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Abstract

Tau protein abnormally aggregates in tauopathies, a diverse group of neurologic diseases that includes Alzheimer’s
disease (AD). In early stages of disease, tau becomes hyperphosphorylated and mislocalized, which can contribute
to its aggregation and toxicity. We demonstrate that tau phosphorylation at Ser208 (pSer208) promotes
microtubule dysfunction and tau aggregation in cultured cells. Comparative assessment of the epitopes recognized
by antibodies AT8, CP13, and 7F2 demonstrates that CP13 and 7F2 are specific for tau phosphorylation at Ser202
and Thr205, respectively, independently of the phosphorylation state of adjacent phosphorylation sites. Supporting
the involvement of pSer208 in tau pathology, a novel monoclonal antibody 3G12 specific for tau phosphorylation
at Ser208 revealed strong reactivity of tau inclusions in the brains of PS19 and rTg4510 transgenic mouse models of
tauopathy. 3G12 also labelled neurofibrillary tangles in brains of patients with AD but revealed differential staining
compared to CP13 and 7F2 for other types of tau pathologies such as in neuropil threads and neuritic plaques in
AD, tufted astrocytes in progressive supranuclear palsy and astrocytic plaques in corticobasal degeneration. These
results support the hypothesis that tau phosphorylation at Ser208 strongly contributes to unique types of tau
aggregation and may be a reliable marker for the presence of mature neurofibrillary tangles.
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Introduction
Alzheimer’s disease (AD) is the most common form of
age-related dementia and affects over 25 million people
worldwide [66]. AD is pathologically defined by the
presence of two major types of pathologic brain inclu-
sions: 1) extracellular amyloid-β (Aβ) deposits in the

form of plaques and cerebral amyloid angiopathy and 2)
intracellular aggregates of tau protein that comprise
neurofibrillary tangles (NFT) and neuropil threads [11,
40]. The amyloid cascade hypothesis suggests that the
accumulation and deposition of Aβ is the primary cause
of AD [70]. However as the density of tau inclusions
strongly correlates with cognitive decline [63], the “tau
hypothesis” proposes that pathogenic tau is the main
toxic factor that drives neurodegeneration in AD and
other related diseases [43]. Mutations in the
microtubule-associated protein tau (MAPT) gene cause
different familial forms of frontotemporal lobar
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degeneration (FTLD) including Pick’s disease (PiD), pro-
gressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), and globular glial tauopathy (GGT) [23, 39, 80].
Tau is a microtubule-associated protein that is highly

expressed in the distal axons of neurons in the central
nervous system [9, 80]. Physiologically, tau binds directly
to microtubules (MTs) and is important for regulating
MT assembly, dynamics, and stability, which are all im-
portant for normal axonal transport of vesicles and other
molecules [42, 44, 83]. Tau protein can be alternatively
spliced into six major isoforms found in the brains of
humans and rodents [30, 31]. Variations in insertion of
two N-terminal inserts of 29 amino acids generate 0 N,
1 N and 2 N isoforms. The presence or absence of exon
10 can lead to either three or four MT binding repeats
to generate either 3R or 4R isoforms.
In AD, all six major tau isoforms aggregate to form

pathological inclusions in a hyperphosphorylated state
[29, 80]. Over 45 out of 85 total potential phosphoryl-
ation sites have been identified in AD brains by mass
spectrometry and other methods [34–37, 60]. This aber-
rant hyperphosphorylation can cause tau to dissociate
from MTs and decrease its ability to assemble and regu-
late MTs [22, 47, 49, 71]. Hyperphosphorylated tau may
also be more prone to be mislocalized and to promote
tau aggregation [2, 12, 32, 75]. Phosphorylation-specific
tau antibodies such as AT8 are widely used to survey the
distribution of tau pathology in AD brains, which
follows a stereotypical pattern of progression as de-
scribed in Braak staging – with NFT appearing to
start in the entorhinal cortex and extending into the
hippocampus and more distant cortical regions in late
stage disease [10, 11].
Although the AT8 antibody is very useful diagnostic

