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Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid 3 (AB) protein in the cerebral
vasculature and poses a major risk factor for the development of intracerebral haemorrhages (ICH). However, only a minority
of patients with CAA develops ICH (CAA-ICH), and to date it is unclear which mechanisms determine why some patients
with CAA are more susceptible to haemorrhage than others. We hypothesized that an imbalance between matrix
metalloproteinases (MMPs) and their inhibitors (TIMPs) contributes to vessel wall weakening. MMP9 plays a role in the
degradation of various components of the extracellular matrix as well as of AR and increased MMP9 expression has been
previously associated with CAA. TIMP3 is an inhibitor of MMP9 and increased TIMP3 expression in cerebral vessels has also
been associated with CAA. In this study, we investigated the expression of MMP9 and TIMP3 in occipital brain tissue of CAA-
ICH cases (n=11) by immunohistochemistry and compared this to the expression in brain tissue of CAA cases without ICH
(CAA-non-haemorrhagic, CAA-NH, n = 18). We showed that MMP9 expression is increased in CAA-ICH cases compared to
CAA-NH cases. Furthermore, we showed that TIMP3 expression is increased in CAA cases compared to controls without
CAA, and that TIMP3 expression is reduced in a subset of CAAICH cases compared to CAA-NH cases. In conclusion, in
patients with CAA, a disbalance in cerebrovascular MMP9 and TIMP3 expression is associated with CAA-related ICH.
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Introduction

Cerebral amyloid angiopathy (CAA) is characterized by the
accumulation of the amyloid- (AB) protein in cerebral blood
vessel walls. CAA most commonly occurs in small- to
medium-sized arteries in the cortex and leptomeninges [50].
The occurrence of CAA in leptomeningeal vessels seems to

* Correspondence: marcel.verbeek@radboudumc.nl

1Department of Laboratory Medicine, Radboud University Medical Center,
Nijmegen, The Netherlands

’Department of Neurology, Radboud Alzheimer Centre, Radboud University
Medical Center, Donders Institute for Brain, Cognition and Behaviour,
Nijmegen, The Netherlands

Full list of author information is available at the end of the article

B BMC

precede involvement of cortical vessels [1, 38] and is has
been suggested that the occipital lobe is most severely af-
fected [1, 2, 17, 43, 44, 51]. CAA can be found in 70 to 100%
of the patients with Alzheimer’s disease (AD) [3, 10, 23, 54],
but also occurs in 35 to 50% of the healthy elderly population
[3, 25, 43, 45]. CAA has been strongly associated with the oc-
currence of lobar intracerebral haemorrhages (ICH) [26, 32,
36, 37]. In addition to the development of ICH, conse-
quences of CAA may include an increased risk of developing
lobar intracerebral microhaemorrhages and cognitive impair-
ment [5 47]. Furthermore, CAA is associated with
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compromised blood-brain barrier (BBB) integrity, weakened
vessel walls, and leaky microvasculature [11, 12, 21].

The molecular mechanisms leading to rupture of
CAA-affected vessels remain largely unclear. Matrix me-
talloproteinases (MMPs) have been suggested to play a
role in CAA and CAA-related ICH. MMPs are a family
of zinc-dependent endopeptidases that play a role in the
degradation of the extracellular matrix (ECM) [22, 29,
31]. MMPY, also known as gelatinase B, degrades ECM
components, including several types of collagen, fibro-
nectin, and laminin [49]. MMP9 immunoreactivity has
been observed in amyloid-laden vessels in both mouse
models of CAA and human AD brain tissue [13, 19, 55].
Isolated rat brain microvessels that were exposed to
AP40 had elevated expression of MMP9 [13]. In post-
mortem brain tissue of human CAA cases with or with-
out concomitant AD pathology, MMP9 expression was
associated with AP, whereas no MMP9 immunoreactiv-
ity has been observed in control cases [55]. In addition,
MMP9 has been widely associated with ICH and BBB
disruption in both humans and animal studies [12, 28,
33-35, 46].

Tissue inhibitors of metalloproteinases (TIMPs) regu-
late the activity of MMPs and may therefore be indir-
ectly involved in the regulation of ECM degradation and
thus the development of haemorrhages. TIMP3 can form
a stable complex with pro-MMP9 [29], and has been
shown to inhibit MMP9 activity [8]. Using immunohis-
tochemistry (IHC), next to other techniques, increased
cerebrovascular TIMP3 accumulation in brain vessels
has been detected in patients with CAA [24], and pa-
tients with cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy
(CADASIL) [27], a hereditary form of cerebral small ves-
sel disease.

Despite that MMP9 and TIMP3 have been associated
with CAA and CAA-related ICH in the past, it is unclear
why the cerebrovascular accumulation of A results in
ICH in some, but not in all patients. We hypothesized
that an imbalance between MMPs and TIMPs contrib-
utes to vessel wall weakening and subsequent haemor-
rhage. We investigated the expression of MMP9 and
TIMP3 in brain tissue of CAA cases that developed ICH
(CAA-ICH), and compared it to the expression in brain
tissue of CAA cases without ICH (CAA-non-haemor-
rhagic, CAA-NH).

