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Abstract 

In the clinical diagnosis of dementia with Lewy bodies, distinction from Alzheimer’s disease is suboptimal and 
complicated by shared genetic risk factors and frequent co-pathology. In the present study we tested the ability of 
polygenic scores for Alzheimer’s disease, dementia with Lewy bodies, and Parkinson’s disease to differentiate individu-
als in a 2713-participant, pathologically defined sample. A dementia with Lewy bodies polygenic score that excluded 
apolipoprotein E due to its overlap with Alzheimer’s disease risk was specifically associated with at least limbic (tran-
sitional) Lewy-related pathology and a pathological diagnosis of dementia with Lewy bodies. An Alzheimer’s disease 
polygenic score was associated with neuritic plaques and neurofibrillary tangles but not Lewy-related pathology, 
and was most strongly associated with an Alzheimer’s pathological diagnosis. Our results indicate that an assessment 
of genetic risk may be useful to clinically distinguish between Alzheimer’s disease and dementia with Lewy bodies. 
Notably, we found no association with a Parkinson’s disease polygenic score, which aligns with evidence that demen-
tia with Lewy bodies has a distinct genetic signature that can be exploited to improve clinical diagnoses.
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Introduction
In heterogeneous disease cohorts, accurate distinctions 
between Alzheimer’s disease (AD) and related dementias 
may improve precision in care delivery and thus lead to 
better outcomes. In the diagnosis of dementia with Lewy 
bodies (DLB), distinction from AD is suboptimal and 
complicated by the frequent co-occurrence of AD neuro-
pathologic changes (NC) with Lewy body (LB) pathology. 
Patients clinically diagnosed with AD often present with 
concurrent LB pathology at autopsy, though many stud-
ies have attempted to tease apart the differences in clini-
cal presentations to better reflect underlying pathology 
[2, 6, 9, 14, 21, 25].

Incorporating information about genetic risk into 
a difficult differential diagnosis may improve clinical-
neuropathological correlations. A recently developed 

AD polygenic hazard score (PHS) is associated with the 
hallmark Alzheimer’s disease neuropathologic changes 
(ADNC), neuritic plaques and neurofibrillary tangles. 
However, the large-scale genetic studies that identify 
such risk typically rely on clinical diagnoses, which are 
imperfect proxies for the often mixed underlying pathol-
ogies [5, 20]. While the AD PHS has reported associa-
tions with LBs [22], it is unclear whether this reflects a 
shared genetic risk between pathologies, a byproduct of 
the common presence of LB co-pathology with AD, since 
the level of ADNC was not controlled for in the analysis, 
or a lack of specificity in the AD PHS due to the presence 
of LBs or other mixed pathologies in those clinically diag-
nosed with AD.

DLB has both clinical features and genetic risk factors 
that overlap with both AD and Parkinson’s disease (PD). 
The apolipoprotein E (APOE) ε4 allele is the strongest 
genetic risk factor for late onset AD and is also overrep-
resented in pure DLB and PD with dementia [24]. The 
SNCA, GBA, and BCL7C/STX1B genes are implicated in 
risk for both DLB and PD [8, 16], though the associations 
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at the SNCA locus differ between the two [1, 8]. Given the 
relatively low accuracy of a DLB diagnosis, genetic stud-
ies typically examine relatively small, neuropathologically 
confirmed DLB cohorts [8, 19], with few genome-wide 
significant variants identified. Then, genetic risk for PD, 
discovered in well-powered studies, may be better suited 
to predict the underlying LB pathology in DLB cases. In 
a pathologically defined cohort we tested the hypothesis 
that the AD PHS, a DLB polygenic risk score (PRS), and 
a PD PRS can differentiate individuals with DLB from 
those who have AD.

Methods
Participants
A sample of 437 participants was selected from the 
Shiley-Marcos Alzheimer’s Disease Research Center 
(ADRC) of the University of California, San Diego 
(UCSD). An independent sample of 3982 participants 
evaluated at other ADRCs was selected from the National 
Alzheimer’s Coordinating Center (NACC). Inclusion was 
limited to participants who had undergone genotyping 
and a neuropathological assessment at autopsy. All data 
were collected through the NACC uniform data set, min-
imum data set, or neuropathology data set, except where 
otherwise specified.