tool, the exact epitope recognized by this antibody has
not been completely resolved, since AT8 was originally
created by immunizing mice with paired helical fila-
ments of tau (PHF-tau) purified from AD brains [58].
Early characterization of the AT8 epitope indicated that
it requires phosphorylation at Ser202 (pSer202) and
Thr205 (pThr205) [8, 28]; however, AT8 also has some
reactivity to tau phosphorylation at Ser199 [8]. Recent
epitope mapping has revealed that tau pSer208 may also
be a part of the classic AT8 epitope and the addition of
pSer208 to pSer202/pThr205 can enhance AT8 binding
[53, 65]. Phosphorylation of Ser208 has separately been
found in mass spectrometry analysis of PHF-tau purified
from AD brains [34, 60]. In the cerebrospinal fluid of
AD patients, pSer208 levels were three times more ele-
vated compared to healthy controls [6]. Recent in vitro
studies have indicated that triple phosphorylation of
Ser202/Thr205/Ser208 promotes tau aggregation [19];
however, this has not been confirmed in cell culture,
mouse models, or and human postmortem studies.

In this study, we modeled tau phosphorylation at
Ser208 and nearby phosphorylation sites with phospho-
mimetics to determine its role in tau aggregation and
MT binding in cultured cells. To confirm the in vivo
relevance of pSer208, we also created a novel monoclo-
nal antibody 3G12 specific for pSer208 and demon-
strated its strong reactivity for tau inclusions in
transgenic mouse models of tauopathies and in postmor-
tem brain samples of patients with AD and other
tauopathies.

Materials and methods
K18 tau protein purification
The K18 tau fragment consists of the MT binding re-
peats of the 2N4R human tau protein isoform, which in-
cludes amino acid residues Q244 to E372. An additional
N-terminal methionine was added to K18 protein and
expressed under the bacterial plasmid pRK172 in BL21
(DE3)/RIL Escherichia coli (Agilent Technologies, Santa
Clara, CA). Recombinant K18 tau protein was purified
as previous described [17, 72, 84]. Protein concentration
was determined using a bicinchoninic acid assay
(Thermo Fisher Scientific, Waltham, MA) and albumin
for the standard curve.

Fibrillization of tau K18 seeds
Purified K18 tau protein was dissolved in PBS at a con-
centration of 1 mg/mL and 50 μM of heparin and was
placed in a shaking incubator at 1050 RPM and 37 °C
for at least 2 days. As previously described, the presence
of polymerized amyloidogenic K18 fibrils structure was
confirmed by K114 or thioflavin T assays [17]. To
remove heparin, K18 tau fibrils were centrifuged at
100,000 g for 30 min and re-dissolved in PBS followed
by water bath sonication for 60 min resulting in
shorter tau fibrils [72, 81, 84].

Mammalian tau expression plasmids and site-directed
mutagenesis
The 2N4R human tau isoform cDNA was cloned into
the pcDNA3.1 mammalian expression vector. Phospho-
mimetic mutations were introduced by QuikChange
site-directed mutagenesis (Agilent Technologies, Santa
Clara, CA) with customized oligonucleotides. The se-
quence of all constructs with the entire tau sequence
was verified by Sanger sequencing performed by
Genewiz (South Plainfield, NJ).

HEK293T cultured cells and calcium phosphate
transfection
HEK293T cells were maintained at 37 °C and 5% CO2 in
Dulbecco’s modified Eagle’s media and 10% fetal bovine
serum (FBS) supplemented with antibiotics (100 units/
ml penicillin, 100 μg/ml streptomycin). Calcium
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phosphate precipitation was used to transfect HEK293T
cells with various plasmid constructs. Cells were split
into 12-well plates at 20–40% confluency. For each well,
1.5 μg of DNA was mixed with 18.75 μL of 0.25M CaCl2.
This mixture was added to an equivalent of 2X BES buf-
fer (50 mM BES, 280 mM NaCl, 1.5 mM Na2HPO4, pH
6.96) and incubated at room temperature for 15–20 min.
The final solution was placed dropwise to each well. For
tau seeding experiments, 1 μM of purified K18 tau fibrils
was added an hour post-transfection [72, 84]. 16 h after
transfection, cells were washed with PBS and placed in
3% FBS until they were harvested at 48 h after the media
change.