Methods

Human brain tissue

Post-mortem brain tissue was obtained from Radbou-
dumc Nijmegen, the University Medical Center Utrecht
(UMCU), and the Netherlands Brain Bank (NBB), and
included 18 CAA-NH and 11 CAA-ICH cases. Groups
were age- and sex matched (Table 1). CAA-NH and
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CAA-ICH cases were selected based on the presence of
moderate to severe CAA according to neuropathological
assessments in routine autopsy reports. All CAA-ICH
cases had experienced lobar ICH, confirmed by neuro-
pathological assessment (Table 1, Additional files 1 and
2). For comparison of TIMP3 protein expression, we in-
cluded 11 controls without CAA and without ICH, ob-
tained from the Radboudumc Nijmegen, selected based
on the absence of neurological disorders and amyloid
pathology according to clinical records and autopsy re-
ports (27% female, mean age 74.4 t 6.6 years, age- and
sex-matched with CAA-NH and CAA-ICH groups).
Blocks of cortical tissue from the occipital lobe of pa-
tients and controls were fixed and embedded in paraffin.
We assessed occipital lobe tissue, as this brain region is
generally most severely affected by CAA [1]. Tissue was
sliced into 4 um thick sections and mounted on New Si-
lane micro slides for subsequent immunohistochemical
(IHC) analysis. Brain samples obtained from the NBB,
Netherlands Institute for Neuroscience, Amsterdam
(open access: www.brainbank.nl), had been collected
from donors that had provided written informed consent
for the use of autopsy material and clinical information
for research purposes. The study was performed in ac-
cordance with local regulations and approved by the
medical research ethics committee of the UMCU (refer-
ence number 17-092). The use of autopsy materials
from the Radboudumc was approved by the local ethics
committee (reference number 2015-2215). Samples
were used anonymously in accordance with the Code of
Conduct of the Federation of Medical Scientific Societies
in The Netherlands.

Immunohistochemistry

Of every case, one occipital lobe section was stained for
AP, MMP9, and TIMP3 each. Sections were deparaffi-
nized in xylene, rinsed in ethanol, and washed with demi
water, before washing in TBS (for MMP9 IHC), TBS
supplemented with 0.025% triton (TBS-T; for TIMP3
IHC), or PBS supplemented with 0.1% Tween-20 (PBS-
T; for AP IHC). AP antigen retrieval was achieved by 20
min incubation with neat formic acid. Heat-induced
antigen retrieval of MMP9 and TIMP3 was performed
by boiling in citrate buffer for 10 min. In addition,
TIMP3 sections were incubated with proteinase K (Qia-
gen, Hilden, Germany, cat: 19133, diluted 1:50 in TBS)
for 5min. Sections were washed and subsequently
treated with 3% H,O, in methanol for 15 min at room
temperature (RT) to block endogenous peroxidase activ-
ity, before washing and 30 min incubation with 5% nor-
mal goat (TIMP3 IHC) or horse (MMP9 and AB IHC)
serum diluted in 1% BSA-PBS (PBS supplemented with
1% bovine serum albumin) to block non-specific anti-
body binding. This was followed by another washing
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Table 1 Study group characteristics

CAA-NH CAA-ICH P-value
N 18 I
Age (mean + sd) 729 (124) 76.6 (4.7) 0.27°
Sex (% fernale) 39 36 100°
CAA grade (mean + sd) * 3.1(08) 35 (0.5) 0.14°
Demented Dementia=12 Dementia=5 037°¢

No dementia =3 No dementia =4

Not reported =2 Not reported =2

Down Syndrome = 1
Location ICH N.A. Frontal; n=2 N.A.

Fronto-parietal;, n=2
Fronto-temporal; n =1
Temporal; n=1
Temporo-parietal; n =1
Parieto-occipital; n =3
Not reported = 1

Abbreviations: CAA-NH CAA non-haemorrhagic, CAA-ICH CAA-related ICH, N.A. not applicable. * CAA grading according to Olichney et al., [30]. *Assessed by t-test;
PAssessed by Fishers exact test; “Assessed by chi-square test. See Additional files 1 and 2 for detailed pathological information reported per case

step, before sections were incubated overnight at 4°C
with rabbit-anti-TIMP3 (Abcam, Cambridge, UK, cat:
Ab93637, diluted 1:1600 in PBST) or mouse-anti-MMP9
(Invitrogen, Waltham, MA, cat: MA5-14228, diluted 1:
50 in 3% BSA-PBS), or 90 min at RT with mouse-anti-
AP (4G8, Biolegend, San Diego, CA, cat; 800,701, diluted
1:4000 in PBS). Then, sections were washed and incu-
bated 30 min at RT with biotinylated goat-anti-rabbit
(Vector Laboratories, Burlingame, CA, cat: BA-2000), or
horse-anti-mouse (Vector Laboratories, cat: BA-2000),
diluted 1:200 in 1% BSA-PBS. After another washing
step, sections were incubated 30 min at RT with Avidin-
Biotin complex (Vector Laboratories, cat: PK-4000, di-
luted 1:100 in 1% BSA-PBS). Subsequently, sections were
washed, incubated with diaminobenzidine for 7 min and
counterstained with haematoxylin. Finally, sections were
rinsed with ethanol, washed with xylene and mounted
with Quick D mounting medium. Appropriate negative
controls, including isotype controls and secondary anti-
body incubation after omitting the primary antibody,
were included.