Pathological diagnosis
The 4419 participants were categorized based on diag-
nostic criteria for AD, DLB, frontotemporal lobar degen-
eration (FTD), medial temporal lobe sclerosis (MTLS), 
and other major pathological diagnoses as follow.

AD: If Thal phase was assessed, an “ABC” score indi-
cating intermediate or high ADNC [11] constituted an 
AD diagnosis. Otherwise, pathological diagnosis of AD 
followed NIA-Reagan criteria (i.e., at least Consortium 
to Establish a Registry for Alzheimer’s Disease (CERAD) 
moderate and Braak stage III/IV) [12].

DLB: Pathological diagnosis of DLB followed criteria 
outlined in the fourth consensus report of the DLB Con-
sortium (i.e., requires limbic (transitional) or diffuse neo-
cortical Lewy-related pathology) [14].

MTLS: MTLS (including hippocampal sclerosis) was 
determined based on pathologist report to the NACC as 
present or absent.

FTD and other tauopathies: Evidence of FTD with tau 
pathology (including Pick’s disease, corticobasal degener-
ation, and progressive supranuclear palsy), FTD and par-
kinsonism with tau-positive or argyrophilic inclusions, 
other tauopathies (including tangle-only dementia and 
argyrophilic grain dementia), FTD with ubiquitin-posi-
tive (tau-negative) inclusions, FTD with TDP-43 pathol-
ogy, and FTD with no distinctive histopathology present 

or not otherwise specified constituted an FTD pathologi-
cal diagnosis.

Other Pathological Diagnoses: Cases with “other 
pathological diagnoses” were excluded. Specifically, in 
versions 1–9 of the NACC neuropathology data, this 
constituted evidence of prion-related disorders and other 
major pathologic disorders (e.g. infectious, immunologic, 
metabolic, neosplastic, toxic, or degenerative). In version 
10, this constituted ALS/motor neuron disease, Pigment-
spheroid degeneration/NBIA, multiple system atrophy, 
prion disease, trinucleotide disease (Huntington disease, 
SCA, or other), malformation of cortical development, 
metabolic/storage disorder, leukodystrophy, multiple 
sclerosis or other demyelinating disease, contusion/trau-
matic brain injury of any type (acute or chronic), neo-
plasm (primary or metastatic), infectious process of any 
type (encephalitis, abscess, etc.), herniation (any site), 
or other pathologic diagnosis, Down syndrome, AD-
related genes (dominantly inherited), FTD related genes 
(dominantly inherited), or other known genetic muta-
tion. Neuron loss in the substantia nigra was addition-
ally considered except in the case of a DLB pathological 
diagnosis.

To disentangle the effects of genetic risk on pathol-
ogy in light of frequently occurring co-pathology, we 
restricted analysis to individuals who met the above 
criteria for only AD (n = 1854), DLB (n = 57), or FTD 
(n = 65) without meeting criteria for any other patho-
logical diagnosis, those who met the criteria for both AD 
and DLB but no other pathological diagnosis (AD + DLB, 
n = 455), and those who met the criteria for both AD and 
MTLS but no other pathological diagnosis (AD + MTLS, 
n = 182). Also, individuals who did not meet criteria for 
any of the above pathological diagnoses were included 
(control, n = 245). This lead to the exclusion of 1561 
participants based on pathological criteria, either with 
mixed pathology inconsistent with the above groups, or 
with pathology documented in a way that precluded cat-
egorization (e.g. LBs present in an unspecified region).