Cellular tau aggregation assay
HEK293T cells were harvested in 200 μL of Triton Lysis
Buffer (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1% Triton X-100, 20 mM NaF) with a mix of dif-
ferent protease inhibitors as previously described [72,
84]. Cell lysates were centrifuged at 100,000 g and 4 °C
for 30 min to separate into a soluble and insoluble frac-
tion. The insoluble fraction was washed in additional
buffer and centrifuged again at 100,000 g and 4 °C for 30
min. The pellets were resuspended in Triton Lysis Buf-
fer. Both fractions were boiled for 10 min after adding
SDS- sample buffer (10 mM Tris, pH 6.8, 1 mM EDTA,
40mM DTT, 0.005% bromophenol blue, 0.0025% pyro-
nin yellow, 1% SDS, 10% sucrose). The insoluble fraction
was sonicated and boiled again for 10 min to completely
dissolve the pellet.

Cellular MT binding assay
HEK293T cells were lysed in 200 μL of PEM buffer (80
mM PIPES, pH 6.8, 1 mM EGTA, 1mM MgCl2) supple-
mented with 0.1% Triton X-100, 2 mM GTP, 20 μM pac-
litaxel, and protease inhibitors as previously described
[77, 84]. Cell lysates were incubated at 37 °C for 30 min
and centrifuged at 100,000 g for 30 min to isolate MTs.
Supernatants were transferred to a new tube and the
pellet (MT fraction with bound proteins) were resus-
pended in PEM buffer. The pellet fraction was homoge-
nized and SDS-sample buffer was added to both
fractions. Equivalent amounts of supernatant and pellet
were loaded on SDS polyacrylamide gels for Western
Blot analysis. Percentage of MT-bound tau was calcu-
lated with pellet / (supernatant + pellet) * 100.

Enzyme-linked Immunosorbent assay (ELISA)
96-well ELISA plates (Corning Life Sciences, Corning,
NY) were coated with 100 ng in 100 μL PBS per well of
each peptide (see Table 1). All wells were washed with
PBS four times and blocked with PBS with 5% FBS. Pri-
mary antibodies were added to blocking solution and in-
cubated for 1 h. After PBS washes, plates were incubated

with horseradish peroxidase-conjugated goat anti-mouse
antibody (Vector Labs Inc., Burlingame, CA) in blocking
solution for an hour. Plates were washed with PBS and
3,3′,5,5′-tetramethylbenzidine (TMB substrate, Thermo
Fisher Scientific, Waltham, MA) was added to each well.
The reactions were stopped with 0.2 M HCl and the op-
tical density was measured at 450 nm with a plate reader.
All ELISA experiments were performed in
quadruplicates.

Generation of monoclonal antibody to tau
phosphorylated at Ser208
BALC/c mice (Jackson Laboratory, Bar Harbor, ME)
were immunized with a synthetic peptide
Cys-202SPGTPGpSRSRTP213 (synthesized and purified
by GenScript USA Inc., Piscataway, NJ), which corre-
sponds to tau phosphorylated at Ser208, conjugated
to KLH as previously described [16, 73, 74]. Hybrid-
oma clones were screened for their specificity by
ELISA [16, 73]. Monoclonal antibody 3G12 was found
to be specific for tau phosphorylated at Ser208 by
ELISA and was useful for immunohistochemistry and
western blotting. All of the synthetic peptides used are
listed in Table 2 and were synthesized and purified
by GenScript USA Inc. (Piscataway, NJ).

Western blot and semi-quantitative analysis
Protein samples were loaded on 10% polyacrylamide gels
for SDS-PAGE and electrophoretically transferred to
nitrocellulose membranes. Membranes were blocked in
5% milk in TBS for 1 h at room temperature and incu-
bated in primary antibodies overnight at 4 °C at 1:1000
dilutions for 3026 total tau antibody [73], β-tubulin anti-
body (Clone TUB 2.1 from Sigma-Aldrich, St. Louis,
MO), and tau antibody 3G12 specific for pSer208. After
TBS washes, the membranes were added to anti-rabbit
or anti-mouse secondary antibodies conjugated to horse-
radish peroxidase (Jackson ImmunoResearch, West
Grove, PA) for 1 h. After TBS washes, the membranes
were reacted with Western Lightning Plus ECL reagents
(PerkinElmer Life Sciences, Waltham, MA) and the sig-
nal was captured by chemiluminescence imaging (PXi,

