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Abstract 

Adult medulloblastomas are clinically and molecularly understudied due to their rarity. We performed molecular 
grouping, targeted sequencing, and TERT promoter Sanger sequencing on a cohort of 99 adult medulloblastomas. 
SHH made up 50% of the cohort, whereas Group 3 (13%) was present in comparable proportion to WNT (19%) and 
Group 4 (18%). In contrast to paediatric medulloblastomas, molecular groups had no prognostic impact in our adult 
cohort (p = 0.877). Most frequently mutated genes were TERT (including promoter mutations, mutated in 36% cases), 
chromatin modifiers KMT2D (31%) and KMT2C (30%), TCF4 (31%), PTCH1 (27%) and DDX3X (24%). Adult WNT patients 
showed enrichment of TP53 mutations (6/15 WNT cases), and 3/6 TP53-mutant WNT tumours were of large cell/
anaplastic histology.Adult SHH medulloblastomas had frequent upstream pathway alterations (PTCH1 and SMO muta‑
tions) and few downstream alterations (SUFU mutations, MYCN amplifications). TERT promoter mutations were found 
in 72% of adult SHH patients, and were restricted to this group. Adult Group 3 tumours lacked hallmark MYC amplifi‑
cations, but had recurrent mutations in KBTBD4 and NOTCH1. Adult Group 4 tumours harboured recurrent mutations 
in TCF4 and chromatin modifier genes. Overall, amplifications of MYC and MYCN were rare (3%). Since molecular 
groups were not prognostic, alternative prognostic markers are needed for adult medulloblastoma. KMT2C muta‑
tions were frequently found across molecular groups and were associated with poor survival (p = 0.002). Multivariate 
analysis identified histological type (p = 0.026), metastasis (p = 0.031) and KMT2C mutational status (p = 0.046) as inde‑
pendent prognosticators in our cohort. In summary, we identified distinct clinical and mutational characteristics of 
adult medulloblastomas that will inform their risk stratification and treatment.

Keywords:  Adult medulloblastoma, Molecular group, Targeted sequencing, TP53, MYC, KMT2C

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​
mmons​.org/publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Medulloblastoma is one of the most common malignant 
brain tumours in children [52]. Medulloblastomas are 
now classified into four major molecular groups (WNT-
activated, SHH-activated, Group 3, and Group 4) with 
distinct clinical, genetic and transcriptomic profiles [23, 
32, 39, 67]. WNT medulloblastoma patients have the 
best 5-year overall survival rate of over 90%, while Group 
3 patients have the worst 5-year overall survival rate of 
merely 50% [30]. Molecular groups have been incorpo-
rated into risk stratification and treatment algorithms 
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of medulloblastoma [22, 48]. For instance, clinical tri-
als are investigating the reduction of irradiation dose to 
low-risk WNT patients (NCT01878617, NCT02724579, 
NCT02066220).

In adults, medulloblastomas account for less than 1% of 
central nervous system (CNS) tumours [52]. Due to their 
rarity, prospective trials on adult medulloblastomas are 
limited [40]. The management of adult medulloblastomas 
is adapted from paediatric protocols, often resulting in 
dose-limiting toxicities [12].

There is evidence of clinical and genetic differences 
between adult and paediatric medulloblastomas, sug-
gesting that adult medulloblastomas should be treated 
and stratified for risk differently [4, 34]. Clinically, adult 
medulloblastomas more commonly occur in the cer-
ebellar hemispheres [5], are infrequently metastatic at 
diagnosis [30], and characteristically present with late 
relapses [3, 10, 52]. Histologically, large cell/anaplastic 
(LCA) features are less frequently found in adult than in 
paediatric medulloblastomas [30]. Molecularly, SHH is 
the predominant group in adult medulloblastomas, while 
Group 3 is rare [2, 30, 58, 74]. The survival outcomes of 
molecular groups in adult medulloblastoma have been 
inconsistent in the literature [30, 58, 74], although some 
studies suggest that adult WNT patients do not share 
the excellent survival of paediatric WNT patients [21, 
58, 65], and adult SHH patients have relatively favour-
able survival compared to paediatric SHH patients [6, 
65]. Adult medulloblastomas also have distinct cytoge-
netic profiles from paediatric patients, with chromosome 
10q loss and 17q gain proposed as prognostic markers in 
adults [31, 46].