Clinical diagnoses
Clinical diagnosis was assessed at the final visit before 
death. Individuals in the control group (who did not meet 
criteria for any of the pathological diagnoses) were fur-
ther limited to clinically normal participants without PD, 
resulting in the exclusion of 68 additional participants. 
For all other pathologically defined groups, no clinical 
criteria were imposed except to exclude individuals with 
PD dementia, following the one-year rule, excluding an 
additional 14 participants (1 DLB and 13 AD + DLB), and 
those with a prior clinical PD diagnosis who did not meet 
pathological criteria for DLB, excluding an additional 63 
participants (55 AD, 7 AD + MTLS, and 1 FTD).
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Genetic data
Genetic data for UCSD ADRC participants was accessed 
through the NACC database or obtained locally. Alz-
heimer’s disease Genetics Consortium (ADGC) data 
for participants evaluated at other ADRCs was accessed 
through the National Institute on Aging Genetics of Alz-
heimer’s disease Data Storage Site (NIAGADS). For the 
ADRC, genetic data was preprocessed with PLINK to 
exclude samples with a missingness rate greater than 10% 
and to perform strand flips as necessary. Pre-imputation 
quality controls removed duplicate sites, non-single-
nucleotide polymorphism (SNP) sites, monomorphic 
sites, and SNPs with a call rate < 90%. The imputation 
was performed using the Michigan Imputation Server [3] 
with the HRC reference panel [13] (hg19). Post-imputa-
tion the data was filtered to exclude genotype calls with 
an estimated posterior genotype probability < 0.9. For the 
NACC, imputed genetic data was downloaded directly 
from NIAGADS.

AD polygenic hazard score calculation
The PHS was calculated as described for all partici-
pants [4]. Briefly, potentially AD-associated SNPs were 
selected in the International Genomics of Alzheimer’s 
Project (IGAP) cohort at p < 10−5. These SNPs were 
then integrated into a stepwise Cox proportional haz-
ards model using a subset of the ADGC phase 1 genetic 
data, excluding individuals from the NACC, Alzheimer’s 
Disease Neuroimaging Initiative (ADNI), and the  Reli-
gious Orders Study and Rush Memory and Aging Project 
(ROSMAP). This stepwise procedure identified 31 SNPs 
that most improved the model prediction. The derived 
PHS was then validated in independent samples, includ-
ing ADGC phase 2, NACC, ADNI, and ROSMAP. The 
PHS used in the current study was calculated for each 
participant as the vector product of that individual’s gen-
otype for the 31 SNPs and the corresponding parameter 
estimates from the ADGC phase 1 Cox proportional haz-
ard model, in addition to the APOE effects.

PD polygenic risk score calculation
The PD PRS was calculated for each participant as the 
vector product of that individual’s genotype for the 90 
independent genome-wide significant variants identified 
by the most recent meta-analysis of PD genome-wide 
association study (GWAS) data and the corresponding 
parameter estimates using data from all available studies 
[15].

DLB polygenic risk score calculation
The DLB PRS was calculated as the vector product of that 
individual’s genotype for the 5 independent genome-wide 

significant variants identified by the first DLB GWAS and 
the corresponding parameter estimates from the discov-
ery stage [8]. To ensure there was no participant overlap 
between samples, the DLB PRS was only analyzed in the 
subset of 2282 participants in the present study who were 
assuredly not included in the DLB GWAS.

Statistical analysis
Binary logistic regression was used to examine the rela-
tionship between the PD PRS and a clinical diagno-
sis of PD, controlling for age at death and sex. Clinical 
and demographic differences between pathologically 
defined groups were examined using either Welch’s two 
sample t test or Pearson’s Chi squared test as appropri-
ate, corrected for multiple comparisons using the Ben-
jamini–Hochberg procedure. APOE ε4 allele frequency 
was examined across pathologically defined groups 
using Pearson’s Chi squared test. Pairwise comparisons 
between groups were corrected for multiple comparisons 
using the Benjamini–Hochberg procedure.

Multinomial logistic regression models were used to 
examine the relationship between the AD PHS, PD PRS, 
or DLB PRS and the pathological diagnosis group, con-
trolling for age at death and sex, and Bonferroni cor-
rected for three comparisons. Given that the APOE ε4 
allele is a known risk factor for both AD and DLB, mul-
tinomial logistic regression models were used to examine 
the relationship between either the AD PHS or DLB PRS 
without its APOE component weights and the pathologi-
cal diagnosis group, controlling for age at death and sex.