Quantification

CAA grading

CAA burden was determined according to the previously
described method of Olichney et al. [30] by two inde-
pendent raters (EEMC and LPG), who were blinded to
clinical diagnosis and had excellent interrater agreement
(kappa 0.87). A third researcher was consulted in case of
disagreement. In brief, tissue was scored with a severity
ranging from zero to four. A score of zero indicated that
neither leptomeningeal nor superficial cortical vessels
were stained for AP. A score of one corresponded to
scattered staining of either leptomeningeal or cortical
blood vessels. A score of two meant that at least a few

vessels in the leptomeninges or neocortex were circum-
ferentially stained for AP. A score of three reflected a
widespread distribution of circumferential AP staining in
leptomeningeal and cortical vessels. A score of four indi-
cated widespread distribution of circumferential Ap
staining in leptomeningeal and cortical vessels, with add-
itional dysphoric changes [30].

Cerebrovascular MMP9 and TIMP3
Sections were scanned at 10x objective magnification
and digitized using a 3D Histech P100 scanner (3DHis-
tech, Budapest, Hungary). Quantification was performed
by two independent raters (EEMC and LPG), who were
blinded to clinical diagnosis. As both MMP9 and TIMP3
staining were largely restricted to large caliber vessels,
only vessels with >30 pm diameter were included in
quantification. The grade of MMP9 and TIMP3 staining
in CAA-NH and CAA-ICH cases was scored in all lepto-
meningeal vessels in the section as follows: Full (>90%
of a vessels circumference and thickness stained) and
partial (between 10 and 90% of a vessels circumference
and thickness stained). Data was expressed as percentage
of vessels with full and partial staining, to normalize for
differences in the numbers of leptomeningeal vessels be-
tween cases. In the cortex, full (ie. >90%) and partial
(i.e. 10-90%) staining was scored in all cortical vessels,
and data was expressed as number of fully and partially
stained vessels per cm? to normalize for differences in
cortical area between cases. For some analyses, data of
full and partial staining in vessels was combined
(“stained”), whereas for other analyses, numbers of fully
and partially stained vessels were analyzed separately.
MMP9 and TIMP3 staining was also assessed in un-
affected vessels of the investigated tissue (“internal con-
trols”); for this we assessed MMP9 and TIMP3 staining
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in a minimum of 10 and a maximum of 25 AP-negative
leptomeningeal and cortical vessels (=30 um diameter) of
each CAA case (including both CAA-NH and CAA-ICH
cases). Data was expressed as percentage of fully and
partially MMP9- or TIMP3-stained vessels. As only
cases with advanced stages of CAA were included in our
study, several sections contained fewer than 10 Ap-
negative vessels; these cases were excluded from further
analysis of the internal controls. As, in contrast to
MMP9, TIMP3 has only recently for the first time been
associated with CAA [24], TIMP3 staining was in
addition assessed in brain tissue from 11 patients free of
neurological disease (“external controls”), identical to
our assessment of CAA-NH and CAA-ICH cases.
TIMP3 staining in the control cases was compared to
the staining of the CAA cohort.

Colocalization of MMP9 and TIMP3 with AB

To assess whether findings were dependent on the pres-
ence of AP in cerebral vessels, we assessed the staining
of MMP9 and TIMP3 in a subset of AP-stained vessels
in CAA-NH vs. CAA-ICH cases. For this purpose, serial
sections stained for AP and MMP9 or TIMP3 were stud-
ied. TIMP3 and MMP9 staining was scored (as full or
partial) in a minimum of 10 and a maximum of 25 fully
ApB-stained (i.e. >90% of a vessel’s circumference and
thickness was stained for Af) vessels (=30 pm diameter)
per case. Data was expressed as percentage of fully or
partially MMP9- or TIMP3-stained vessels. Leptomenin-
geal and cortical vessels were assessed separately. MMP9
and TIMP3 staining of amyloid plaques was globally
evaluated as well.

Statistical analysis

Statistical analysis was performed using Graphad Prism
5 (La Jolla, CA, USA) and IBM SPSS Statistics v. 25.0
(Armonk, NY, USA). Groups were compared using mul-
tiple linear regression analysis with age and sex as covar-
iates. In case of non-normal distribution of residuals,
square root or logarithmic transformations were applied.
Correlations between CAA grade and protein expres-
sion, and between TIMP3 and MMP9 staining, were
assessed using Spearman’s test. The threshold for statis-
tical significance was set at 5%.