Table 1 Table of synthetic peptides used for ELISAs

Peptide Name Peptide Sequence

pSer199, pSer202, pSer205 193DRSGYS-pS-PG-pS-PG-pT-PGSRSR211-Cys

pSer199 193DRSGYS-pS-PGSPGTPGSRSR211-Cys

pSer202 193DRSGYSSPG-pS-PGTPGSRSR211-Cys

pThr205 193DRSGYSSPGSPG-pT-PGSRSR211-Cys

pSer208 Cys-202SPGTPG-pS-RSRTP213

pThr205/pSer208 Cys-202SPG-pT-PG-pS-RSRTP213

Ser208 Cys-202SPGTPGSRSRTP213
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Syngene, Frederick, MD). The specific signals in each
lane were quantified based on densitometric analysis
with ImageJ software. Statistical tests were calculated on
GraphPad Prism for one-way or two-way analysis of
variance (ANOVA) with post hoc analysis by Dunnett’s
test for group comparison.

Generation of Triton X-100 insoluble fractionations of
mouse brain tissue
Brain samples from non-transgenic (nTG), tau knock-
out (KO) [18] and rTg4510 transgenic tau [67, 69] mice
were lysed in TBS buffer (50 mM Tris base, 274 mM
NaCl, 5 mM KCl, pH 8.0) supplemented with 1% Tri-
ton X-100 and protease and phosphatase inhibitors and
probed sonicated until the solution is homogenous.
The brain lysates were centrifuged at 100,000 g for 30
min at 4 °C. The Triton-insoluble pellets fractions were
resuspended in the same buffer and SDS-sample buffer

was added with heated at 100 °C for 10 min before load-
ing for SDS-PAGE.

Immunohistochemistry of human and mouse brain tissue
Formalin-fixed brain samples of patients with AD, PSP,
and CBD were provided by the University of Florida
Neuromedicine Human Brain and Tissue Bank (UF
HBTB) following institutional regulations. See Table 3
for details on human cases used for this study. Ethanol-
fixed and formalin-fixed brain samples were obtained
from PS19 transgenic mice that overexpress 1N4R hu-
man tau isoform with the P301S mutation [85] and
rTg4510 transgenic mice that overexpress 0N4R human
tau isoform with the P301L mutation, respectively [67,
69]. Paraffin-embedded tissue on slides were rehydrated
in xylene and series of ethanol solutions (100, 90, and
70%). For standard heat antigen retrieval, slides were
placed in a steam bath for 30 min to an hour in water
supplemented with 0.05% Tween-20. Endogenous

Table 2 List of Tau Antibodies

Antibody Specificity Peptide/Protein Used for Immunization

AT8 Combinations of pSer202, pThr205, pSer208 PHF-tau from AD brain [8, 58]

CP13 pSer202 PHF-tau from AD braina

7F2 pThr205 193DRSGYS-pS-PG-pS-PG-pT-PGSRSR211-Cys [73]

3G12 pSer208 Cys-202SPGTPG-pS-RSRTP213

2D1 Phosphorylation independent 193DRSGYS-pS-PG-pS-PG-pT-PGSRSR211-Cys [73]

3026 Total tau recombinant full-length 0N/3R human tau [73]
aPersonal communication with Dr. Peter Davies

Table 3 Demographic data of clinical cases, diagnoses and pathologic findings

Age Gender Primary Diagnosis Secondary Diagnosis Thal Phase (A score) Braak stage (B score) CERAD (C score)

AD 78 female ADNC, high CAA 4 (A3) VI (B3) frequent (C3)

AD 64 female ADNC, high CAA 4 (A3) VI (B3) frequent (C3)

AD 77 male ADNC, high ARTAG; CAA 4 (A3) VI (B3) moderate (C2)

AD 64 male ADNC, high CAA 5 (A3) VI (B3) frequent (C3)

AD 68 male LBD (neocortical) ADNC, intermediate 3 (A2) V (B3) frequent (C3)

DLB 81 female ADNC, high LBD (neocortical); CAA 4 (A3) VI (B3) frequent (C3)

DLB 68 female LBD (neocortical) ADNC, high; CAA; LATE stage1 5 (A3) V (B3) frequent (C3)

DLB 83 male ADNC, intermediate LBD (neocortical); CAA; LATE stage 2 3 (A2) V (B3) frequent (C3)