Ordinal logistic regression models were used to exam-
ine the relationship between either the AD PHS, PD PRS, 
or DLB PRS and AD pathological outcome variables 
(i.e., Braak stage for neurofibrillary tangles or CERAD 
score for neuritic plaques), controlling for age at death 
and sex. Multicollinearity was evaluated. Brant’s test was 
used to test the proportional odds assumption. Propor-
tional odds models were used except in the case where 
the proportional odds assumption was violated, in which 
cases partial proportional odds models were used. Binary 
logistic regression models were used to examine the rela-
tionship between the AD PHS, PD PRS, or DLB PRS and 
the presence of at least limbic (transitional) Lewy-related 
pathology, controlling for age at death and sex. For each 
pathological outcome variable, results were Bonferroni 
corrected for three comparisons. To examine the effect of 
the AD PHS and DLB PRS on pathology beyond APOE, 
analyses were repeated using versions of the AD PHS or 
DLB PRS without its APOE component weights.
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Results
In all 4419 participants, regardless of pathological diag-
nosis, the PD PRS predicted a clinical diagnosis of 
PD (odds ratio (OR) = 1.52, 95% confidence interval 
(CI) = 1.16–1.98, p = 0.002). 2713 participants were cat-
egorized into one of six pathologically defined groups: 
FTD (n = 64), DLB (n = 56), AD + DLB (n = 442), AD 
(n = 1799), AD + MTLS (n = 175) or control (n = 177). 
Clinical and demographic characteristics of these patho-
logically defined groups are reported in Table  1. Nota-
ble in Table  1 is the following: the age at death in each 

pathologically defined group, with the exception of 
AD + MTLS, was younger than in the control group, 
more men were in the DLB and AD + DLB groups than 
in the other groups, all AD groups (AD, AD + DLB, and 
AD + MTLS) had worse cognitive impairment than the 
FTD or DLB groups, and, within AD groups, those with 
mixed pathology (AD + DLB or AD + MTLS) had worse 
cognitive impairment than those with only AD.
APOE ε4 allele frequency was different between path-

ologically defined groups (overall χ2 = 174.5, p < .001, 
Table  2). Pairwise Chi squared tests revealed that 

Table 1  Demographics and clinical characteristics split by pathological diagnosis group

Reported as mean (SD) unless otherwise noted. Primary clinical diagnosis of AD included probable or possible AD, LBD included DLB, Lewy body variant of AD, and 
LBD, and FTD included FTD, Pick’s disease, CBD, PSP, and PPA. FDR adjusted p < .05 for differences from *Control, †FTD, ‡DLB, §AD + DLB, ¶AD, or #AD + MTLS based 
on pairwise Pearson’s Chi squared tests or Welch’s t-tests. Small numbers in certain subgroups prevented the pairwise comparison of primary clinical diagnoses across 
pathologically defined groups

Abbreviations: DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; FTD, frontotemporal lobar degeneration; MTLS, medial temporal lobe sclerosis; LBD, Lewy 
body dementia; CDR, Clinical Dementia Rating Scale; CDR-SB, Clinical Dementia Rating Scale Sum of Boxes

Pathological diagnosis group

Control FTD DLB AD + DLB AD AD + MTLS

Participants, N 177 64 56 442 1799 175

Women, N (%) 94 (53) 25 (39) 12 (21)*§¶# 181 (41)*¶# 959 (53) 94 (54)

Age at death, y 83.7 (8.7) 78.5 (11.5)*# 80.1 (8.6)*# 79.0 (8.5)*#¶ 80.2 (9.0)*# 84.6 (7.8)

Caucasian, N (%) 173 (98) 63 (98) 56 (100) 427 (97) 1736 (96) 171 (98)

Hispanic, N (%) 4 (2) 0 (0) 1 (2) 7 (2) 30 (2) 1 (1)

Education, y 15.4 (2.8) 15.1 (3.0) 15.6 (3.3) 15.0 (3.2) 14.3 (3.3)*‡§ 14.8 (3.6)

Final clinical evaluation

Time before death, y 2.6 (3.0) 3.0 (3.0) 2.9 (3.5) 3.0 (3.3) 2.5 (2.8)§# 3.2 (3.1)

Primary clinical diagnosis

 AD, N (%) 0 (0) 22 (34) 19 (34) 340 (77) 1574 (87) 159 (91)

 LBD, N (%) 0 (0) 2 (3) 24 (43) 79 (18) 41 (2) 4 (2)

 FTD, N (%) 0 (0) 23 (36) 1 (2) 9 (2) 64 (4) 5 (3)