Results

Cerebrovascular MMP9 expression in CAA-NH and CAA-
ICH cases

The percentage of leptomeningeal vessels that was
stained for MMP9 was significantly higher in CAA-ICH
(median 81%) compared to CAA-NH cases (median
45%, p < 0.0005; Fig. la-c). The number of cortical ves-
sels stained for MMP9 was not different between CAA-
ICH (median 43/cm?) and CAA-NH (median 22/cm?,
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p=0.20; Fig. 1d). AP-negative cortical vessels of CAA
cases (“internal controls”) showed only minimal MMP9-
immunoreactity: 10% of Af-negative leptomeningeal
vessels and 8% of the AB-negative cortical vessels were
partially stained for MMP9, whereas none of the vessels
were fully stained.

Full and partial MMP9 staining in CAA-NH and CAA-ICH
cases

We separately assessed and compared fully and partially
MMP9-stained vessels between CAA-ICH and CAA-NH
cases. A significantly higher percentage of fully (median
43% vs. 3%, p =0.001; Fig. 2a), but not of partially (31%
vs. 35%, p = 0.67; Fig. 2b) MMP9-stained leptomeningeal
vessels was observed in CAA-ICH compared to CAA-
NH cases, suggesting that the higher number of MMP9-
stained vessels in CAA-ICH was mainly driven by a
higher number of fully stained vessels. We did not ob-
serve significant differences in the numbers of cortical
vessels with full (median 23 vs. 4 vessels/cm?, p = 0.09)
or partial (median 16 vs. 7 vessels/cm?, p = 0.68) MMP9
staining between CAA-ICH and CAA-NH cases (Add-
itional file 3a, b).

Colocalization of MMP9 with AB

We observed a significant correlation between CAA
grade and the percentage of leptomeningeal vessels (p =
0.0005, rs = 0.61; Fig. 5a) and numbers of cortical vessels
(p =0.0007, ry=0.59; Fig. 5b) fully stained for MMP9 in
the combined CAA cohort (including both NH and ICH
cases). Furthermore, assessment of serial sections re-
vealed frequent colocalization of AP and MMP9 in
leptomeningeal and in cortical vessels (examples in Fig.
2c-f). Of note, we did not observe MMP9 expression in
parenchymal A plaques. Since MMP9 expression corre-
lated with CAA grade, we aimed to assess whether the
increase of MMP9 expression in CAA-ICH cases was in-
dependent of AP. For this purpose, we assessed if the
higher percentage of fully MMP9-stained leptomeningeal
vessels that we observed in CAA-ICH cases could be
confirmed if we only evaluated fully Ap-stained vessels
in CAA-ICH vs. CAA-NH cases. The percentage of Ap-
stained leptomeningeal vessels that was also fully stained
for MMP9 was indeed higher in CAA-ICH than in
CAA-NH cases (median 66% vs. 32%, p = 0.013; Fig. 2g).
Conversely, the percentage of AB-stained leptomeningeal
vessels that was only partially stained for MMP9 was
smaller in CAA-ICH than CAA-NH cases (median 31%
vs. 62%, p = 0.009; Fig. 2h). Assessment of MMP9 stain-
ing in AP-stained cortical vessels showed no differences
in the percentages of fully stained vessels (median 61 vs.
60%, p =0.08) or partially stained vessels (median 36 vs.
26%, p = 0.87; Additional file 3¢, d) between CAA-ICH
and CAA-NH cases.
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Fig. 1 Cerebrovascular MMP9 expression in CAA-NH and CAA-ICH cases. Representative examples of MMP9 staining in a CAA-NH case (a), and a
CAA-ICH case (b), representing the median values as shown in c. Leptomeningeal vessels are stained in both cases: in CAA-NH many vessels are
only partially stained, whereas in CAA-ICH cases many vessels are fully stained. Overall, CAA-ICH cases had a significantly higher percentage of
MMP9-stained leptomeningeal vessels (either fully or partially stained) compared to CAA-NH cases (c). The numbers of MMP9-stained cortical
vessels did not differ between groups (d). Plots indicate median values with interquartile range. CAA-NH = CAA-non haemorrhagic, CAA-ICH =
CAA-related ICH. ***p < 0.001

Cerebrovascular TIMP3 expression in CAA-NH and CAA-
ICH cases

The percentage of TIMP3-stained leptomeningeal ves-
sels differed between CAA-ICH cases (median 96%) and
CAA-NH cases (median 97%, p = 0.003; Fig. 3a-d), a dif-
ference driven by a subgroup of CAA-ICH cases with a
substantially lower percentage of TIMP3-stained lepto-
meningeal vessels. The CAA-ICH cases with low TIMP3
expression in leptomeningeal vessels also had low
TIMP3 expression in cortical vessels, although the num-
bers of TIMP3-stained cortical vessels per cm?® did not
differ between CAA-ICH and CAA-NH cases (20 vs. 17,
p =0.61; Fig. 3e.).

