a complex voluntary behav-
iour requiring spatial sensorimotor coordination [45].

The number of paw touches on the walls of a cylinder
were quantified during a five-minute session in PF le-
sioned and sham-lesioned WT and R6/2 mice at 4, 6, 9
and 11 wks. A significant reduction in the percent of
contralateral limb touches occurs at all post-operative
ages after PF lesions in both WT and R6/2 mice com-
pared to sham counterparts (Fig. 2c, f (TimeXGenoty-
peXlesion)3167 = 0.43, p = 0.73, F(TimeXLesion)3167 =
13.4, p < 0.00001; F(TimeXGenotype)3167 = 4.82, p =
0.003, post hoc all p < 0.001). Thus, both R6/2 and WT
mice preferentially explored vertical cylinder space with
the ipsilateral limb following PF lesions.
The tail suspension test or clasping test is a widely

used method for eliciting dystonic movements in HD
and dystonia mouse models [34, 46, 47]. To determine if
PF lesions affect the clasping phenotype, mice were
tested prior to lesions and at three post-operative time-
points. R6/2 mice had a worsening in dystonic clasping
behaviour with aging in both sham and lesion groups
with a significant increase in limb clasping in R6/2 mice

Fig. 1 Morphology of the PF nucleus over the R6/2 mouse lifespan compared to WT controls. (a) There is a significant decrease in neuronal area
at 9 (p = 0.03) and 13 wks (p = 0.01) in R6/2 compared to WT mice, based on analysis with the nucleator, an unbiased stereology probe. (b) Loss
of PF neurons in R6/2 compared to WT mice at 11 wks (p = 0.0001) and 13 wks (p = 0.0002) determined using the optical fractionator, an
unbiased stereology probe. (c) Reduction in PF volume is noted at 13 wks compared to WT mice determined using the Cavalieri probe (p =
0.0007). (d) Photomicrographs of NeuN/Nissl stained coronal sections outlining the PF nucleus in WT and R6/2 mice at 13 wks. Scale bar: 250 μm.
The data sets were analyzed using a two-way between subject ANOVA and a Tukey HSD post hoc test: *p < 0.05, *** p < 0.001. For all panels of
Fig. 1, 4 week: WT (n = 3), R6/2 (n = 4); 6 week: WT (n = 4), R6/2 (n = 5); 9 week: WT (n = 4), R6/2 (n = 4), 11 week: WT (n = 6), R6/2 (n = 4); 13 week:
WT (n = 5), R6/2 (n = 4). Abbreviations: FR = Fasciculus Retroflexus, PF = Parafascicular Nucleus
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at 6 wks following PF lesions compared to sham-
lesioned R6/2 mice (Fig. 2d, f (TimeXGenotypeXLe-
sion)3210 = 26.63, p < 0.00001, post hoc: 6-week R6/2
sham vs 6-week R6/2 lesion p = 0.00008). Virtually none
of the WT mice exhibited clasping and PF lesions did
not induce dystonic behaviour in this group. Thus, PF
lesions significantly worsen the clasping phenotype in
R6/2 mice.

Striatal morphology after early PF lesions
Previous work in R6/2 mice using unbiased stereology on
Nissl stained sections demonstrates that significant striatal
cell loss and atrophy occurs at 11 and 13 wks [34]. To de-
termine if the PF has a trophic role for striatal neurons
faced with degenerative stress in HD, we quantified the
number and soma size of striatal neurons at 11 and 13
wks following PF lesions at 4 wks of age. Since the poster-
ior intralaminar nuclei preferentially afferent the matrix
compartment of the striatal mosaic [25–27], neurons of
the striosome and matrix compartments were analyzed

separately using μ-opiate receptor (MOR) as a marker of
striosomes.
The number of matrix neurons in R6/2 mice undergoes

a significant and progressive reduction over time com-
pared to WT mice, and there is no effect of PF lesions
(Fig. 3b, w (23) = 0.967, p = 0.72, F(GenotypeXLesion)2,17 =
0.49, p = 0.62, F(Lesion)1,17 = 0.27, p = 0.61, F(Geno-
type)2,17 = 23.45, p = 0.00001. post hoc: WT vs 11 wks R6/
2, p = 0.03, WT vs 13 wks R6/2, p = 0.0002, 11 wks R6/2
vs 13 wks R6/2, p = 0.003). As with neuronal counts, there
is a significant reduction in the soma area in R6/2 mice at
11 and 13 wks compared to WT, with no effect of PF le-
sions (Additional file 1: Figure S1, W(23) = 0.981, p = 0.90,
F(GenotypeXLesion)2,17 = 2.82, p = 0.09, F(Genotype)2,17 =
48.78, p < 0.00001, F(Lesion)1,17 = 1.13, p = 0.30).
The number of neurons in striosomes is significantly re-

duced in R6/2 mice compared to WT at 13 wks, but not
at 11 wks. PF lesions did not alter striosome neuron num-
ber in any group (Additional file 1: Figure S2, W(23) =
0.986, p = 0.63 F(GenotypeXLesion)2,17 = 0.31, p = 0.74,

