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A novel AFG3L2 mutation close to AAA

domain leads to aberrant OMA1 and OPA1
processing in a family with optic atrophy
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Abstract

Autosomal dominant optic atrophy (ADOA) is a neuro-ophthalmic condition characterized by bilateral degeneration
of the optic nerves. Although heterozygous mutations in OPA1 represent the most common genetic cause of
ADOA, a significant number of cases remain undiagnosed.
Here, we describe a family with a strong ADOA history with most family members spanning three generation having
childhood onset of visual symptoms. The proband, in addition to optic atrophy, had neurological symptoms consistent
with relapsing remitting multiple sclerosis. Clinical exome analysis detected a novel mutation in the AFG3L2 gene (NM_
006796.2:c.1010G > A; p.G337E), which segregated with optic atrophy in family members. AFG3L2 is a metalloprotease
of the AAA subfamily which exerts quality control in the inner mitochondrial membrane. Interestingly, the identified
mutation localizes close to the AAA domain of AFG3L2, while those localized in the proteolytic domain cause
dominant spinocerebellar ataxia type 28 (SCA28) or recessive spastic ataxia with epilepsy (SPAX5). Functional studies in
patient fibroblasts demonstrate that the p.G337E AFG3L2 mutation strongly destabilizes the long isoforms of OPA1 via
OMA hyper-activation and leads to mitochondrial fragmentation, thus explaining the family phenotype. This study
widens the clinical spectrum of neurodegenerative diseases caused by AFG3L2 mutations, which shall be considered as
genetic cause of ADOA.
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Introduction
ADOA is a genetic condition affecting the retinal gan-
glion cells (RGCs), whose axons form the optic nerve. It
is a relatively common form of inherited optic neur-
opathy, with a prevalence of 3/100,000 in most popula-
tions worldwide. Patients are usually diagnosed during
early childhood, because of bilateral visual loss related to
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optic disc pallor or atrophy, and typically in the context
of a family history of ADOA.
Molecular diagnosis is provided by the identification

of a mutation in the OPA1 gene (75% of ADOA pa-
tients) or in the OPA3 gene (1% of patients) [1]. How-
ever, many ADOA cases remain undiagnosed [2].
About 20% of patients with OPA1 mutations are

known to develop additional co-morbidities of deafness,
ophthalmoplegia, ataxia, myopathy and peripheral neur-
opathy [1].
OPA1 is a mitochondrial GTPase responsible for the

fusion of the inner mitochondrial membrane (IMM), by
which it regulates mitochondrial dynamics. OPA1 is
transcribed in eight splicing isoforms which undergo
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constitutive processing in the IMM. At steady state,
OMA1-operated cleavage at S1 site and/or YME1L1-
operated cleavage at S2 site lead to the generation of
long- (non-cleaved) and short- (cleaved) forms of OPA1
[3]. OPA1 long forms (L-OPA1) are the active mediators
of mitochondrial fusion, and their processing to short,
soluble forms (S-OPA1) limits fusion and can facilitate
mitochondrial fragmentation [4, 5].
OPA1 processing is finely regulated by AFG3L2, a

mitochondrial protein belonging to the AAA-protease
subfamily (ATPases associated with various cellular ac-
tivities) which exerts quality control in the IMM [6]. We
previously demonstrated that loss of AFG3L2 induces
hyper-activation of the stress-activated protease OMA1
and leads to excessive OPA1 processing, promoting
mitochondrial fragmentation [7]. Mutations in the pro-
teolytic domain of AFG3L2 cause dominant SCA28 and
the rare recessive SPAX5, whose main clinical features
are gait ataxia and lack of balance with cerebellar atro-
phy [8, 9].
In this report, we describe a family with ADOA. By

clinical exome analysis we identified a novel mutation in
AFG3L2 (p.G337E) segregating with optic atrophy
within the family. In contrast to SCA28 causing-
mutations, which mostly affect the proteolytic domain,
this new mutation localizes close to the AAA domain of
AFG3L2. Functional studies demonstrate that the
p.G337E mutation abolishes AFG3L2 function and leads
to a striking L-OPA1 destabilization, comparable to the
one observed in Afg3l2 null cells. Our data disclose
OMA1 hyper-activation, OPA1 enhanced processing and
mitochondrial fragmentation as the pathogenic cascade
of ADOA caused by AFG3L2 p.G337E mutation.