Full and partial TIMP3 staining in CAA-NH and CAA-ICH
cases

We discriminated leptomeningeal vessels that were fully
TIMP3-stained from those that had only partial staining.
The percentage of leptomeningeal vessels that was fully
stained for TIMP3 was similar in CAA-ICH and CAA-

NH cases (median 13 vs. 3%, p = 0.22; Fig. 4a). In con-
trast, we observed a significantly lower percentage of
partially stained leptomeningeal vessels in CAA-ICH
cases compared to CAA-NH cases (median 40 vs. 90
vessels/cm?, p < 0.0005; Fig. 4b). No differences in the
numbers of cortical vessels with full TIMP3 staining
(median 1.6 vs. 1.7 vessels/cm?, p=0.95) or partial
TIMP3 staining (median 11 vs. 13 vessels/cm?, p = 0.58;
Additional file 4a, b) were observed between CAA-ICH
and CAA-NH cases.

Colocalization of TIMP3 with AB

No correlation was observed between the percentage of
fully TIMP3-stained leptomeningeal vessels and CAA
grade (p =0.10, ry=0.31, Fig. 5¢). The numbers of fully
TIMP3-stained cortical vessels correlated with CAA
grade (p =0.003, r, =0.53, Fig. 5d). Assessment of serial
sections revealed colocalization of AB and TIMP3 in
both leptomeningeal and cortical vessels (example in
Fig. 4c-f). Of note, TIMP3 did not colocalize with
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(See figure on previous page.)

CAA-related ICH. *p < 0.05; **p < 0.01

Fig. 2 Quantification of MMP9-stained vessels in CAA-NH and CAA-ICH cases, classified according to staining grade. The percentage of
leptomeningeal vessels with full (@), but not partial (b) MMP9 staining was higher in CAA-ICH cases compared to CAA-NH cases. Serial sections of
a representative CAA-NH (¢, d) and a representative CAA-ICH (e, f) case stained for AR (c, ) and MMP9 (d, f). Scale bar =200 um. Compared to
CAA-NH cases, CAA-ICH cases had more fully AB-stained leptomeningeal vessels that were also fully stained for MMP9 (g), but fewer AB-stained
vessels that had partial MMP9 staining (h). Plots indicate median values with interquartile range. CAA-NH = CAA-non haemorrhagic, CAA-ICH =

parenchymal AP in plaques. We assessed whether the
decrease of TIMP3 expression in CAA-ICH cases
could be confirmed if we only evaluated Ap-stained
vessels in CAA-ICH vs. CAA-NH cases. Analysis of
ApB-stained leptomeningeal vessels that were also
stained (fully & partially) for TIMP3 revealed a differ-
ence between CAA-ICH and CAA-NH cases (median
92 vs. 100%, p =0.04; Additional file 4c). Separate as-
sessment of vessels that were either fully or partially
TIMP3-stained showed that the percentage of Ap-
stained leptomeningeal vessels fully stained for TIMP3
did not significantly differ between CAA-ICH and
CAA-NH cases (median 25 vs. 60%; p = 0.67; Fig. 4g).
However, the numbers of AB-stained leptomeningeal
vessels with partial TIMP3 staining differed between
CAA-ICH and CAA-NH cases (median 12 vs. 40%;
p =0.015; Fig. 4h).

MMP9:TIMP3 ratio and correlation

The balance between MMP and TIMP activity deter-
mines the net ECM degrading potential of MMPs, there-
fore we assessed the ratio between MMP9 and TIMP3
staining. The ratio between the percentage of MMP9-
and TIMP3-stained leptomeningeal vessels was signifi-
cantly higher in CAA-ICH cases compared to CAA-NH
cases (median 1.0 vs. 0.5, p=0.001; Fig. 6a). Likewise,
there was a higher MMP9:TIMP3 ratio in cortical vessels
of CAA-ICH cases compared to CAA-NH cases (median
2.1 vs. 1.1, p=0.03; Fig. 6b). In CAA-NH cases, there
was a positive correlation between the numbers of cor-
tical vessels stained (fully or partially) for MMP9 and the
numbers of cortical vessels stained for TIMP3 (p = 0.003,
rs=0.65, Fig. 6¢). Such a correlation was not seen in
CAA-ICH cases (Fig. 6d). These correlation analyses
were not performed on data of leptomeningeal vessels,
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Fig. 3 Cerebrovascular TIMP3 expression in CAA-NH and CAA-ICH cases. Representative example of TIMP3 staining in a CAA-NH case (a), a CAA-
ICH case with high TIMP3 expression (b), and a CAA-ICH case with many vessels negative for TIMP3 and only few TIMP3- positive vessels (c).
Scale bar= 100 um (). The percentage of TIMP3-stained (full or partial) leptomeningeal vessels was lower in CAA-ICH cases compared to CAA-NH
cases, an effect driven by a subgroup of CAA-ICH cases with a substantially lower percentage of TIMP3-stained vessels (open triangles) (b). The
numbers of cortical vessels stained per cm? did not differ between CAA-ICH cases and CAA-NH cases, although the cases with low TIMP3
expression in leptomeningeal vessels had also low expression in cortical vessels (open triangles) (c). Plots indicate median values with
interquartile range. CAA-NH = CAA-non haemorrhagic, CAA-ICH = CAA-related ICH. **p < 0.01
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)