Global CDR 0.1 (0.2) 1.6 (1.2)* 1.4 (1.0)* 2.1 (0.9)*†‡ 1.9 (1.0)*†‡§# 2.2 (0.8)*†‡

CDR-SB 0.1 (0.4) 9.0 (6.8)* 7.6 (5.8)* 12.5 (5.5)*†‡ 10.8 (6.1)*†‡§# 12.9 (4.9)*†‡

Table 2  APOE genotypes and allele frequencies by pathologically defined groups

APOE ε4 allele frequency was different between pathologically defined groups (overall χ2 = 174.5, p < .001). FDR adjusted p < .05 for differences from *Control, †All AD 
groups (AD, AD + DLB, and AD + MTLS) based on pairwise Chi squared tests

Abbreviations: DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; FTD, frontotemporal lobar degeneration; MTLS, medial temporal lobe sclerosis; APOE, 
apolipoprotein E

N (%)

APOE genotype frequency ε4 allele frequency

2/2 2/3 2/4 3/3 3/4 4/4

Control 1 (1) 25 (14) 7 (4) 119 (67) 24 (14) 1 (1) 33 (9)

FTD 0 (0) 7 (11) 1 (2) 37 (58) 19 (30) 0 (0) 20 (16)†

DLB 0 (0) 8 (14) 4 (7) 28 (50) 16 (29) 0 (0) 20 (18)*†

AD + DLB 2 (0) 11 (2) 5 (1) 136 (31) 224 (51) 64 (14) 357 (40)*

AD 0 (0) 52 (3) 51 (3) 594 (33) 829 (46) 273 (15) 1426 (40)*

AD + MTLS 0 (0) 8 (5) 5 (3) 58 (33) 83 (47) 21 (12) 130 (37)*
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APOE ε4 allele frequency was greater in all AD groups 
(AD, AD + DLB, and AD + MTLS) and the DLB group 
than in the control group (FDR adjusted p < .05). Addi-
tionally, APOE ε4 allele frequency was greater in all 
AD groups than in either the FTD or DLB groups (FDR 
adjusted p < .001).

Higher AD PHS was associated with increased rela-
tive risk ratios for the AD, AD + DLB, and AD + MTLS 
pathological diagnosis groups, compared to the control 
group (p < .001, Table  3; Fig.  1). Higher AD PHS was 
also associated with increased relative risk ratios for the 
DLB and FTD groups compared to the control group 
(p < .01), though with lower relative risk ratios than any 
of the AD groups, as confirmed by non-overlapping 
confidence intervals. Higher PD PRS was not associ-
ated with significant increased relative risk ratios for 
any pathological group compared to the control group. 

Higher DLB PRS was associated with increased rela-
tive risk ratios for the AD, AD + DLB, AD + MTLS, and 
DLB groups compared to the control group (p < .001).

Without the APOE ε4 or ε2 dosage weights, we 
observed similar results for the AD PHS, which was 
associated with increased relative risk ratios for the AD 
(1.86 95% CI [1.47–2.37]), AD + DLB (1.83 [1.39–2.40]), 
AD + MTLS (1.91 [1.37–2.65]), DLB (2.03 [1.26–3.26]), 
and FTD (1.78 [1.14–2.78]) groups compared to the con-
trol group. Without the APOE component weight, the 
specificity of the DLB PRS emerged, as it was only associ-
ated with increased relative risk ratios for the DLB (3.58 
[1.20–10.66]) and AD + DLB (3.15 [1.47–6.77]) groups 
compared to the control group.

The odds of having tau pathology at or above a given 
Braak stage increased with the AD PHS (p < .001, Table 3; 
Fig. 2). The PD PRS was not associated with Braak stage. 