Case presentation
The proband was diagnosed with optic atrophy aged 4,
when he was found to have reduced vision (right 3/60,
left 2/60), poor color perception with Ishihara testing
and mild optic atrophy. Electrophysiology investigation
revealed poor amplitudes with visual evoked potentials
and a normal electroretinogram. Brain Magnetic Reson-
ance Imaging (MRI) at the age of 5 was normal. Optic
atrophy slowly worsened with age, showing marked optic
nerve pallor aged 20 (Fig. 1a). The proband also pre-
sented with an acute episode of cerebellar ataxia at the
age of 18 and was diagnosed with relapsing remitting
multiple sclerosis (MS). He fulfilled the McDonald cri-
teria for diagnosis of MS and brain MRI demonstrated
widespread demyelinating lesions in both cerebral, cere-
bellar hemispheres as well as the midbrain and cord
(Fig. 1b). His cerebrospinal fluid (CSF) analysis showed
oligoclonal bands. Anti-aquaporin 4 antibodies (Neuro-
myelitis optica-Immunoglobulin G - NMO IgG) testing
was negative. His symptoms improved after plasma
exchange and he is now stable on monthly Natalizumab
infusions. There was a known history of mild ADOA in
this family, with proband’s mother, maternal grandfather
and multiple other maternal relatives being affected by
optic atrophy but able to drive, with vision of at least 6/
12. The proband’s younger brother was found to have a
similar severe level of vision and optic atrophy aged 5
(Fig. 1c). None of the family members had symptoms of
spinocerebellar ataxia.

Genetic testing
We identified a heterozygous missense mutation NM_
006796.2(AFG3L2):c.1010G > A in exon 8 of the AFG3L2
gene in a family member with optic atrophy. This is a
novel mutation, not reported in population databases
such as gnomAD or in clinical cases, resulting in glycine
to glutamic acid position 337 NP_006787.2(AFG3L2):
p.G337E. This mutation segregates with optic atrophy in
five family members in total and followed an autosomal
dominant pattern of inheritance (Fig. 1c and d). p.G337E
is very highly conserved and in silico softwares consist-
ently predict it to be pathogenic (Fig. 1e).

Functional studies
To functionally assay the pathogenicity of the p.G337E
mutation, we mutagenized an AFG3L2 WT-myc con-
struct to obtain AFG3L2G337E-myc and overexpressed it
in Afg3l2−/− MEFs. We analyzed by WB the levels and
post translational processing of OPA1. In Afg3l2−/−

MEFs OPA1 is processed at a higher rate compared to
wt controls, leading to a striking reduction of L-OPA1,
which inhibits fusion and triggers mitochondrial net-
work fragmentation [7, 10]. We found that overexpres-
sion of AFG3L2G337E-myc does not restore, even
partially, L-OPA1 in Afg3l2−/− MEFs. Conversely, L-
OPA1 are recovered by AFG3L2 WT-myc overexpres-
sion, indicating that the p.G337E mutation completely
abolishes AFG3L2 activity (Fig. 2a).
We then analyzed mitochondrial morphology in

Afg3l2−/− MEFs transfected with mt-YFP alone, or in
combination with AFG3L2G337E-myc or AFG3L2 WT-
myc. Strikingly, and in accordance with L-OPA1 en-
hanced processing, the mitochondrial network was com-
parable between Afg3l2−/− MEFs and Afg3l2−/− MEFs
transfected with AFG3L2G337E-myc, with the highest per-
centage of cells showing fragmented mitochondria. Con-
versely, the overexpression of AFG3L2 WT-myc was able
to restore mitochondrial tubulation in Afg3l2−/− MEFs
(Fig. 2b).
We then evaluated the effect of the p.G337E mutation

in a more physiopathologic context, by analyzing pri-
mary fibroblasts from the proband (III-2) and his af-
fected mother (II-2). We firstly assayed by WB the effect
of the p.G337E mutation on the stability of AFG3L2