Despite these initial findings, genome sequencing stud-
ies on adult medulloblastomas are still lacking. Knowl-
edge on genetic aberrations in adult medulloblastomas is 
mostly limited to the SHH group [29, 46]. Comprehen-
sive evaluation of adult medulloblastoma is needed to 
inform its risk stratification and treatment.

In this study, we report the clinical and mutational 
profiles of 99 adult medulloblastomas, investigated for 
molecular group, coding mutations, TERT promoter 
mutations, MYC and MYCN amplifications, and survival 
outcome.

Materials and methods
Tumour material and patient characteristics
Tumour samples and clinicopathological information 
were collected from 99 adult medulloblastoma patients 
between years 2005 and 2018, from the Prince of Wales 
Hospital (Hong Kong), Huashan Hospital (Shanghai) 
and the First Affiliated Hospital of Zhengzhou Univer-
sity (Zhengzhou). Local ethics approvals were obtained 
from The Joint Chinese University of Hong Kong—New 

Territories East Cluster Clinical Research Ethics Com-
mittee, and the Ethics Committees of Huashan Hospital, 
Shanghai and The First Affiliated Hospital of Zheng-
zhou University, Zhengzhou. Clinical information was 
retrieved from institutional paper and electronic records. 
Survival data was obtained from follow-up clinic vis-
its and direct contact with patients or close relatives via 
phone.

Haematoxylin and eosin-stained (H&E) slides of all 
cases were centrally reviewed (H.K.N., A.K.C.) for confir-
mation of diagnosis and assignment of histological type. 
All patients were aged > 18 years at the time of diagnosis.

Molecular group affiliation
The medulloblastomas were assigned to molecular 
groups by NanoString assay as described by Northcott 
et  al. [50], a transcription-based classification method 
that is suitable for formalin-fixed paraffin embedded 
(FFPE) tissues [13, 51]. In brief, RNA was extracted 
from FFPE tissues using RNeasy FFPE Kit (Qiagen), 
then quantified by NanoDrop 2000 spectrophotometer 
(Thermo Scientific). 100  ng RNA per sample was then 
hybridised to the NanoString nCounter CodeSet at 67 °C 
for 20  h. The custom CodeSet contained gene-specific 
probes that assayed the abundance of 22 medulloblas-
toma group-specific genes and 3 housekeeping genes 
[50]. Hybridisation complexes were purified with mag-
netic beads and immobilised on a streptavidin-coated 
cartridge using the nCounter Prep Station (NanoString 
Technologies) according to the manufacturer’s protocol. 
Signals of fluorescent barcodes representing individual 
target RNA molecules were then counted and recorded 
by the nCounter Digital Analyzer (NanoString Technol-
ogies). Using an R script kindly provided to us by Prof. 
Michael Taylor, raw data was normalised with R pack-
age ‘NanoStringNorm’, and group predictions were made 
with package ‘pamr’ [50]. NanoString raw counts, expres-
sion heatmap and group prediction results can be found 
in supplementary data (Additional file 1: Figure S1, Addi-
tional file 2: Table S2).

Targeted DNA sequencing, variant and copy number 
calling
DNA was extracted from FFPE tissues using GeneRead 
DNA FFPE Kit (Qiagen), then qualified and quantified 
with QIAseq DNA QuantiMIZE Assay Kit. Targeted 
next-generation sequencing (NGS) libraries were pre-
pared with a custom QIAseq Targeted DNA Panel, 
covering the coding exons of 69 genes altered in medul-
loblastoma and other CNS tumours (Additional file  2: 
Table S3). The 260-kilobase target region was sequenced 
with MiSeq v3 (Illumina) to 369.45 × mean coverage per 
sample (range 99.76–1457.32).