Table 3  Associations between the polygenic scores and pathological diagnostic categories and variables

Results of multinomial, ordinal, and binary logistic regression models for each polygenic score and pathological diagnosis group and outcome variable are displayed. 
For ordinal logistic regressions, proportional odds models were used except in the case where the proportional odds assumption was violated, in which cases 
partial proportional odds models were used. Effects are reported per unit increase in the polygenic score. Significance was set to p < .017, Bonferroni corrected for 
comparisons across the three polygenic scores

Abbreviations: RRR, relative risk ratio; OR, odds ratio; MLR, multinomial logistic regression; OLR, ordinal logistic regression; POM, proportional odds model; PPOM, 
partial proportional odds model; BLR, binary logistic regression PD, Parkinson’s disease, PRS, polygenic risk score; DLB, dementia with Lewy bodies; AD, Alzheimer’s 
disease; PHS, polygenic hazard score; FTD, frontotemporal lobar degeneration; MTLS, medial temporal lobe sclerosis

Pathological diagnosis AD PHS PD PRS DLB PRS

RRR (95% CI) p value RRR (95% CI) p value RRR (95% CI) p value

MLR, control as reference

 FTD 1.60 (1.16–2.21) .004 1.01 (.60–1.70) .97 1.24 (.76–2.02) .40

 DLB 1.73 (1.23–2.42) .002 1.39 (.80–2.41) .24 3.22 (1.62–6.40) < .001

 AD + DLB 3.05 (2.47–3.77) < .001 .93 (.67–1.28) .65 4.47 (2.76–7.22) < .001

 AD 3.06 (2.52–3.71) < .001 .92 (.69–1.22) .57 3.08 (2.33–4.09) < .001

 AD + MTLS 3.14 (2.45–4.02) < .001 .95 (.65–1.39) .78 2.94 (2.07–4.18) < .001

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Braak stage

 OLR, POM – – 0.93 (0.82–1.05) .24 – –

 OLR, PPOM

  I 2.34 (1.60–3.42) < .001 – – 1.89 (1.06–3.39) .03

  II 2.10 (1.76–2.50) < .001 – – 2.05(1.52–2.76) < .001

  III 2.28 (1.99–2.62) < .001 – – 2.33 (1.88–2.89) < .001

  IV 1.88 (1.68–2.10) < .001 – – 1.95 (1.63–2.33) < .001

  V 1.53 (1.40–1.68) < .001 – – 1.50 (1.30–1.72) < .001

  VI 1.33 (1.23–1.44) < .001 – – 1.34 (1.18–1.51) < .001

Neuritic plaque density

 OLR, POM – – 0.85 (0.73–0.99) .04 – –

 OLR, PPOM

 Sparse 2.69 (2.21–3.26) < .001 – – 2.79 (1.95–3.98) < .001

 Moderate 2.42 (2.07–2.84) < .001 – – 2.42 (1.88–3.12) < .001

 Frequent 1.71 (1.55–1.88) < .001 – – 1.63 (1.41–1.88) < .001

Lewy pathology stage

 BLR 1.03 (0.93–1.14) .52 1.04 (0.87–1.24) .66 1.45 (1.04–2.03) .03
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Fig. 1  Relationship between polygenic scores and pathological diagnostic categories. Significant difference from: *Control, †All AD groups (AD, 
AD + DLB, and AD + MTLS) based on Bonferroni corrected multinomial regression models. ‡The number of participants is reported for the AD 
PHS and PD PRS analyses. The DLB PRS was analyzed in a subset of 2282 total participants. Abbreviations: PD, Parkinson’s disease, PRS, polygenic 
risk score; DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; PHS, polygenic hazard score; FTD, frontotemporal lobar degeneration; MTLS, 
medial temporal lobe sclerosis
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Beginning with Braak stage II, the odds of having tau 
pathology at or above a given Braak stage increased with 
DLB PRS (p < .001). Without the APOE ε4 or ε2 dosage 
weights, we observed similar results for the association 
between Braak stage and the AD PHS (OR 1.20 95% CI 
[1.08–1.34]). Yet, without the APOE component weight, 
the DLB PRS was not associated with Braak stage (0.89 
[0.73–1.08]).