PSP 63 female FTLD-tau (PSP) 0 (A0) 0 (B0) none (C0)

PSP 69 female FTLD-tau (PSP) ADNC, low 3 (A2) III (B2) none (C0)

PSP 72 female FTLD-tau (PSP) PART (Braak II) 0 (A0) II (B1) none (C0)

PSP 78 male FTLD-tau (PSP) 0 (A0) 0 (B0) none (C0)

PSP 77 male FTLD-tau (PSP) ADNC, low; CAA 2 (A1) II (B1) none (C0)

CBD 73 female FTLD-tau (CBD) ADNC, low; CAA 1 (A1) II (B1) none (C0)

CBD 70 male FTLD-tau (CBD) ADNC, low; CAA 3 (A2) II (B1) none (C0)

Primary neuropathologic diagnoses were based on current guidelines for Alzheimer’s disease neuropathologic change (ADNC) [59], dementia with Lewy Bodies
(DLB) [55], and frontotemporal lobar dementia-tau (FTLD-tau) pathology [52], including progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD)
[20]. Additionally, secondary neuropathologic changes were determined following guidelines for cerebral amyloid angiopathy (CAA) [13], Aging-related tau
astrogliopathy (ARTAG) [48], and limbic-predominant age-related TDP-43 encephalopathy (LATE) [64]
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peroxidase was quenched by submerging slides in PBS
solutions with 1.5% hydrogen peroxide and 0.005%
Triton-X-100. After washing, slides were blocked in 2%
FBS/0.1M Tris, pH 7.6 and were incubated in primary
antibody overnight at 4 °C. Primary antibody dilutions
were 1:500 for AT8 antibody (Thermo Fisher Scientific,
Waltham, MA), 1:1000 for 7F2 antibody [73], 1:250 for
CP13 antibody [82] (Dr. Peter Davies), and 1:1000 for
antibody 3G12 against Tau phosphorylated Ser208. After
washes with 0.1 M Tris, pH 7.6, slides were sequentially
incubated with biotinylated anti-mouse secondary anti-
body (Vector Laboratories, Burlingame, CA) for 1 h and
streptavidin-conjugated HRP (Vectastain ABC kit from
Vector Laboratories, Burlingame, CA) for 1 h. All slides
were developed in 3, 3′-diaminobenzidine (DAB kit;
KPL, Gaithersburg, MD) and counterstained with
Mayer’s hematoxylin (Sigma Aldrich, St. Louis, MO).
Slides were dehydrated in ethanol solutions (70, 90, and
100%) and xylene before they were covered with Cyto-
seal (Thermo Scientific, Waltham, MA).

Semi-quantitative analysis of pathological counts
For AD and dementia with Lewy body (DLB) cases (de-
tails in Table 3), three different raters (YX, SP and ZAS)
scored NFT, neuritic plaques, and neuropil threads in
the hippocampus and surrounding regions for
phosphorylation-specific antibodies AT8 and 3G12.
Pathologic hallmarks were counted in randomly selected
20X fields in CA4, CA3, CA2, CA1, subiculum, entorhi-
nal cortex and adjacent inferior temporal cortex ac-
counting for seven total regions scored per case. The
number of NFT and tau-positive neurons were counted
per 20X field, and the percent of mature tangles were
calculated as a ratio of mature NFT to tau-positive neu-
rons. Similarly, neuritic plaques were counted in the
same randomly selected 20x fields. Neuropil threads
were scored on a graded scale from 1 to 3 based on rela-
tive density. Between the three different raters, 168
different data points were calculated for statistical ana-
lysis of each type of brain pathology.
Using IBM SPSS Statistics program (IBM, Armonk,

New York), interrater reliability was assessed by cal-
culating the intraclass correlation coefficient (ICC)
with a two-way mixed model for consistency between
three different raters [33]. For counting of NFT, the
intraclass correlation coefficient was 0.822 with a 95%
confidence interval from 0.757 to 0.873. For counting
of neuritic plaques, the intraclass correlation coeffi-
cient was 0.696 with a 95% confidence interval from
0.584 to 0.782. For scoring of neuropil threads, the
intraclass correlation coefficient was 0.534 with a 95%
confidence interval from 0.362 to 0.666. Based on
these results, counting of NFT and neuritic plaques

had good reliability for consistency between the three
raters. Scoring of neuropil threads was moderately re-
liable between different raters.