Page 3 of 14Wong et al. acta neuropathol commun           (2020) 8:191 	

Paired-end reads were aligned to the hg19 (GRCh37) 
build of the human reference genome with BWA-MEM 
on GeneGlobe platform (Qiagen). Variants were called 
using smCounter2 [69] and annotated using wANNO-
VAR [70]. We excluded variants that did not pass quality 
filters [69], had variant allele fractions of < 5% or variant 
allele counts of < 5, or had minor allele frequencies of > 1% 
in East Asians or the overall human population (as docu-
mented in 1000 Genomes, ExAc, gnomAD exome and 
genome databases). Non-synonymous single nucleo-
tide variants (SNVs) and insertions/deletions (indels) in 
exonic regions were visualised using Oncoprinter and 
MutationMapper on cBioPortal [7, 19].

Focal gene-level copy numbers for MYC and MYCN 
were called using the quandico algorithm [57], with 8 
non-tumour brain samples as controls. Amplification 
was defined as copy number > 10.

Sanger sequencing for TERT promoter hotspot mutations
A previous whole genome sequencing study identified 
the TERT promoter as the only non-coding region that 
is recurrently mutated in medulloblastoma [45]. Accord-
ingly, we performed Sanger sequencing to evaluate the 
mutational hotspots of TERT promoter, C228T and 
C250T (124 and 146  bp upstream of the ATG start site 
respectively), as previously described [1, 8, 9, 37, 64, 71, 
72].

Tumour tissues were scraped off FFPE sections, placed 
in 10  mM Tris–HCl buffer (pH 8.5) with proteinase K, 
and incubated at 56  °C overnight followed by 98  °C for 
10 min. The lysate was then spin down at full speed and 
the supernatant was collected for subsequent PCR reac-
tion. The 20  μl amplification reaction contained 0.5  μl 
cell lysate, 0.3  μM forward (5′-GTC​CTG​CCC​CTT​CAC​
CTT​-3′) and reverse (5′-CAG​CGC​TGC​CTG​AAA​CTC​
-3′) primers, and 10  μl KAPA HiFi HotStart ReadyMix 
(Sigma). PCR conditions consisted of 95  °C for 5  min; 
followed by 45 cycles of 98  °C for 20  s, 68  °C for 15  s, 
and 72  °C for 30 s; and finally, 72  °C for 1 min, on Ver-
iti 96-Well Thermal Cycler (Applied Biosystems). PCR 
products were cleaned with spin column-based nucleic 
acid purification kit (iNtRON Biotechnology) and 
sequenced with BigDye Terminator Cycle Sequencing kit 
v1.1 (Life Technologies). The products were resolved in 
3130xl Genetic Analyzer (Applied Biosystems). All muta-
tions were confirmed by sequencing of a newly amplified 
fragment.

Statistical analysis
Statistical analyses were performed using IBM SPSS Sta-
tistics Version 22.

Overall survival (OS) was defined as the time 
from tumour diagnosis to death or last follow-up. 

Progression-free survival (PFS) was defined as the time 
from diagnosis to recurrence or progression as evidenced 
by radiological imaging, or last follow-up. Univariate 
analysis was performed on OS using the Kaplan–Meier 
method and log-rank test. For multivariate analysis, Cox 
proportional hazards model was applied with OS as the 
outcome variable. Significance level of α = 0.05 (two-
tailed) was used. For multiple comparisons of molecu-
lar markers, the Benjamini–Hochberg procedure was 
employed to control the false discovery rate at Q = 0.05.

Results
Clinical characteristics of adult medulloblastomas
Our cohort consisted of 99 adult medulloblastomas aged 
above 18 at diagnosis. The median age at diagnosis was 
27 (range 19–63). There was a trend of decreasing inci-
dence with age in this cohort, with nearly 60% (58/99) 
of patients between 19 and 29 years (Table 1). Male-to-
female ratio was 1.8:1. The tumours were more frequently 
located in the cerebellar hemispheres than in the vermis 
(Table 1). Less than 10% (8/82) were metastatic at diag-
nosis (Fig. 1b). 62% (61/99) of the tumours exhibited clas-
sic histology, whereas desmoplastic/nodular and LCA 
accounted for 29% (29/99) and 9% (9/99) respectively. 
In terms of treatment, 85% (62/73) of patients achieved 
gross total resection. 53% (39/73) received both adjuvant 
chemotherapy and radiotherapy, 30% (22/73) received 
radiotherapy only, 4% (3/73) received chemotherapy only, 
and 12% (9/73) received no adjuvant therapy.