Fig. 2 Characterization of motor behavior following unilateral PF lesions in R6/2 and WT mice. Time spent at rest (a) or moving rapidly (b) during
a one-hour open field session demonstrating a transient decrease in rest time at 6 wks in R6/2 mice following PF lesions compared to sham-
lesions (p = 0.01), that is not sustained at later time-points. (c) The cylinder test assessing voluntary paw reaching motor behaviour shows a
persistent decrease in contralateral limb use in both WT and R6/2 mice after PF lesions (6 wks p = 0.00004, 9 wks p = 0.00004, 11 wks p = 0.00008).
(d) A significant increase in dystonic clasping is noted in PF lesioned R6/2 compared to sham treated R6/2 mice at 6 wks (p = 0.00008). A 3-way
non-parametric ANOVA was applied to each data set, followed by a Bonferroni post hoc correction; *p < 0.05, ***p < 0.001. For Fig. 2 a-d: WT
sham: n = 18, WT lesion: n = 17, R6/2 sham: n = 15, R6/2 lesion: n = 22
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Fig. 3 (See legend on next page.)
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F(Lesion)1,17 = 1.00, p = 0.33, F(Genotype)2,17 = 10.65, p =
0.001). Striosomal soma area was significantly decreased
in 11 and 13week old R6/2 mice compared to WT but
there was no significant effect of PF lesions (Additional file
1: Figure S3, W(23) = 0.963, p = 0.5362, F(GenotypeXLe-
sion)2,17 = 0.69, p = 0.51, F(Genotype)2,17 = 43.06, p <
0.00001, F(Lesion)1,17 = 4.97, p = 0.04). In summary, stri-
atal neuronal loss occurs in R6/2 mice with onset in the
matrix compartment, followed by loss in both compart-
ments at late time-points. However, striatal projection
neuron loss is not altered in either compartment by early
PF lesions.
To determine if TS afferents sustain PV striatal inter-

neurons in the face of degenerative stress [48], neurons
were quantified by unbiased stereology in R6/2 mice at 11
and 13 wks following PF lesions at 4 wks. There is a sig-
nificant and progressive reduction in the number of PV+
neurons in both PF lesioned and sham-lesioned R6/2 mice
at 11 and 13 wks compared to WT. However, PF lesions
did not alter PV+ interneuron number (Fig. 3c, w (24) =
0.965, p = 0.56, F(GenotypeXLesion)2,18 = 0.97, p = 0.40,
F(Lesion)1,18 = 0.017, p = 0.90, F(Genotype)2,18 = 34.36,
p < 0.00001, post hoc: WT vs 11 wks R6/2, p = 0.02; WT
vs 13 wks R6/2, p = 0.0002; 11 wks R6/2 vs 13 wks R6/2,
p = 0.0003). Furthermore, PV+ soma area was reduced
with age in R6/2 mice, without an additional effect of PF
lesions (Fig. 3d, w (24) = 0.978, p = 0.86, F(GenotypeXLe-
sion)2,18 = 0.86, p = 0.44; F(Lesion)1,18 = 0.42, p = 0.53,
F(Genotype)2,18 = 16.72, p = 0.00008, post hoc: WT vs 11
week p = 0.003; WT vs 13 week R6/2 p = 0.0002). Thus,
PV+ cells undergo progressive atrophy and cell loss in R6/
2 mice at late stages, but this degeneration is not affected
by TS deafferentation.
The TS is the predominant source of glutamatergic input

to striatal cholinergic interneurons [30, 49–52] and modu-
lates their physiology [53]. To determine if loss of trophic
support from the TS system alters striatal cholinergic
neuron survival in R6/2 mice, we quantified choline acetyl-
transferase (ChAT) + cell number and soma size at 11 and
13 wks following PF lesions at 4 wks. Compared to WT
mice, sham-lesioned R6/2 mice show a relative resistance
to cholinergic neuron loss compared to MSNs or PV+ in-
terneurons, with detectable reduction in numbers occurring
at 13 wks, but not at 11 wks (Fig. 3e, w (25) = 0.982, p =

0.92, F(GenotypeXLesion)2,19 = 5.81, p = 0.01, post hoc: WT
sham vs 13wks R6/2 sham p = 0.0005; 11 wks R6/2 sham
vs 13 wks R6/2 sham p = 0.005). PF lesioned R6/2 mice
show accelerated loss of cholinergic neurons by 11 wks
compared to both PF lesioned WT mice and sham-treated
R6/2 mice, with further neuronal loss noted in PF lesioned
R6/2 mice at 13 wks (Fig. 3e, post hoc: WT lesion vs 11
week R6/2 lesion, p = 0.002; WT lesion vs 13 wks R6/2 le-
sion, p = 0.0001; 11 wks R6/2 lesion vs 13 wks R6/2 lesion,
p = 0.0002; 11 week R6/2 lesion vs 11wks R6/2 sham p =
0.03, 13 wks R6/2 lesion vs 13wks R6/2 sham, p = 0.0002).
PF lesions did not induce cholinergic cell loss in WT mice.
Thus, cholinergic degeneration occurs at a very late time-
point in sham R6/2 mice (13 wks) while PF lesioned R6/2
mice show an accelerated cholinergic cell loss at 11 wks
that progresses at 13 wks.
Cholinergic soma area is also reduced at 13 wks in R6/2