Results
Triple tau phosphomimetic S202E/T205E/S208E promotes
aggregation of wild type (WT) tau in cultured cells
A previous in vitro study indicated that the combined
phosphorylation of Ser202, Thr205, and Ser208 residues
promotes the polymerization of tau into filaments [19].
To assess if this phosphorylation pattern could also
promote aggregation in a cell model, site-specific tau
phosphomimetics of Ser or Thr to Glu substitutions
were created at these sites (Fig. 1a). Tau aggregation was
assessed in the absence and presence of exogenous K18
tau amyloid seeds. Tau mutant P301L is prone to K18
seeded aggregation and was used as a positive control
[25, 72, 84]. All types of tau including WT, P301L, and
phosphomimetics were expressed at comparable levels
(Supplemental Figure 1).
As previously shown [72, 84], WT tau does not signifi-

cantly aggregate with or without K18 induced seeding
(Fig. 1b, h), while P301L tau robustly aggregate in the
presence of seeds (Fig. 1c, h). Single tau phosphomimetic
S208E and double tau phosphomimetic S202E/T205E
did not significantly aggregate with or without seeding
(Fig. 1d, e, h). In contrast, the triple tau phosphomimetic
S202E/T205E/S208E showed some aggregation without
seeding but this was not enhanced by the addition ex-
ogenous K18 tau seeds (Fig. 1f, h). Combining the triple
tau phosphomimetic S202E/T205E/S208E with the
P301L mutation did not have an additive effect on tau
aggregation more than P301L by itself (Fig. 1g).

S208E tau phosphomimetic modulates MT binding
Prior in vitro studies have suggested that phosphoryl-
ation of Ser202 and Thr205 can decrease tau’s ability to
promote MT polymerization [78], but the effects of
phosphorylated Ser208 have not been investigated.
Therefore, MT binding of different phosphomimetics
was assessed using a cell-based assay [1, 38, 77, 84]. In
this assay, paclitaxel is used to stabilize MT and proteins
that bind to MT such as tau can be pulled down by
high-speed centrifugation. When paclitaxel is added to
cell lysates, stable MT are formed and are present in the
pellet fraction. As a MT binding protein, tau is also in-
creased in the pellet fraction. In WT control samples,
where the same cell lysates were not treated with pacli-
taxel, most of the unpolymerized tubulin is present in
the soluble fraction where also the majority of tau is
found, with only ~ 10% in the pellet fraction (Fig. 2a). In
the presence of paclitaxel, tubulin polymerized as MT is
predominantly present in the pellet fraction and WT
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)
Fig. 1 Triple phosphomimetic S202E/T205E/S208E promotes aggregation of WT tau. a Schematic of 2N4R human tau protein depicting the major
domains and the expanded 199–208 amino acid region within the proline-rich domain. Ser202, Thr205, and Ser208 were mutated to Glu residues
to model site-specific tau phosphorylation. b HEK293T cells were transfected to express 2N4R human WT tau (b), P301L tau mutant (c), or the
indicated tau phosphomimetics (d-g) and were biochemically assessed for tau aggregation with or without the addition of K18 seeds as
described in “Materials and Methods.” S = supernatant fraction, P = pellet fractions. Immunoblots were probed with total tau antibody 3026. c As a
positive control for seeding with K18 seeds the tau P301L mutant was used. Similar aggregation and seeding studies were performed with the
single phosphomimetic S208E (d), the double phosphomimetic S202E/T205E (e), and the triple phosphomimetic S202E/T205E/S208E (f). g Triple
phosphomimetic S202E/T205E/S208E in the context of the P301L mutation was also assessed. The relative molecular masses of protein markers
are indicated on the left. h Quantification of percent tau aggregation was determined as described in “Materials and Methods.” One-way ANOVA
with Dunnett’s Test was performed with N = 6 for WT tau and N = 3 for each tau mutant. **** is p < 0.0001, *** is p < 0.001, * is p < 0.05 and
ns = not statistically significant. Error bars show standard error of the mean