Fig. 1 Family clinical features and pedigree. a Fundus photos of proband age 20 showing bilateral optic nerve atrophy. b MRI Brain demonstrating
numerous T2/FLAIR hyperintense lesions predominantly involving the periventricular white matter and the grey-white matter junction. c Pedigree
demonstrating clear autosomal dominant inheritance of optic atrophy. The arrow indicates the proband. d AFG3L2 protein scheme with functional
domains, reporting the mutation described here. e p.G337 AFG3L2 residue conservation among different AFG3L2 orthologues
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monomer and we found that the whole amount of
AFG3L2 is comparable between patient and control fi-
broblasts (Fig. 3a). On the contrary, we observed that L-
OPA1 are strongly destabilized by an enhanced process-
ing in patient fibroblasts compared to controls, leading
to a striking reduction of L-OPA1 and to an
accumulation of S-OPA1 (Fig. 3b). We also proved that
this is due to the hyper-activation of OMA1, as demon-
strated by a significant reduction in its amount when
compared to controls (Fig. 3b). Indeed, we previously
showed that OMA1 is hyper-activated in the absence of
AFG3L2 and undergoes autocatalytic degradation [7,



Fig. 2 Overexpression of exogenous AFG3L2G337E-myc in a AFG3L2 null background does not rescue L-OPA1 and mitochondrial tubulation. aWB analysis and
relative quantification of L-OPA1 after transient transfection of mt-YFP in combination with AFG3L2 WT-myc or AFG3L2G337E-myc in Afg3l2+/+ and Afg3l2−/− MEFs
(ratio 1:3). c-MYC was used as transfection control. Bars represent means ± SEM of three independent experiments. Student’s t test: * p<0.05; ** p<0.01; ***
p<0.001. b Representative pictures of in live mitochondrial morphology after transient transfection of mt-YFP in combination with AFG3L2 WT-myc or
AFG3L2G337E-myc in Afg3l2+/+ and Afg3l2−/− MEFs (ratio 1:3). The graph shows the morphometric analysis of mitochondrial morphology. At least 80 randomly
selected cells were analyzed in each experiment. Chi-square analysis (two degrees of freedom): *** p < 0.001
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Patient fibroblasts show enhanced L-OPA1 processing via OMA1 hyper-activation. WB analysis and relative quantification of (a) AFG3L2 and
(b) OPA1 total amount, YME1L1, L-OPA1, S-OPA1, OMA1 in human primary fibroblasts. G337E_1 is the proband and G337E_2 is patient II-2 of the
pedigree. Bars represent means ± SEM of three independent experiments. Student’s t test: * p < 0.05; ** p < 0.01; *** p < 0.001. (c) Representative
pictures of mitochondrial morphology in human primary fibroblasts infected with mtDsRed2 and visualized by live imaging microscopy. The
graph shows the morphometric analysis of mitochondrial morphology. At least 100 randomly selected cells were analyzed in each experiment.
Chi-square analysis (two degrees of freedom): *** p < 0.001
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11]. We also evaluated possible compensatory effects of
YME1L1, but the levels of this protease resulted compar-
able between patients and controls (Fig. 3b).
Live imaging evaluation of mitochondrial network

showed a highly fused and interconnected mitochondria
in control cells, while patient fibroblasts carrying the
p.G337E mutation presented shorter and more isolated
organelles, consistent with OPA1 abnormal processing
(Fig. 3c).

Discussion and conclusions
Here we describe a family in which a novel heterozygous
mutation in AFG3L2 co-segregates with ADOA. Inter-
estingly, the identified p.G337E mutation localizes close
to the AAA domain of AFG3L2, in contrast with those
causing SCA28 and SPAX5, which clusterize in the pro-
teolytic domain of the protein. Functional studies of the
p.G337E mutation demonstrate its pathogenicity, as it
strongly affects the processing of L-OPA1 leading to
aberrant mitochondrial fragmentation. The defective
mitochondrial dynamics is in line with most optic neu-
ropathies exhibiting mitochondrial dysfunction in RGCs
as underlying mechanism [12].
Other heterozygous/compound heterozygous mutations

in AFG3L2 have been described in isolated cases with
nonsyndromic optic atrophy (although not supported by
functional studies) [13, 14], and in familial syndromic and
non-syndromic optic atrophy [15, 16]. The present study
further demonstrates that heterozygous mutations in
AFG3L2 shall be considered as a genetic cause for ADOA
in OPA1 and OPA3- negative cases.
The family described here has features of ADOA with