We were able to study the survival of 78 patients. 
The mean and median follow-up were 60.2 and 
52.0 months respectively. Median OS and PFS were 102 
and 99  months respectively. Among histological types, 
desmoplastic/nodular tumours had the best outcome 
whereas LCA had the worst (p = 0.027, desmoplastic/
nodular vs LCA). The clinical factors with the strongest 
prognostic impact were metastasis (p = 0.005) and adju-
vant therapy (p < 0.001) (Additional file 1: Figure S2).

Molecular groups of adult medulloblastomas
As expected, the SHH group comprised half (49/99) 
of the adult medulloblastomas in our cohort (Fig.  1a). 
SHH was further enriched in older adults, making up 
68% (28/41) of those aged 30 or above. Notably, Group 3 
formed 13% (13/99) of our adult cohort (Additional file 1: 
Figure S3). WNT accounted for 19% (19/99) of cases, and 
Group 4 accounted for 18% (18/99).

The four molecular groups varied in sex ratio, meta-
static rate, and histological distribution (Fig. 1b). WNT 
was the only group which showed female preponder-
ance, while Group 4 showed the highest male-to-female 
ratio of 5:1. Group 4 also had the highest metastatic 
rate among the four groups. Histological type was 
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significantly associated with molecular group (p < 0.001, 
Chi squared test), with 90% (26/29) of desmoplastic/
nodular tumours belonging to the SHH group.

Unlike paediatric medulloblastomas, molecular 
groups had no impact on overall survival in our adult 
medulloblastoma cohort (p = 0.877) (Fig.  1c). The 
5-year OS rate of WNT tumours in our cohort was 
45%, in contrast to the over 90% 5-year OS rate charac-
teristically attributed to paediatric WNT [30].

Mutational profiles of adult medulloblastomas
We performed targeted sequencing on 70 cases with 
sufficient tissues, including 15 WNT, 33 SHH, 10 
Group 3, and 12 Group 4 tumours. The mutational 
load differed significantly between groups (p < 0.001, 
Kruskal–Wallis test): WNT, SHH, Group 3 and Group 
4 each recorded a median of 7, 6, 3 and 2.5 mutations 
per case respectively.

The most frequently mutated genes were TERT 
(including promoter mutations, mutated in 36% of 
cases which underwent NGS), KMT2D (31%), TCF4 
(31%), KMT2C (30%), PTCH1 (27%) and DDX3X 
(24%) (Fig.  2). Among these, TERT promoter muta-
tions were restricted to the SHH group, while PTCH1 
and DDX3X mutations were mostly found in WNT and 
SHH. KMT2C, KMT2D and TCF4 mutations were seen 
across all four groups.

Amplification of MYC was not found throughout 
the adult cohort, while two SHH cases showed high-
level MYCN amplifications (Fig.  2, Additional file  2: 
Table S6).

WNT group
14/15 of the sequenced WNT cases carried hotspot 
mutations in CTNNB1, all concentrated in amino acid 
positions D32–S37 (particularly S33) (Additional file 1: 
Figure S4a). 2 cases were mutated in APC. Interestingly, 
canonical SHH pathway genes were also altered in the 
WNT group: 5 WNT cases harboured PTCH1 truncat-
ing mutations that co-occurred with CTNNB1 muta-
tions, and another case showed mutations in both APC 
and SMO (Additional file 1: Figure S5).

Mutations in TP53 were found in 40% (6/15) of our 
adult WNT cases (Fig.  3a), a much higher proportion 
than the 13–16% reported in WNT tumours within 
paediatric-predominant cohorts [45, 47, 75]. All TP53 
mutations in WNT occurred within the p53 DNA bind-
ing domain (Fig.  3b). Half (3/6) of the TP53-mutant 
WNT tumours showed LCA histology (Fig.  3c), while 
all of the TP53-wildtype WNT tumours displayed clas-
sic histology.

Other frequently mutated genes in WNT included 
DDX3X (47%) and FBXW7 (27%). Mutations in DDX3X 
concentrated in its two helicase domains (Additional 
file  1: Figure S4d), whereas an R385C/H hotspot was 
identified in FBXW7 (Additional file 1: Figure S4e).