Fig. 4 Quantification of TIMP3-stained vessels in CAA-NH and CAA-ICH cases, classified according to staining grade. The percentage of
leptomeningeal vessels with full TIMP3 staining did not differ between groups (a), whereas the percentage with partial staining was significantly
lower in the CAA-ICH group (b). Serial sections stained for AB (¢, e) and TIMP3 (d, f) in a CAA-NH case (c, d) and a CAA-ICH case with low levels
of TIMP3 expression (e, f) showed that these proteins colocalize. Scale bar =200 um. Assessment of only fully AR-stained leptomeningeal vessels
showed no difference in the percentage of vessels that had full TIMP3 staining (g), but a lower percentage of partially stained vessels in the CAA-
ICH group (h). The observed differences were predominantly driven by the subgroup of CAA-ICH cases with low TIMP3 expression (open
triangles). Plots indicate median values with interquartile range. CAA-NH = CAA-non haemorrhagic, CAA-ICH = CAA-related ICH,

*p <0.05; **p <0.001

as in most cases all leptomeningeal vessels were (fully or  and that a subset of CAA-ICH cases has a remarkable

partially) stained for MMP9. loss of TIMP3 expression.
MMP9 has been implicated in the development of
Cerebrovascular TIMP3 expression in control cases ICH and BBB disruption [18, 28, 33-35, 39, 46]. In

The percentage of TIMP3-stained leptomeningeal ves- Tg2576 mice, a model for CAA and AD, microhaemor-
sels did not differ between control cases (example in rhages were associated with MMP9 expression [19]. Ad-
Fig. 7a) and CAA-NH or CAA-ICH cases. However, the  ministration of recombinant MMP9 to the surface of
degree of staining was different (Fig. 7b). Control cases  mouse brains (through craniotomies) resulted in the oc-
had a significantly lower percentage of fully stained currence of lobar haemorrhages, and Tg2576 mice with
leptomeningeal vessels compared to CAA-NH and severe CAA were more susceptible to this procedure
CAA-ICH cases and a significantly higher percentage of compared to wild-type mice [55]. Human studies re-
partially TIMP3-stained leptomeningeal vessels com- vealed increased levels of MMP9 in haemorrhagic areas
pared to CAA-ICH cases. Furthermore, control cases compared to the contralateral hemisphere of CAA cases
had significantly fewer TIMP3-stained (full or partial) that suffered from ICH [14]. Furthermore, Prussian blue
cortical vessels compared to CAA-NH and CAA-ICH positive products, indicative of cerebral microbleeds,
cases. These findings are in line with assessment of in-  were observed in the proximity of a cluster of vessels
ternal control vessels, which showed that 89% of the AB-  showing MMP9 immunoreactivity in CAA cases [55].
negative leptomeningeal vessels in CAA cases were However, all these findings were either of a qualitative,
stained to some degree for TIMP3, but in most of these rather than of a quantitative nature [55], deduced from
vessels (81%) the staining was partial. Of the AB-  animal research [19, 55], or focussed on the brain region
negative cortical vessels, only 5% had (full or partial) directly affected by ICH [14].

TIMP3 staining. In our study, we aimed to quantitatively assess the ex-
pression of MMP9 in the human cerebrovasculature,
Discussion without restriction to the immediate proximity of the

In this study, we show that MMP9 expression is in- haemorrhagic site (Table 1). Also, for the first time, we
creased in cases with CAA-ICH compared to CAA cases compared cases affected by CAA with and without ICH.
without ICH. Furthermore, we show that there is more = We show here that increased vascular MMP9 levels are
extensive TIMP3 staining in CAA cases versus controls  observed in CAA-ICH cases compared to CAA-NH,
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Fig. 5 The expression of MMP9 and TIMP3-stained vessels correlated with CAA grade. The percentage of fully MMP9-stained leptomeningeal (a)
and number of fully MMP9-stained cortical (b) vessels showed a positive correlation with CAA grade. The percentage of fully TIMP3-stained
leptomeningeal vessels did not significantly correlate to CAA grade (c), whereas the numbers of fully TIMP3-stained cortical (d) vessels showed a
positive correlation with CAA grade. Solid circles = CAA-NH cases; open circles = CAA-ICH cases; rs = Spearman r
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Fig. 6 Disturbed balance of MMP9 and TIMP3 in vessels of CAA-ICH cases. The ratio of MMP9-stained (partially or fully) to TIMP3-stained (partially
or fully) leptomeningeal vessels (a) and cortical vessels (b) was higher in CAA-ICH cases compared to CAA-NH casesin CAA-NH cases, there was a
positive correlation between the numbers of cortical vessels stained (partially or fully) for MMP9 and the numbers of cortical vessels stained
(partially or fully) for TIMP3 (c). Such a correlation was not seen in CAA-ICH cases (d). Box plots show median values with the 25th and 75th
percentile as boundaries and whiskers indicating minimum and maximum values. CAA-NH = CAA-non haemorrhagic, CAA-ICH = CAA-related ICH,
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driven by a shift from partial MMP9 staining towards
full MMP9 staining. Since we studied cerebral vessels
distant from the site of ICH, our studies suggest that in
CAA-ICH there is a global increased expression of
MMP9, which may be mechanistically linked to the ICH.
In correspondence with previous findings [55], Ap-
negative cortical vessels of CAA cases showed only min-
imal MMP9-immunoreactity. We have confirmed previ-
ous findings on a correlation between MMP9 staining
and CAA grade [55] and on colocalization of MMP9 and
AP [13, 19], both of which are a logical consequence of
the capacity of MMP9 to degrade both soluble and ag-
gregated AP [4, 15, 52, 53], and its induced expression in
response to AP [9, 19].