compared to WT mice. PF lesions in R6/2 mice are associ-
ated with a further decrease in soma area beginning at 11
wks, which progresses by 13 wks (Fig. 3f, w (25) = 0.98,
p = 0.90, F(GenotypeXLesion)2,19 = 3.36, p = 0.05, post
hoc: WT sham vs 13 wks R6/2 sham p = 0.003; 11 wks R6/
2 sham vs 13 wks R6/2 sham p = 0.02; WT lesion vs 11
wks R6/2 lesion, p = 0.009; WT lesion vs 13 wks R6/2 le-
sion p = 0.0002; 11 wks R6/2 lesion vs 13 wks R6/2 lesion
p = 0.04). In summary, there is more severe cholinergic
neuron atrophy in PF lesioned R6/2 mice compared to
sham-lesioned R6/2 mice at 11 wks (p = 0.003), with fur-
ther atrophy noted at 13 wks.

Cholinergic interneuron loss following intrastriatal
injection of immunotoxin
To determine if cholinergic neuron loss is associated with
changes in motor phenotype, anti-ChAT conjugated
saporin toxins were used to selectively ablate striatal cholin-
ergic interneurons. Mice received intrastriatal injections of
either anti-ChAT-saporin or Rabbit IgG-saporin (control
saporin) at 4 wks of age and were euthanized at 11 wks
(Fig. 4). There was a large reduction in the number of
cholinergic neurons assessed using unbiased stereology
in both R6/2 and WT mice injected with anti-ChAT
-saporin (Fig. 5, W(14) = 0.895 p = 0.09, F(GenotypeX-
Saporin)1,10 = 8.08, p = 0.02; post hoc: anti-ChAT-
saporin WT vs Rabbit-IgG -saporin WT: p = 0.0003,

(See figure on previous page.)
Fig. 3 Analysis of number and size of striatal neuron subtypes after PF lesions. These subtypes are known to receive PF input. (a) A typical PF
lesion in an R6/2 mouse (scale bar: 0.5 mm). (b) Unbiased stereology using the optical fractionator reveals loss of matrix neurons in R6/2 mice at
11 wks with further loss at 13 wks. PF lesions do not alter neuron number in the striatal matrix compartmentin either WT or R6/2 mice. (c, d)
Unbiased stereology analysis of striatal PV+ interneurons using the optical fractionator (c) or the nucleator (d) reveals progressive cell loss and
atrophy in R6/2 vs. WT mice, with no effect of PF lesions. (e, f) Optical fractionator cell counts (e) and nucleator-derived soma area (f) of ChAT +
interneurons show earlier, more severe and progressive cell loss and atrophy in PF lesioned R6/2 mice compared to sham-lesioned R6/2 mice at
both 11 wks and 13 wks. Morphology of ChAT + interneurons is not altered by PF lesions in WT mice. Scale bar: 250 μm. A 2-way between
subject ANOVA was applied to each data set followed by a Tukey HSD post hoc test; * p < 0.05, ** p < 0.01, *** p < 0.001. Abbreviations: PF =
Parafascicular, FR = Fasciculus Retroflexus, 3rd V. = 3rd Ventricle, HB = Habenula
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anti-ChAT-saporin R6/2 vs Rabbit IgG-saporin R6/2:
p = 0.0002). The reduction in cholinergic number in
anti-ChAT -saporin injected R6/2 mice was greater
than in anti-ChAT-saporin injected WT mice (p =
0.004). Soma size of the surviving cells was not different
among the four groups (Additional file 1: Figure S4,
W(14) = 0.944 p = 0.4754, F(GenotypeXSaporin)1,10 =
0.46, p = 0.51, F(Genotype)1,10 = 3.28, p = 0.10,
F(Saporin)1,10 = 0.23, p = 0.64). Thus, an intrastriatal
anti-ChAT-saporin injection was effective in eliminat-
ing a substantial proportion of striatal cholinergic neurons
in both WT and R6/2 mice. Moreover, striatal cholinergic
neurons were significantly more vulnerable to the choliner-
gic immunotoxin in R6/2 compared to WT mice.