Fig. 2 Tau phosphomimetic S208E increased MT binding compared to WT tau and other tau phosphomimetics. a, b Cell-based MT binding
assays were performed on HEK293T cells transfected to express 2N4R WT human tau without (a) or with (b) Paclitaxel added as described in
“Material and Methods”. The same assay with Paclitaxel added as performed for cells expressing 2N4R human tau with the (c) S208E, (d) S202E/
T205E or (e) S202E/T205E/S208E phosphomimetics. Immunoblots were probed with antibody specific for β-tubulin (clone TUB 2.1) to confirm
tubulin polymerization or with 3026, a polyclonal antibody against total tau. S = supernatant fraction; P = pellet fractions. The relative molecular
masses of protein markers are indicated on the left. f Quantification of percent tau associated with MTs. One-way ANOVA with Dunnett’s Test was
performed with N = 3 for WT tau and N = 3 for each of these tau mutants. ** = p < 0.01, ns = not statistically significant. Error bars show standard
error of the mean
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2N4R tau binds MTs at about 30% (Fig. 2b, f). In con-
trast, S208E tau shows increased MT binding at ~ 41%
compared to WT tau (Fig. 2c, f). Surprisingly, tau phos-
phomimetics S202E/T205E and S202E/T205E/S208E did
not show significant changes in MT binding relative to
WT tau (Fig. 2d, e, f).

Generation and characterization of novel monoclonal
antibody 3G12 specific for tau phosphorylated at Ser208
To study tau phosphorylation of Ser208 (pSer208) in hu-
man tauopathies, a new monoclonal antibody specific
for pSer208 was generated by immunizing mice as de-
scribed in Material and Methods using the synthetic
pSer208 peptide (Table 2). By ELISA, monoclonal anti-
body 3G12 strongly reacted with the pSer208 peptide
but not with the corresponding non-phosphorylated
peptide (Fig. 3a). Since the Thr205 residue is in proxim-
ity with Ser208, we tested if phosphorylation of Thr205
could interfere with 3G12 binding. 3G12 bound to the
dual phosphorylated pThr205/pSer208 peptide with a
similar efficiency as the phosphorylated Ser208 peptide,
suggesting Thr205 phosphorylation does not block 3G12
antibody from binding to the pSer208 epitope (Fig. 3a).

For comparison, the AT8 antibody did not react with
any of these peptides (Fig. 3a).
To test the specificity of antibody 3G12 and the pres-

ence of tau Ser208 phosphorylation within aggregated
tau in disease models, immunoblot analysis was per-
formed using the Triton-insoluble fraction of brain lysates
of tau KO, nTG mice, and rTg4510 transgenic mice that
overexpress 0N4R isoform of P301L tau mutation [67, 69].
3G12 antibody detected aggregated tau in rTg4510 trans-
genic mice and shows no major nonspecific bands in nTG
mice or tau KO mice (Fig. 3b). A total tau antibody 3026
was used to confirm the presence of aggregated human
tau in rTg4510 transgenic mice (Fig. 2c).
Using ELISA and different synthetic phosphorylated

peptides (Table 2), the epitope specificity of antibody
3G12 was compared to other phospho-specific anti-
bodies with nearby or overlapping epitopes (Fig. 4). As
expected, antibody AT8 reacted with the synthetic
pSer199/pS202/pSer205 peptide and not with any of the
singly phosphorylated peptides (Fig. 4b). Based on previ-
ous studies, the AT8 antibody binding likely requires
double phosphorylation preferentially at Ser202 and
Thr205 [28]. Antibody CP13 is widely used and reported
to be specific for tau phosphorylated at Ser202 [82], but
limited published data is available about its properties.
We confirmed that CP13 reacted with the synthetic pep-
tide with pSer202, but it did not bind single pSer199,
pThr205 or pSer208 peptides (Fig. 4c). However, CP13
also equivalently reacted with the pS199/pS202/pT205
peptide (Fig. 4c) showing that phosphorylation of these
2 amino acids in proximity of Ser202 did not influence
its binding. 7F2 was reported as a monoclonal antibody
that required phosphorylation of Thr205 for binding
[73]; 7F2 bound to only the pThr205 peptide and not
the pSer199, pSer202 or pSer208 peptide, but it can also
bind when pSer199 and pSer202 are also phosphorylated
(Fig. 4d). These additional studies further showed that
antibody 3G12 only required tau peptide phosphorylated
at Ser208 and not Ser199, Ser202 or Thr205 (Fig. 4e).
We previously made antibody 2D1 against the

pSer199/pSer202/pThr205 peptide, but it was not phos-
phorylation specific [73]. We confirmed that 2D1 bound
to this peptide sequence regardless of the specific phos-
phorylation state, but it prefers mono-phosphorylated
peptide over the triple phosphorylated peptide (Fig. 4f).
In addition, 2D1 did not bind to pSer208 or unpho-
sphorylated Ser208 peptide, which begins at amino acid
202 indicating that the epitope of 2D1 antibody likely in-
cludes the 193–201 amino acid residues.