SHH group
Among the SHH pathway genes, PTCH1 was mutated 
in 36% (12/33) of adult SHH medulloblastomas, and 
SMO was mutated in 27% (9/33) (Fig. 2). Most (11/12) 
PTCH1 mutations were truncating (Additional file  1: 

Table 1  Summary of  clinical characteristics of  adult 
medulloblastoma patients

NOS not otherwise specified

N %

Age

 18–23 29 29.3

 24–29 29 29.3

 30–35 15 15.2

 36–41 13 13.1

 42–47 7 7.1

 48–53 4 4.0

  > 53 2 2.0

Sex

 M 64 64.6

 F 35 35.4

Location

 Cerebellar hemisphere 34 34.7

 Cerebellar vermis 21 21.4

 Cerebellum, NOS 11 11.2

 Fourth ventricle 21 21.4

 Others 11 11.2

 Unknown 1 –

Metastasis

 M+ 8 9.8

 M− 74 90.2

 Unknown 17 –

Histological type

 Classic 61 61.6

 Desmoplastic/nodular 29 29.3

 Large cell/anaplastic 9 9.1

Resection extent

 Gross total resection 62 84.9

 Subtotal resection 11 15.1

 Unknown 26 –

Adjuvant therapy

 Chemotherapy and radiotherapy 39 53.4

 Radiotherapy only 22 30.1

 Chemotherapy only 3 4.1

 No adjuvant therapy 9 12.3

 Unknown 26 –
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Grp3 (n=9)

Grp4 (n=12)

WNT (n=15)
SHH (n=42)

p=0.877

c

b

Sex Ratio Histological Distribution Metastatic Rate

a

Full Cohort (n=99) Age 18-29 (n=58) Age  30 (n=41)

Fig. 1  Molecular groups of adult medulloblastomas. a The SHH group made up half (49/99) of the cohort. In older adults (age ≥ 30), SHH 
accounted for 68% (28/41) of cases. Group 3 formed 13% of our adult cohort. b The four groups showed differences in sex ratios, histological 
distributions and metastatic rates. c Molecular groups had no prognostic impact (p = 0.877) in adult medulloblastomas
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Fig. 2  Oncoprint summary of clinical and mutational profiles of 70 sequenced adult medulloblastomas according to molecular group
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Figure S4f ), whereas SMO mutations mainly (8/9) con-
sisted of a hotspot substitution L412F (Additional file 1: 
Figure S4g). No SUFU mutation was found in adult 
SHH, consistent with previous studies [29, 45].

TERT promoter mutations were limited to the SHH 
group, detected in 72% (34/47) of adult SHH cases. 
C228T was found in 28 cases, whereas C250T was found 
in 4; one case showed C228A and another showed C250G 
(Additional file 1: Figure S6, Additional file 2: Table S5).

Other prevalently seen mutations in adult SHH 
included those of DDX3X (27%), BRCA2 (24%), MED12 
(18%), CREBBP (18%), FBXW7 (15%), PDGFRA (15%) 
and NF1 (15%). DDX3X, CREBBP and FBXW7 muta-
tions were reported to be very rare in paediatric SHH [29, 
45]. TP53 mutations were rarer than in WNT, present in 
12% (4/33) of SHH cases.

MYCN amplification was found in 2 SHH cases. The 2 
cases exhibited high-level amplifications, with 123 and 
78 copies respectively (Additional file 2: Table S6). Both 
of these cases had concomitant TP53 mutation and were 
metastatic (Fig. 2).

Group 3
Hotspot in-frame insertions of KBTBD4 were found in 
40% (4/10) of Group 3 cases (Additional file  1: Figure 
S4h). NOTCH1, KMT2D and TCF4 were each mutated 
in 3 cases. Of these, all NOTCH1 mutations co-occurred 
with KBTBD4 insertions.

MYC amplification, a hallmark high-risk feature almost 
exclusive to Group 3 [45, 47, 49], was absent in our adult 
cohort, including in Group 3 tumours (Fig. 2).