The effect of striatal cholinergic ablation on motor
behavior in R6/2 and WT mice
To determine the effect of striatal cholinergic ablation on
spontaneous locomotor activity, anti-ChAT-saporin or
Rabbit-IgG-saporin injected R6/2 and WT mice were

placed in an open field for one hour at 4, 6, 9 and 11 wks.
Compared to WT mice, R6/2 mice showed a decrease in
spontaneous locomotion as revealed by increased time
spent resting in an open field at 6,9 and 11 wks, with no
effect of anti-ChAT-saporin injection (Fig. 6a, f (Genoty-
peXSaporinXTime) 3120 = 2.50, p = 0.06, F(GenotypeX-
Time) 3120 = 13.8, p < 0.0001, post hoc: R6/2 vs WT after 6
wks, all p < 0.005). Decreased time spent on fast activity
reflected the rest time results (Fig. 6b F(TimeXGenoty-
peXSaporin) 3120 = 2.77, p = 0.04; post hoc WT vs R6/2
after 6 weeks all p < 0.005, post hoc: all comparisons
within genotype for Rabbit-IgG-saporin vs anti-ChAT-
saporin were not significant). Thus, striatal cholinergic ab-
lation does not affect spontaneous voluntary locomotor
behaviour of R6/2 and WT mice.
The cylinder test assessing limb use asymmetry while

performing vertical exploration revealed no differences
in paw reaching for either of the saporin treated groups
(Fig. 6c, w (60) = 0.974 p = 0.2354, F(GenotypeXSapor-
inXTime)3142 = 0.33, p = 0.80, F(GenotypeXSaporin)1142 =

Fig. 4 Cholinergic interneuron distribution in representative striatal sections of R6/2 mce 7 wks after intrastriatal injection of either
anti-ChAT-saporin immunotoxin or Rabbit IgG-saporin (control). (a, d) Contours demonstrating the location of ChAT+ profiles in coronal sections
of neostriatum. (b, c, e, f) Photomicrographs of corresponding sections immunohistochemically stained for ChAT and Nissl after treatment with
either Rabbit IgG-saporin (b, 4X; c, 20X) or anti-ChAT-saporin (e, 4X; f, 20X). Arrowheads demonstrate ChAT+ striatal neurons. Stippled contours
indicate the hemosiderin artifact from the injection site. Squares in (b) and (e) represent the area magnified in (c) and (f) respectively. Scale bars:
A, B, D, E = 500 μm, C, F = 100 μm. Abbreviations: L.V. = Lateral Ventricle, Str = Striatum
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0.001, p = 0.80, F(TimeXSaporin)3142 = 0.14, p = 0.94,
F(TimeXGenotype)1142 = 0.51, p = 0.67). Thus, unilateral
striatal cholinergic ablation does not induce a paw pref-
erence during voluntary movement in either R6/2 or
WT mice.
To determine if cholinergic ablation affected the devel-

opment of the dystonic phenotype in R6/2 mice, limb
clasping was assessed at 4, 6, 9 and 11 weeks. Dystonic
clasping behaviour with aging worsened in R6/2 mice in
both anti-ChAT-saporin and Rabbit IgG-saporin treated
groups. There was a significant increase in clasping at 6
wks in anti-ChAT-saporin treated R6/2 mice compared to
control anti-Rabbit IgG-saporin treated R6/2 mice (Fig.
6d, f (TimeXGenotypeXSaporin)3114 = 4.31, p = 0.006; post
hoc: 6-week anti-chat saporin R6/2 vs 6-week control
anti-Rabbit IgG-saporin R6/2 p = 0.04). Both anti-ChAT-
saporin and Rabbit-IgG-saporin injected WT mice exhib-
ited virtually no clasping behaviour. Thus, striatal cholin-
ergic ablation significantly accelerates the development of
a dystonic phenotype in R6/2 mice.

Discussion
Dysfunctional striatal afferents may play an important
role in mechanisms leading to motor symptoms in HD
[24, 31, 32, 54]. Here we demonstrate that the major
source of thalamostriatal (TS) projections, the CM-PF
complex in primates or the PF in rodents, degenerates in
the R6/2 mouse model of HD. Furthermore, depriving
the R6/2 striatum of TS inputs prior to onset of motor
signs results in an acceleration of dystonic involuntary
movements. Complex voluntary motor behaviours such

as spontaneous paw reaching are also impaired following
TS deafferentation in R6/2 compared to WT mice. The
time course of worsening of spontaneous locomotion in
an open field is not altered after unilateral TS lesions.
Morphological analysis of degenerating striatal neurons
indicates that the cholinergic interneuron subtype is es-
pecially vulnerable to TS denervation in the R6/2 mouse.
In contrast, the time course of loss of MSNs and
parvalbumin-positive interneurons is unaltered following
PF lesions in R6/2 mice. Finally, induction of striatal
cholinergic loss in the R6/2 striatum using immunotox-
ins reproduces the acceleration of dystonia seen after TS
denervation in R6/2 mice, suggesting that abnormal TS-
cholinergic interactions are an important contributor to
the dystonia phenotype in HD.