no clinical evidence of spinocerebellar ataxia in any of
the affected members but the proband, who experienced
an acute episode of cerebellar ataxia. As proband’s clin-
ical features, MRI and CSF investigations were consist-
ent with relapsing remitting MS and the demyelinating
lesions (including the cerebellar lesions) settled on treat-
ment with Natalizumab, his cerebellar symptoms were
most likely due to MS. However, it remains to be deter-
mined if these demyelinating neurological symptoms
could be directly related to the AFG3L2 mutation. Al-
though mouse studies have shown that deletion of
AFG3L2 (either constitutive or in mature mouse
oligodendrocytes) can cause myelin abnormalities [17,
18], no such phenotype has been described in humans
before. Comorbidity cannot therefore be excluded in the
proband.
The functional studies we conducted on the p.G337E

mutation clearly prove its pathogenicity. Exogenous ex-
pression of p.G337E AFG3L2 in an Afg3l2 null back-
ground indicates that the mutant protein has no residual
function. Indeed, the complete loss of L-OPA1 and
mitochondrial fragmentation in this condition were
comparable to those previously observed in Afg3l2 null
MEFs [10]. In agreement, we found swollen mitochon-
dria with altered cristae in the optic nerve of Afg3l2 null
mice (VB and FM unpublished observation). Investiga-
tions in patient fibroblasts also revealed faster abnormal
processing of OPA1 despite the heterozygous state of
the mutation, with strong reduction of L-OPA1, accu-
mulation of S-OPA1 and altered mitochondrial fusion.
Interestingly, the decrease in L-OPA1 is significantly
more pronounced in the proband compared to his af-
fected mother, in line with the more severe phenotype,
indicating that OPA1 processing might be considered as
an outcome of disease severity in this form of ADOA.
We also demonstrated that OPA1 processing is caused
by strong OMA1 hyper-activation, which is reduced in
amount in patients versus controls because of its faster
autocatalysis. On the contrary, YME1L1 levels were not
altered in patients, thus excluding a compensatory up-
regulation of YME1L1 on the final outcome on mito-
chondrial dynamics.
OPA1 processing is more severely compromised in

this family compared to what we previously described in
SCA28 and SPAX5-patient fibroblasts, where the levels
of L-OPA1 were moderately reduced compared to con-
trols, the accumulation of S-OPA1 was not appreciated,
and the mitochondrial network presented shorter tu-
bules, but not evident fragmentation [7]. Interestingly,
the mutation we identified localizes close to the AAA
domain, while most of those associated with SCA28 or
SPAX5 affect the proteolytic domain, suggesting that
mutations in different domains of this protein could dif-
ferently affect its molecular function. Mutations localiz-
ing in the AAA domain of AFG3L2 can abolish ATP
binding/hydrolysis and impact more severely on
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proteolytic activity, in agreement with a recent work in
which ATPase and proteolytic activity of AFG3L2 carry-
ing different mutations were assessed in vitro [19].
SCA28 and SPAX5 predominantly affect the cerebel-

lum, while this novel AFG3L2 mutation predominantly
affects the optic nerve. The aberrant OPA1 processing
and severe mitochondrial fragmentation we observed, to-
gether with the fact that most ADOA patients carry
OPA1 mutations, indicates that a fine control of mito-
chondrial dynamics is crucial for RGC survival. We may
speculate that AFG3L2 mutations that predominantly
and severely impact on OPA1 processing affect specific-
ally RGCs, while those mostly impinging on other
AFG3L2-related functions (oxidative phosphorylation
and mitochondrial calcium homeostasis) affect Purkinje
neurons in the cerebellum [10, 20, 21]. Purkinje neurons
are selectively vulnerable to these defects, since they are
characterized by a high oxidative metabolism and experi-
ence elevated calcium fluxes due to massive glutamater-
gic stimulations [22, 23].
In conclusion, our study broadens the spectrum of

neurodegenerative diseases associated with AFG3L2 mu-
tations and expands the genetic causes leading to
ADOA, enforcing aberrant OPA1 processing as common
mechanism for this disease.
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