Group 4
TCF4 mutations were found in half (6/12) of the Group 4 
cases. All 6 mutations consisted of a missense substitution 
Q95R, a hotspot that was identified across groups (Addi-
tional file 1: Figure S4j). Other recurrently mutated genes 
in Group 4 included chromatin modifiers KMT2C (4/12), 
KDM6A (2/12), SETD2 (2/12) and SMARCA4 (2/12).

No Group 4 cases harboured MYCN amplification 
(Fig. 2).

a b

c (i) (ii) (iii)

Fig. 3  Unique occurrence of TP53-mutant large cell/anaplastic WNT medulloblastomas. a TP53 mutations were enriched in adult WNT 
medulloblastomas, found in 40% (6/15) of cases in this group. b All TP53 mutations in WNT occurred within the p53 DNA binding domain. c 3/6 
TP53-mutant adult WNT cases were of large cell/anaplastic histology; (i) 19/F, with missense mutation TP53 V173A; (ii) 20/M, with missense mutation 
TP53 R175H; (iii) 32/F, with missense mutation TP53 R248W; arrows show nuclear moulding
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Chromatin modification genes
Overall, mutations in genes related to chromatin modifi-
cation were found in 81% (57/70) of samples, distributed 
across all four groups (Additional file 1: Figure S7). These 
genes included histone modifiers and their interacting 
proteins (KMT2D, KMT2C, KDM6A, SETD2, CREBBP, 
BCOR, GSE1, ZMYM3), SWI/SNF-nucleosome remod-
elling complex subunits (SMARCA4, SMARCB1, 
ARID1A, ARID2), as well as histones (H3F3A) and their 
chaperones (ATRX).

Prognostication of adult medulloblastomas
Since molecular groups had no impact on the over-
all survival of adult medulloblastoma patients (Fig.  1c), 
we assessed the prognostic significance of frequently 
mutated genes in our cohort. Presence of KMT2C 
mutation was associated with poor outcome (p = 0.002, 
q = 0.034) (Table 2, Fig. 4a). KMT2C mutations were pre-
sent in 30% of adult medulloblastoma cases, distributed 
across all four molecular groups (Fig.  4b). At the gene 
level, mutations were scattered across the coding region 
of KMT2C (Fig. 4c).

Upon multivariate analysis, KMT2C mutation 
remained as an independent poor prognosticator (haz-
ard ratio (HR) = 6.468, p = 0.046) after adjusting for age, 
sex, molecular group, histological type, metastasis and 

adjuvant therapy (Table 3). Other independent prognos-
ticators included histological type (p = 0.026) and metas-
tasis (p = 0.031). Molecular groups continued to show no 
prognostic impact in the multivariate model (p = 0.407).

Discussion
In this study, we showed that molecular groups have no 
prognostic significance in adult medulloblastomas. This 
is in contrast to paediatric medulloblastomas where 
molecular groups have been integrated into risk strati-
fication schemes [55, 56]. In particular, WNT status 
was not associated with favourable survival in our adult 
cohort, in agreement with a previous study by Korshunov 
et al. [31]. With the increased interest in the feasibility of 
reducing irradiation dose to WNT patients [44], caution 
should be taken in applying such treatment de-escalation 
approaches to adult WNT patients.

When examining the mutational profiles of adult WNT 
medulloblastomas, we discovered a high frequency of 
TP53 mutations, compared to paediatric WNT. TP53 
mutations have been reported in 13–16% of WNT 
medulloblastomas [45, 47, 75], whereas in our adult 
cohort, TP53 mutations were detected in 40% of WNT 
cases. Re-analysis of data from Northcott et  al. gave a 
similar result, where 2/4 adult WNT tumours harboured 
TP53 mutations, compared to only 3/29 paediatric WNT 
tumours in their cohort [45]. TP53 has been shown to 
play a role in WNT pathophysiology: excess β-catenin 
promotes accumulation of transcriptionally active p53 
[14], and activated p53 in turn downregulates β-catenin 
[35, 62], indicating that p53 mediates an important 
tumour suppressive mechanism against WNT pathway 
activation. Gibson et al. showed that concomitant TP53 
deletion was required to induce medulloblastoma forma-
tion in CTNNB1-mutant mice [20]. The abundance of 
TP53 mutations in adult WNT may partly account for 
the biological and clinical differences observed between 
adult and paediatric WNT tumours.