The role of afferents in loss of striatal neurons in HD
In HD, mhtt protein is expressed throughout the organ-
ism, but the striatum is especially vulnerable to degener-
ation [2]. Striatal neurons are likely lost due to multiple
cell autonomous mechanisms [8, 10–13, 15]. Striatal affer-
ents may contribute to cell non-autonomous mechanisms
of neuron dysfunction or death by loss of anterograde
neurotrophic support [16, 55, 56], excitotoxicity related to
abnormal ionotropic receptor signaling [12, 57–59] or ab-
normal synaptic transmission [31, 60].
Glutamatergic afferents from the cerebral cortex to the

striatum may participate in neuronal loss in HD by indu-
cing excitotoxicity [12, 57–59]. Depriving the HD striatum
of cortical afferents in the R6/2 model using lesions re-
stricted mainly to the motor cortex appears to protect

Fig. 5 Unbiased stereological assessment of striatal cholinergic interneuron number 7 wks after intrastriatal injection of anti-ChAT-saporin
immunotoxin or Rabbit IgG-saporin (control). ChAT+ neuron numbers were significantly reduced in both R6/2 (p = 0.0002) and WT mice
(p = 0.0003) receiving cholinergic specific toxin compared to control saporin. The reduction in ChAT+ neurons was more pronounced in R6/2
compared to WT mice following exposure to anti-ChAT-saporin (p = 0.0004). A two-way between subject ANOVA was applied to the data,
followed by a Tukey HSD post hoc test; *** p < 0.001. WT Rabbit IgG-saporin: n = 3; WT anti-ChAT-saporin: n = 3; R6/2 Rabbit IgG-saporin: n = 3;
R6/2 anti-ChAT-saporin: n = 5
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neurons sampled from the dorsolateral striatum from at-
rophy, although neuronal counts were not available [14].
These lesioned mice also showed reduced clasping [14], a
finding that may be confounded by pyramidal effects from
lesioning the motor cortex. An excitotoxic role for corti-
costriatal (CS) glutamatergic afferents on striatal MSNs in
HD was suggested. This is in keeping with previous work
by several groups indicating that aberrant calcium signal-
ing through extra-synaptic NMDA receptor (NMDAR)
stimulation and increased sensitivity of NMDARs is linked

to MSN excitotoxicity in HD [9–12, 15, 57–59]. On the
other hand, CS afferents are potentially protective for
MSNs, an effect that may be mediated by synaptic gluta-
matergic mechanisms [61, 62] or by anterograde
neurotrophin-related effects [34, 36, 55, 56, 63].
In comparison to the cerebral cortex, relatively little is

known of the role of the other major source of gluta-
matergic striatal afferents, the posterior intralaminar nu-
clei, in mechanisms of striatal dysfunction in HD. In vivo
imaging of patients demonstrates that thalamic atrophy

Fig. 6 Characterization of motor behavior following unilateral striatal cholinergic ablation in R6/2 and WT mice. (a) Time spent at rest and (b) on
rapid movements during a one-hour open field session demonstrating a decrease in spontaneous voluntary locomotor activity over time in R6/2
mice with no significant effect of anti-ChAT- or Rabbit-IgG-saporin injections. (c) Cylinder test assessing limb use asymmetry shows no effect of
saporin injection on paw preference. (d) Evaluation of dystonia shows an increase in limb clasping at 6 wks in anti-ChAT saporin treated R6/2
mice compared to control-saporin treated R6/2 mice (p = 0.04). A 3-way non-parametric ANOVA was applied to each data set, followed by a post
hoc Bonferroni correction; *p < 0.05. For all panels of Fig. 6, WT Rabbit-IgG-saporin: n = 9, WT anti-ChAT-saporin: n = 10, R6/2 Rabbit-IgG-saporin:
n = 12, R6/2 anti-ChAT-saporin: n = 11
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occurs early in the course of HD [23], and autopsy studies
provide evidence for significant loss of CM-PF neurons
[24]. Ultrastructural evidence from the Q140 heterozygous
mouse model of HD provides morphological evidence
for early TS dysfunction, since TS synapses on MSNs are lost
by one month, whereas loss of corticostriatal synapses is ob-
served relatively late, at one year [32]. Recent work in 9–12
week old R6/2 mice also suggests abnormal morphology of
TS inputs [64]. The present work demonstrates that PF neu-
rons, the main source of TS inputs, are lost in R6/2 mice co-
incident with the onset of detectable neurodegenerative
changes in the neostriatum on Nissl stains [34]. Indeed. PF
neuron atrophy is already detected 9wks, prior to significant
striatal neuronal loss. There is progressive loss of PF neurons
at 11 and 13 wks correlating with worsening dystonia and
other locomotor deficits. Interestingly, the early significant
reduction of average neuronal soma size at 9 wks is followed
by apparent normalization of average soma size at 11 wks.
Neuronal loss and average cell size do not necessarily correl-
ate. Indeed, as degeneration progresses, it is expected that
neurons with decreased cell size will be lost preferentially. As
a result, there would be a relative abundance of larger neu-
rons with apparent normalization of cell size. With further
progression of degeneration, the remaining neurons that
were initially spared may also degenerate resulting in the ob-
served reduction in soma area at 13wks. Alternatively, the
degenerating PF neurons may represent a specific subpopu-
lation. For example, different cellular subpopulations within
the mouse PF may provide preferential inputs to MSNs or
striatal cholinergic interneurons [65]. It would be of interest
to determine whether specific intralaminar thalamic subpop-
ulations degenerate in post-mortem HD brains and in HD
models.
Another important differentiating factor between glu-