The odds of having neuritic plaques at or above a given 
density increased with both the AD PHS and DLB PRS 
(p < .001, Table  3; Fig.  2). The PD PRS was not associ-
ated with neuritic plaque density. Without the APOE ε4 
or ε2 dosage weights, we observed similar results for the 
association between the AD PHS and neuritic plaque 
density (OR 1.25 95% CI [1.10–1.43]). Conversely, with-
out the APOE component weight, the odds of having 

Fig. 2  Relationship between polygenic scores and pathological variables. Graphical visualization of the relationship between the PD, DLB, and AD 
polygenic scores and measures of AD (Braak stage and neuritic plaque density) and Lewy pathology. Results of ordinal and binary logistic regression 
models for each polygenic score and pathological outcome variable are included in Table 3. *The number of participants is reported for the AD 
PHS and PD PRS analyses. The DLB PRS was analyzed in a subset of 2282 total participants. Abbreviations: PD, Parkinson’s disease, PRS, polygenic risk 
score; DLB, dementia with Lewy bodies; AD, Alzheimer’s disease; PHS, polygenic hazard score; BP, brainstem predominant; LT, limbic (transitional); 
DN, diffuse neocortical
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neuritic plaques at or above a given density decreased 
with increasing DLB PRS (OR 0.76 [0.60–0.96]).

None of the polygenic scores were associated with 
the presence of at least limbic (transitional) LB pathol-
ogy (Table  3; Fig.  2). Similarly, without the APOE ε4 or 
ε2 dosage weights, the AD PHS was not associated with 
the presence of at least limbic (transitional) LB pathol-
ogy (OR 1.04 95% CI [0.89–1.22]). However, without the 
APOE component weight, the DLB PRS was associated 
with the odds of having at least limbic (transitional) LB 
pathology (3.41 [1.93–6.03]).

Discussion
We tested whether genetic risk for AD, DLB, or PD 
may be useful to clinically distinguish between AD and 
DLB. The AD and DLB polygenic scores were associated 
with their respective pathological diagnostic catego-
ries, though not exclusively. We replicated the finding of 
an overrepresentation of the APOE ε4 allele in the pure 
DLB group compared to controls [24], but found that 
the ε4 allele frequency was higher in all AD groups (AD, 
AD + DLB, or AD + MTLS) than in the DLB group. Given 
this increased frequency and the strong, dose-depend-
ent risk of the ε4 allele in AD, the inclusion of an APOE 
weight in the DLB PRS diminished its ability to specifi-
cally predict LB pathology. When the APOE weight was 
removed, the DLB PRS was associated with only DLB and 
AD + DLB pathological diagnosis groups, and was asso-
ciated with increased LB but not AD pathology.

However, the dose-dependent weighting of the APOE 
ε4 allele is an important feature of the AD PHS, and ena-
bled the distinction between AD groups and the non-
AD groups. When removing the APOE ε2 and ε4 dosage 
weights, the AD PHS maintained its association with 
Braak stage and neuritic plaque density, but it also main-
tained associations with all pathological groups relative 
to the control group. The AD PHS includes genes associ-
ated with multiple biological processes implicated in AD, 
such as inflammation, synaptic function, and epigenetic 
regulation [10]. The associations suggest such processes 
may also be disrupted in non-AD dementias.

The PD PRS was associated with a clinical PD diagno-
sis, but not any pathological diagnosis or variable exam-
ined in this study. These results align with recent work 
finding genetic risk for PD explained only a small amount 
(.37%) of variance in DLB [7].

Despite striking group-level results, one limitation to 
the clinical utility of this work is the amount of individual 
variation in polygenic scores within pathological groups. 
It remains unclear whether assessing polygenic risk for 
AD and DLB in combination with clinical features and 
biomarkers improves the accuracy of clinical diagnoses 

at the individual level. Further, the polygenic scores used 
in these analyses were predominantly derived and tested 
on individuals of European ancestry. Known differences 
in genetic risk across racial and ethnic groups [17, 18, 
23] suggest these findings may not generalize. Future 
work is required to develop polygenic scores in diverse 
populations.

Conclusions
Despite few identified genome-wide significant variants, 
the DLB PRS without the APOE component weight was 
specifically associated with LB pathology and a patho-
logical diagnosis of DLB, either alone or in combination 
with AD. The AD PHS was associated with ADNC but 
not LB pathology, and most strongly predicted a patho-
logical diagnosis of AD, either alone or in combination 
with DLB or MTLS. Together, these results and the lack 
of associations with the PD PRS align with evidence that 
genetic risk for DLB is not simply situated in the middle 
of an AD-PD continuum, but has a distinct signature that 
can be exploited along with risk for AD to improve clini-
cal diagnoses.
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