Apart from the significant enrichment of TP53 muta-
tions in adult WNT, we also observed that a high pro-
portion of TP53-mutant adult WNT tumours shared 
the high-risk feature of LCA histology. This is in contrast 
to the mostly paediatric cohort in Zhukova et al., where 
none of the TP53-mutant WNT tumours showed ana-
plastic features [75]. The unique occurrence of TP53-
mutant LCA WNT tumours, and the heterogeneous 
treatments received [44], may be reasons for the lack of 
favourable survival for WNT patients in our adult cohort.

Another striking feature of adult WNT medulloblas-
tomas is the concurrent mutations of WNT and SHH 
pathway genes. This coincides with the recent obser-
vations by Iorgulescu et  al., who found SHH pathway 
mutations at subclonal allele frequencies in 3/7 of their 

Table 2  Univariate analysis for  mutational 
statuses of  genes mutated in ≥ 10% cases in  adult 
medulloblastoma cohort

Bold values are p<0.05 and q<0.05
a  34/88 cases by Sanger sequencing

Gene Mutational 
frequency (%)

OS log-rank 
p value

Benjamini–
Hochberg q 
value

TERT promoter 39a 0.294 0.460

KMT2D 31 0.056 0.334

TCF4 31 0.282 0.460

KMT2C 30 0.002 0.034
PTCH1 27 0.356 0.460

DDX3X 24 0.969 0.969

CTNNB1 20 0.565 0.640

BRCA2 17 0.337 0.460

TP53 16 0.062 0.334

FBXW7 14 0.118 0.334

SMO 14 0.101 0.334

NOTCH1 13 0.379 0.460

SMARCA4 13 0.172 0.418

PDGFRA 11 0.873 0.928

MED12 11 0.102 0.334

SETD2 11 0.257 0.460

CREBBP 10 0.314 0.460
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CTNNB1-mutant medulloblastomas [25]. They subse-
quently performed immunohistochemistry for GAB1, 

which yielded a focal staining pattern that confirmed sec-
ondary SHH pathway activation, reflecting intratumoural 
heterogeneity within these WNT medulloblastomas. 
Medulloblastomas have been shown to exhibit substan-
tial spatial heterogeneity in genetic alterations, which 
points toward the need for multi-regional biopsies and 
combination targeted therapies [43].

SHH is the predominant group in adult medullo-
blastomas, and adult SHH tumours are characterised 
by upstream pathway mutations in PTCH1 and SMO, 
whereas downstream pathway alterations such as SUFU 
mutations and MYCN amplifications are rare in this age 
group. Our findings are similar to those of Kool et  al., 
who also found that a large proportion of adult SHH 
tumours are targetable by the SMO inhibitor LDE-225 
(sonidegib), due to the rarity of SHH pathway alterations 
downstream to SMO which confer therapeutic resistance 
[29]. A phase II trial showed clinical efficacy of the SMO 
inhibitor vismodegib in adult recurrent SHH medullo-
blastoma [60].

The strong enrichment of TERT promoter mutations 
in adult SHH medulloblastomas has been reported by 

a b

c

KMT2C mutant (n=18)

KMT2C wildtype (n=40)

p=0.002

Fig. 4  KMT2C mutations as a poor prognostic marker in adult medulloblastomas. a KMT2C mutation was associated with poor overall survival 
(p = 0.002). b KMT2C mutations were found in 30% of adult medulloblastomas across molecular groups. c KMT2C mutations were scattered across 
the coding region of the gene

Table 3  Multivariate analysis of  clinical and  molecular 
prognosticators in adult medulloblastomas

Bold values are p<0.05 and q<0.05

HR (95% CI) p value

Age 0.869 (0.755–1.002) 0.053

Sex (male versus female) 27.878 (0.382–2035.342) 0.128

Molecular group 0.407

 SHH versus WNT 0.894 (0.022–36.018) 0.953

 Group 3 versus WNT 5.903 (0.225–155.063) 0.287

 Group 4 versus WNT 0.306 (0.006–14.994) 0.551

Histological type 0.026
 Desmoplastic/nodular versus 

classic
0.467 (0.046–4.746) 0.520

 LCA versus classic 129.534 (2.871–5844.831) 0.012
Metastasis 7.78 (1.207–50.147) 0.031
Adjuvant therapy 0.283 (0.007–11.612) 0.506