tamatergic striatal afferents is revealed by physiological
studies in slice preparations indicating that the PF pref-
erentially elicits NMDA currents in MSNs while CS af-
ferents evoke a higher proportion of AMPA- mediated
post-synaptic currents [26, 66]. The apparently larger
contribution of NMDA mediated post-synaptic currents
from PF inputs compared to CS afferents [26, 66], may
suggest a differential role for the TS or CS in excitotoxi-
city [64, 67]. Differential inputs to patch and matrix
compartments that comprise the striatal mosaic may
provide a clue to differences in thalamic or cortical-
derived afferent effects on MSN survival in HD. Unlike
the cerebral cortex which innervates all MSNs, the PF
provides dense afferents almost exclusively to the matrix
compartment of the striatum [25–27]. Therefore, poten-
tial excitotoxicity from the PF would be expected to have
differential effects on MSNs in either compartment. Al-
ternatively, TS afferents may also provide a sustaining
role for vulnerable striatal neurons in HD [34], analo-
gous to their trophic survival role in normal striatal

development [36]. Indeed, BDNF is enriched in PF neu-
rons [36, 68], and there is an early reduction in BDNF
mRNA in striatal afferents including in the PF of R6/2
mice [34]. Furthermore, the ability to activate striatal
TrkB receptors in the R6/2 striatum is impaired [13].
Importantly, the present findings indicate that early TS
lesions in R6/2 mice have no significant effect on MSN
size or number using unbiased stereology performed
separately on either patch or matrix compartments of
sham and lesioned R6/2 mice. These findings suggest
that loss of projection neurons in HD likely involves a
complex interplay between neurotrophic, excitotoxic
and cell autonomous mechanisms, and loss of gluta-
matergic TS afferents is not a major factor determining
survival of MSNs in the HD striatum.

Vulnerability of specific interneuron subtypes
Although striatal interneuron subtypes comprise only 5–
10% of the striatal population, they are important modu-
lators of striatal function in health and disease states [5,
37, 53, 69–76]. Striatal interneurons include cholinergic
neurons, and GABAergic subtypes that express somato-
statin, parvalbumin, or calretinin [76]. Striatal interneu-
rons modulate MSNs via local synapses, and also at a
distance across patch/matrix boundaries [77, 78]. In ro-
dents, the PF contributes only a small proportion of ex-
citatory synapses to striatal PV neurons [29, 74]. In
contrast, striatal PV interneurons receive dense asym-
metric inputs from the cerebral cortex [74, 79] suggest-
ing they may be more sensitive to pathological changes
affecting the cortex rather then the PF in HD. Early
work suggested that striatal PV interneurons may be
spared in HD, [80] but more recent findings in autopsied
HD brains indicate an important reduction in PV inter-
neurons [5]. The present results provide stereological
evidence for a decrease in soma size and number of stri-
atal PV interneurons in the R6/2 model of HD. Early PF
lesions in the R6/2 model do not accelerate the time
course of degeneration of PV interneurons. As with
MSNs, degeneration of PV neurons is likely due to a
combination of cell autonomous and non-autonomous
mechanisms [48, 81], but the TS projection does not
play a major survival role for PV interneurons in the face
of neurodegenerative stress in HD.
Cholinergic interneurons make up 1% of all striatal

neurons, synapse on most MSNs and other interneu-
rons, and modulate dopaminergicand glutamatergic ter-
minals in the striatum [72]. Ultrastructural studies
indicate that the predominant glutamatergic input to
cholinergic interneurons is from the posterior intralami-
nar nuclei in rodents and monkeys [30, 49–52]. Al-
though physiological and viral-based tracing studies [82,
83] suggest that cholinergic interneurons may receive
cortical input, there is little ultrastructural evidence for
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inputs from the cerebral cortex in rodents [28]. Classic-
ally, cholinergic interneurons were thought to be spared
in HD [4]. However, recent evidence points to significant
striatal cholinergic dysfunction in HD patients, including
reduced synthetic and vesicular proteins [84, 85], and
decreased ChAT+ cell numbers [6]. Several electro-
physiological studies have shown abnormal cholinergic
responses to afferent stimulation and decreased acetyl-
choline release in slice preparations in R6/2 or Q175
mouse models [54, 86–88]. In the R6/1 mouse model of
HD, striatal vesicular acetylcholine transporter, and
ChAT mRNA and protein concentrations are reduced in
tissue lysates, and mhtt aggregates accumulate in cholin-
ergic neurons [84]. Ultrastructural evidence in the Q140
mouse model of HD indicates that striatal cholinergic
interneurons have a decreased number of TS synapses,
reduced cell diameter and fewer dendritic branches [31].
In keeping with this work, ex vivo brain slices derived
from the Q175 mouse model of HD show decreased syn-
aptic facilitation at cholinergic targets in response to PF
stimulation [54]. The present results from R6/2 mice
suggest that neuronal degeneration in the PF occurs
early in the course of HD, and therefore contributes to
loss of TS synaptic integrity and function [64]. The ob-
served loss of PF neurons precedes cholinergic neuron
atrophy and cell loss which normally only occurs at late
timepoints suggesting a relative resistance of cholinergic
neurons to degeneration in HD. Early PF lesions acceler-
ate the atrophy and loss of cholinergic neurons in R6/2
mice, suggesting that these neurons are especially
dependent on sustaining thalamic input in the face of
mhtt related neurodegenerative stress.
Multiple mechanisms may underlie the differential vul-