Our findings on TIMP3 expression are in line with pre-
vious publications that reported that TIMP3 expression
was more pronounced in CAA patients compared to con-
trols, that TIMP3 colocalized with AP in leptomeningeal
cerebrovascular arteries [24], and that TIMP3 protein
levels were increased in brains of AD patients and a
mouse model of AD [16]. In addition, we showed that
TIMP3 expression is not restricted to leptomeningeal

arteries [24], but also detected in cortical arteries. We also
demonstrate for the first time that a subset of CAA-ICH
cases has a remarkably low expression level of TIMP3.
Again, as we studied cerebral vessels not in the immediate
vicinity of the site of ICH, our observations suggest that
TIMP3 expression may be globally decreased in (a subset
of) CAA-ICH cases, which may be mechanistically linked
to the ICH. Not all CAA-ICH cases had decreased TIMP3
expression, indicating that other factors and pathways be-
sides TIMP3 expression influence ICH development.

As TIMP3 has been shown to inhibit MMP9 activity
[6, 8], we speculate that TIMP3 expression increases in
response to elevated levels of MMP9 and possibly other
MMPs in CAA patients, but that this negative feedback
mechanism seems to fail in a subset of CAA-ICH cases,
resulting in decreased inhibition of MMP9 and therefore
increased risk of ICH development. The altered MMP9:
TIMP3 ratio that we observed in CAA-ICH cases points
towards a disbalance of these proteins. In addition, the
positive correlation between the numbers of MMP9-
and TIMP3-stained cortical vessels in CAA-NH cases
supports the hypothesis of a feedback mechanisms in
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Control CAA-NH p CAA-ICH p
Leptomeningeal staining Stained vessels (%) Stained vessels (%) Stained vessels (%)

Overall |90.7 (88.1£11.7) 97.5 (97+2.8) 0.21 |96.3 (68.1£38.4) 0.05

Full 0 (0£0) 3.0 (16.4+24.3) 0.005 | 12.5 (26.4+29) <0.0005

Partial ] 90.7 (88.1£11.7) 90.3 (80.6+24.3) 0.50 |39.8(41.7¢31.1) <0.0005

Cortical staining Stained vessels / cm? | Stained vessels / cm? Stained vessels / cm?

Overall |4.1(5.715) 16.5 (26.5+18.2) 0.001 | 19.6 (27.1+44.8) 0.012

Full 0(0.4£1.2) 1.7 (8.4£12.5) 0.020] 1.6 (7.6£12) 0.036

Partial ]4.1(5.3+4.6) 13.2 (18.19.8) 0.002 | 10.5 (19.4+34.2) 0.022
Fig. 7 TIMP3 staining in control cases. Representative example of TIMP3 staining in a control case (a). Table shows median (mean =+ sd) values of
the percentages (in case of leptomeningeal) or numbers per cm? (in case of cortical) vessels (b). The difference in expression between control
cases and CAA-NH or CAA-ICH cases was assessed by linear regression with age and sex as covariates. Indicated in bold are p-values < 0.05. CAA-
NH = CAA-non haemorrhagic, CAA-ICH = CAA-related ICH

Ap-affected vessels. In contrast, the absence of such a
correlation in a subset of CAA-ICH cases may indicate
that the feedback mechanism is failing in these patients.
However, further, mechanistic studies are needed to
confirm these hypotheses. Interestingly, increased
TIMP3 levels may also contribute to an increased risk of
CAA-related ICH, through activation of another path-
way, as cellular overexpression of TIMP3 has been
shown to redirect amyloid precursor protein (APP) pro-
cessing towards the amyloidogenic pathway, through in-
hibition of ADAM10, a metalloproteinase that serves as
an o-secretase [16]. By reducing a-cleavage of APP and
increasing B-cleavage, AP levels may increase as a conse-
quence of TIMP3 overexpression [16]. In the absence of
ADAMI0 expression data it is not possible to draw con-
clusions on the potential role of this latter mechanism.
The differential expression patterns of MMP9 and
TIMP3 in CAA-ICH cases compared to CAA-NH cases
were more pronounced in leptomeningeal vessels com-
pared to cortical vessels. This may, in part, be due to the
earlier and more severe accumulation of AP in lepto-
meningeal vessels as compared with cortical vessels [1,
38]. As we showed that both MMP9 and TIMP3 are
strongly associated with AP, the observed differences in
MMP9 and TIMP3 expression may therefore be more