KMT2C mutation 6.468 (1.035–40.404) 0.046
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multiple studies [28, 29, 38, 59]. In addition to the TERT 
promoter, our study confirmed that gene mutations in 
DDX3X, CREBBP and FBXW7, which are rare in pae-
diatric SHH [29, 45], occur frequently in adult SHH; on 
the other hand, TP53 mutations which are abundant in 
paediatric SHH are rarely seen in adults. In 2017, Cav-
alli et  al. further classified SHH medulloblastomas into 
four age-associated subtypes based on integrated meth-
ylation and expression profiling data [6]. Most adult 
SHH cases belonged to the SHH-δ subtype which was 
highly enriched for TERT promoter mutations and had 
relatively favourable survival, further substantiating the 
hypothesis that adult SHH tumours represent a biologi-
cally disparate entity from paediatric and infant SHH 
tumours.

While previous studies found that Group 3 is extremely 
rare or absent in adult medulloblastomas [30, 58, 74], our 
cohort showed that Group 3 could make up a significant 
proportion of adult medulloblastomas, and that adult 
Group 3 patients did not have worse outcome than the 
other groups. We also showed that MYC amplification, 
the hallmark driver event detected in 12–17% of Group 3 
medulloblastomas [45, 47, 49], was absent in adult Group 
3 tumours. MYC amplification is a well-established poor 
prognosticator in various risk stratification models [15, 
16, 55, 61, 65], thus the lack of this group-specific marker 
in adult medulloblastoma might explain why Group 3 
patients did not exhibit worse survival than the other 
groups in our adult cohort.

We also identified other genetic events in adult Group 
3, such as KBTBD4 hotspot insertions described earlier 
by Northcott et  al. [45], as well as NOTCH1 mutations 
which are rare in paediatric Group 3. Kahn et al. recently 
reported that NOTCH1 signaling regulates the initiation 
of metastasis and self-renewal of Group 3 medulloblas-
toma, and intrathecal treatment with a NOTCH1 block-
ing antibody reduced spinal metastasis and improved 
survival in  vivo [27]. These findings propose NOTCH1 
signaling as a potential driver and therapeutic target in 
Group 3, alongside MYC activation and KBTBD4 inser-
tions [42].

TCF4 mutations were a frequent event in our adult 
Group 4 medulloblastomas. TCF4 was also one of the 
most frequently mutated genes in our whole cohort. 
TCF4 is a transcription factor involved in neurological 
development and is mutated in 2% of medulloblastomas 
[45]. Re-analysis of sequencing data from Northcott et al. 
revealed that TCF4 mutations were enriched in adults, 
present in 17% (10/58) of adult cases. Whether TCF4 
mutations play any functional role in medulloblastoma 
remains a topic for further investigation.

Lastly, the lack of prognostic impact of molecular 
groups warrants the discovery of alternative prognos-
tic markers in adult medulloblastoma. In addition to 
histological type and metastasis, we identified KMT2C 
mutational status as an independent prognosticator 
in our cohort. KMT2C, also known as MLL3, is a his-
tone lysine methyltransferase that catalyses the mono-
methylation of histone H3 lysine 4 (H3K4me) at gene 
enhancers [24]. KMT2C has a tumour suppressive role 
across many cancer types [66], and mutations or low 
expression of KMT2C are associated with poor sur-
vival in a wide range of lung, breast, gastric, skin and 
brain cancers [11, 17, 18, 33, 36, 41, 54, 63, 68, 73]. 
KMT2C was among the first few recurrently mutated 
genes identified in early medulloblastoma sequenc-
ing studies [53]. In our adult medulloblastoma cohort, 
KMT2C was one of the most frequently mutated genes, 
with mutations detected in 30% of cases across ages, 
sexes, histological types and molecular groups, so it is 
a potential biomarker for stratifying adult medulloblas-
toma patients. Our findings reaffirm the central impor-
tance of chromatin modification in medulloblastoma 
pathophysiology [26], and highlight the need for more 
comprehensive evaluation of the epigenetic landscape 
of adult medulloblastomas.
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