nerability of striatal cholinergic interneurons to TS de-
afferentation compared to other striatal populations.
The fact that the glutamatergic TS system provides more
prominent input to cholinergic interneurons [30, 49, 50,
52] compared to PV interneurons [29, 74] may explain
their sensitivity to TS deafferentation in R6/2 mice
through both glutamatergic and trophic factor receptor
dependent mechanisms. For example, cholinergic inter-
neurons express lower levels of ionotropic NMDA-2A
and metabotropic GluR1/5 glutamate receptors [89] then
other striatal cell types, but maintain high NMDA-2B
expression [90–92]. Signaling from mGLUR5 and synap-
tic NMDA receptors enriched in NMDA-2A subunits
can stabilize mitochondrial membranes and promote cell
survival, [61, 62] while neurotoxic extrasynaptic NMDA
receptors rich in NMDA-2B subunits contribute to
mitochondrial failure and cell death in MSNs in various
HD models [9, 11, 15, 57, 59–61]. In keeping with this
evidence, the present in vivo results demonstrate striatal
cholinergic interneurons in R6/2 mice are more suscep-
tible to a mitochondrial toxin than WT neurons

suggesting that they are more vulnerable to cellular en-
ergy failure.
In addition to glutamatergic modulation of cell death,

neurotrophins may also play an important role in choliner-
gic neuron vulnerability to TS loss in HD. The neurotro-
phin brain-derived neurotrophic factor (BDNF) promotes
forebrain cholinergic neuron maintenance, growth [93],
and survival [94, 95]. In particular, ChAT+ striatal neurons
express both TrkA and TrkB receptors [96, 97] and contain
BDNF protein [98]. Given that the striatum lacks BDNF
mRNA [68, 99–103], the BDNF protein in ChAT+ cells
may derive from post-synaptic internalization and endoso-
mal trafficking of BDNF released from afferents [104–110].
Endosomal trafficking of TrkB/BDNF complexes towards
the soma provides trophic support to neurons, is regulated
by htt and is reduced in the presence of mhtt [108, 111–
114]. Since a higher proportion of cholinergic neurons ex-
press htt compared to other striatal subpopulations [98,
115], they may be especially vulnerable to loss of BDNF.
Importantly, the TS system is the main source of gluta-
matergic afferents to cholinergic neurons [30, 49–52] is
enriched in BDNF mRNA [34, 68], and PF lesions reduce
striatal BDNF-TrkB signaling in neonatal rodents [36]. The
PF may therefore contribute to the relative resistance to de-
generation of cholinergic neurons. Loss of BDNF following
PF lesions or degeneration in HD may make cholinergic
neurons more vulnerable to degeneration in HD.

Implications of thalamostriatal and cholinergic
dysfunction for dystonia and HD
Dystonia can be a motor feature of both hypokinetic and
hyperkinetic disorders including primary and secondary
dystonic syndromes, and other neurodegenerative dis-
eases [1116–118]. Secondary dystonia can occur follow-
ing lesions in different parts of the thalamic, cerebellar
or basal ganglia network [119–124]. Dystonia is also a
common symptom in HD, and worsens with disease
progression, but appears not to correlate with chorea or
bradykinesia [1]. Clasping behaviour is considered a sur-
rogate for dystonia in rodent models as it mimics the
sustained muscle contractions and abnormal postures
seen in humans [116]. Clasping behaviour occurs in
many animal models of HD and primary dystonia [34,
47, 71, 125]. Furthermore, clasping behavior is well stud-
ied in the R6/2 mouse and worsens significantly as the
model progresses [34], similar to the age related increase
in dystonia seen in HD patients [1].
Basal ganglia, cerebellar, brainstem and cortical dysfunc-