pronounced and easier detectable in leptomeningeal ves-
sels. Furthermore, it is possible that altered MMP9 and
TIMP3 levels in leptomeningeal vessels may disturb vas-
cular functioning and blood flow and lead to haemor-
rhages downstream in cortical vessels, which may be in
line with a recent observation that vessels do not rupture
at the site of AP deposition [40, 41], but rather down-
stream or upstream, possibly mediated by impaired
autoregulation. Furthermore, one could speculate that
decreased integrity of leptomeningeal vessel walls may
contribute to the development of cortical superficial
siderosis, which is the deposition of blood-breakdown
products in the subarachnoid space and strongly linked
to CAA [7, 20].

Small haemorrhagic lesions are frequently observed in
CAA patients, and we cannot rule out that such lesions
may have influenced results. However, we assessed the
presence of small haemorrhagic lesions in the brain tis-
sue by Perls Prussian Blue iron staining. In several CAA-
ICH cases, microbleeds were detected (supplementary
Table 2). There was no appreciable staining of MMP9 or
TIMP3 in the close proximity of microbleeds (Additional
file 5), suggesting that such lesions may not or, only to a
minor extent, have contributed to the observed differ-
ences in MMP9 or TIMP3 expression. Furthermore,
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even in the absence of (micro) hemorrhages, CAA-
affected vessels may be leaky and permeable to plasma
proteins [11], potentially resulting in MMP9 upregulation.
However, fibrinogen immunostaining, as a proxy of BBB
permeability, did not differ between CAA-NH and CAA-
ICH cases and did not correlate with MMP9 staining
(Additional file 6), making it unlikely that the upregulation
of MMP9 is a result of increased vessel permeability.

Taken together, MMP9 and TIMP3 are directly associ-
ated with the presence of CAA. In addition, levels of
these proteins are altered in CAA-ICH cases compared
to CAA-NH cases. As altered levels of these proteins are
directly related to an increased risk of ICH, MMP9 and
TIMP3 pathways may have potential as therapeutic tar-
gets to prevent ICH in CAA patients. Noteworthy is our
observation that MMP9 and TIMP3 are expressed at the
site of vascular AP accumulation, but not in parenchy-
mal AP accumulation (plaques). Of note, although we
specifically assessed MMP9 and TIMP3, other members
of the MMP and TIMP families may play a role in CAA-
related ICH, such as MMP2, which has been previously
associated with CAA-related ICH [14].

Our study has several limitations. First, our CAA co-
hort consists of a heterogenous patient group, with, in
addition to moderate to severe CAA, varying degrees of
AD pathology. Second, it is possible that not all cases of
ICH were only due to CAA, and that other age-related
pathological mechanisms were involved. Possibly, differ-
ent aetiologies of ICH may explain the different TIMP3
expression patterns observed in our CAA-ICH cohort.
Furthermore, as tissue of CAA-ICH cases is relatively
scarce, we have included tissue from different brain
banks, and therefore, we cannot rule out that differences
in post-mortem interval and tissue treatment protocols
(e.g. formalin exposure) may have affected our results.
Finally, the number of cases included in our study was
relatively small, and the results of this pilot study need
to be validated in a larger cohort.

A strong point of our study is our unique cohort,
which enabled us a direct comparison of CAA-ICH cases
with CAA-NH cases. Previous observations on increased
MMP9 levels in CAA-ICH are based on protein expres-
sion in proximity of the haemorrhagic area, compared to
expression levels in the contralateral hemisphere [14],
which may reflect post-ICH inflammation rather than a
pathophysiological mechanism of ICH [35, 42, 48]. An-
other strong point of our study is the analysis of brain
regions distant from the haemorrhagic site. In all cases,
we studied the occipital cortex, whereas the haemor-
rhage usually had occurred in other locations, including
the parietal and frontal cortices. Therefore, our data sug-
gest that the observations of increased levels of MMP9
and decreased levels of TIMP3 may be a cause rather
than a consequence of ICH, and that post-ICH
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inflammatory processes possibly only made a minor con-
tribution to the observed differences, as we observed
globally changed protein expression levels in the brains
of CAA-ICH cases. However, we cannot rule out the
possibility that MMP-9 levels in CAA-ICH cases in-
creased post-ICH, especially in case of long time spans
between ICH and death. However, previous reports on
patients with haemorrhagic stroke did not detect an in-
crease of MMP9-positive vessels in contralateral brain
sections, in contrast to perihematomal tissue [13, 35].

In conclusion, we provide evidence that increased cere-
brovascular levels of MMP9 and decreased levels of
TIMP3 are associated with CAA-related ICH. Future
studies are needed to validate these findings in larger data
sets, and to determine the mechanistic pathways leading
to the altered expression levels of MMP9 and TIMP3.
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