tion are proposed in both human dystonia and in the
many animal models exhibiting clasping behaviours rem-
iniscent of dystonia [125, 126]. Interrogation of different
components of the striatal micro-circuitry in animal
models allows better understanding of dystonia. DYT1
mouse models of primary dystonia show decreased
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intrastriatal dopamine release possibly due to reduced nic-
otinic cholinergic tone [127], and paradoxical dopamine
D2 receptor mediated excitation of cholinergic neurons
[128, 129]. These altered cholinergic-dopaminergic inter-
actions in DYT1 mice impair long-term depression in
MSNs and increase corticostriatal synaptic long-term po-
tentiation, leading to abnormal striatal output [126, 127,
129, 130]. These synaptic deficits may even occur early in
brain development, as mice with selective forebrain DYT1
knockout show an early clasping phenotype associated with
post-natal loss of cholinergic striatal interneurons and de-
creased striatal acetylcholine release [47]. Similar changes
in striatal cholinergic micro-circuitry are described in HD
models. These include: the inability of striatal cholinergic
cells to undergo long-term potentiation with an associated
inability of MSNs to undergo long-term synaptic depres-
sion [87], decreased acetylcholine release [86, 88], and in-
creased MSN and cholinergic responses to cortical
excitation [54, 64]. These abnormalities are compounded in
HD by atrophy and loss of striatal cells [2, 5–7].
The posterior intralaminar nuclei are important drivers

of cholinergic activity in the normal striatum [37, 53, 69,
70, 73, 75, 131, 132]. Cholinergic neurons modulate long-
term plasticity of MSNs by regulating dopamine and glu-
tamate co-release onto MSNs through pre-synaptic acetyl-
choline receptors on glutamatergic and dopaminergic
terminals [132]. More specifically, the pause-response of
cholinergic neurons to TS stimulation, which is mediated
by D2-receptors on cholinergic cells as well as presynaptic
nicotinic receptors on dopaminergic terminals, helps to
transiently inhibit both direct and indirect pathway MSNs
responses to cortical stimulation and then later facilitate
post-synaptic cortical glutamatergic excitation of indirect
pathway neurons, thereby preferentially driving the network
towards action cessation [53]. Loss of the PF-cholinergic
mediated tuning of striatal projection neurons leads to an
imbalance between competing basal ganglia pathways and
is thought to impair saliency estimation and motor pro-
gram selection [69, 70, 73, 131, 133], and contribute to the
generation of dystonia [126]. Indeed, TS-cholinergic deficits
have been shown in HD and dystonia models. For example,
in a DYT1 mutant mouse, the normal pause-response is re-
placed by erratic firing of cholinergic cells to TS stimulation
[130] and in the Q175 HD mouse, there is reduced TS syn-
aptic facilitation of cholinergic interneurons and loss of the
normal pause-spike response to TS stimulation [54]. The
present work demonstrates that lesioning either the TS sys-
tem or striatal cholinergic interneurons exacerbates dys-
tonia in the R6/2 HD mouse. Altogether these findings
suggest that dysfunction of both the TS system and loss of
cholinergic interneurons plays an important role in the gen-
eration of dystonia in HD and in primary dystonia models.
In addition to the striatum and the TS system, the

cerebellum is proposed as an important part of the

dystonia network. Evidence from imaging studies suggests
reduced cerebellar activity, degeneration of the cerebello-
thalamocortical pathway and abnormal cerebellar sensori-
motor integration in dystonia patients [134–136]. HD pa-
tients show cerebellar degeneration that correlates with a
worse motor score [2, 137, 138]. Furthermore, models
which have a severe clasping phenotype such as R6/2 and
Hdh100 HD mice also demonstrate a loss of Purkinje cells
at late timepoints [139, 140].
The intralaminar nuclei receive afferents from deep

cerebellar nuclei and form a disynaptic link between the
basal ganglia and the cerebellar nuclei [141–143]. The
output of the cerebello-thalamic circuit plays an import-
ant role in saliency estimation and action selection [69,
70, 73, 131]. Similar to the effect of unilateral cerebellar
lesions in rats [144], PF lesions in the present work led
to decreased spontaneous contralateral paw use in both
WT and R6/2 mice when exploring a cylinder. This pro-
vides evidence for a role for the TS system in evaluation
of salient sensory information and appropriate motor
program selection. Furthermore, both thalamic and cere-
bellar strokes lead to secondary dystonia in susceptible
individuals [119–124]. Atrophy and cell loss in the TS
system and the cerebellum [2, 24, 137] may therefore
contribute to the dystonia network in HD. TS afferents
degenerate in R6/2 mice expressing a dystonic clasping
phenotype, and early PF lesions in R6/2 mice lead to a
worsening of dystonia. We therefore propose that TS de-
generation, with downstream pathology at cholinergic
targets, plays an important part in the network leading
to expression of dystonia in HD and possibly in other
dystonic syndromes.

Conclusion
Thalamostriatal afferents provide important trophic sup-
port to striatal cholinergic neurons in Huntington’s dis-
ease. Furthermore, pathological dysfunction of the TS
system and cholinergic interneurons is closely linked to
the generation of a dystonic phenotype in HD models.
This work provides a new understanding of mechanisms
of striatal degeneration and motor symptoms in HD,
and may pave the way for development of effective ther-
apies for those affected by this currently incurable neu-
rodegenerative disorder.
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