Tau pSer208 is present in tau inclusions of different
mouse models of tauopathies
In the brains of two transgenic tau mouse models, 3G12
immunoreactivity was compared to other antibodies

Fig. 3 Characterization of the specificity of a new monoclonal
antibody 3G12 against pSer208. a ELISA was performed to assess the
specificity of 3G12 monoclonal antibody compared to AT8 and PBS
controls. Peptides used in ELISA are shown in Table 1. b Brain Triton
X-100 insoluble fractions from tau knockout mice (tau KO),
nontransgenic mice (nTG), and 6month old rTg4510 tau transgenic
mice were loaded on 10% polyacrylamide gels for immunoblotting
analysis. Membranes were probed with (b) 3G12 monoclonal
antibody or (c) rabbit polyclonal antibody 3026. The relative
molecular masses of protein markers are indicated on the left
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(AT8, CP13 and 7F2) against adjacent or overlapping
phospho-epitopes. Adjacent brain sections from two
mouse models were stained: rTg4510 transgenic mice
that overexpress 0N4R human tau isoform with the
P301L mutation specifically in the forebrain [67, 69] and
PS19 transgenic mice that globally overexpress 1N4R hu-
man tau isoform with the P301S mutation in CNS neu-
rons [85]. In aged 6-month-old rTg4510 mice, antibody

3G12 detected abundant tau inclusions in the cortex and
hippocampus similar to antibodies AT8, CP13 and 7F2 on
adjacent sections (Fig. 5a, b). This suggests that the tau in-
clusions in this model contain abundant pSer208 in a
similar distribution. In the brains of aged PS19 mice,
3G12 antibody also detected tau inclusions in the thal-
amus and brainstem similarly to phosphorylation-specific
antibodies AT8, CP13, and 7F2 (Fig. 5c, d).

Fig. 4 ELISA analysis of phospho-tau specific antibodies with different peptides near the AT8 Epitope. ELISA was used to assess the specificity of
tau monoclonal antibodies AT8, CP13, 7F2, 3G12 and 2D1 with the indicated synthetic peptide with sequences detailed in Table 1. All ELISA
experiments were replicated with N = 4 and error bars show standard error of the mean
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Tau Ser208 phosphorylation is a marker of mature NFT in
AD patients
Next, we assessed if pSer208 is found in tau inclusions
of post-mortem human brains from patients with differ-
ent tauopathies. Brain tissue sections containing patho-
logical tau inclusions from a series of patients with
either AD or dementia with Lewy Bodies (DLB) with
AD-tau pathology (summary of patients is shown in
Table 3) were used. Hippocampal sections of these cases
were stained with antibodies AT8, CP13, 7F2 and 3G12.
AT8, CP13, and 7F2 showed similar staining for NFT,
dystrophic neurites around neuritic plaques, and neuro-
pil threads (Fig. 6). This is likely because these anti-
bodies detect either pSer202, pThr205, or a combination
of these 2 sites. 3G12 antibody against pSer208 showed
preference for mature NFT as opposed to pre-tangles.
3G12 also detected less dystrophic neurites around neur-
itic plaques and fewer neuropil threads, suggesting that
pSer208 may be a marker of late-stage aggregation spe-
cifically in NFT.
To further validate the qualitative differences between

3G12 and AT8 staining, we performed semi-quantitative
counting of neuropil threads, neuritic plaques, and NFT

in different microscopic fields across the hippocampal
formation as described in “Materials and Methods.” The
3G12 antibody preferentially labeled mature NFT over
less structured tau aggregates compared to AT8 (Fig. 6d).
Similarly, 3G12 antibody demonstrated less reactivity
both neuritic plaques and neuropil threads (Fig. 6e, f).

In PSP and CBD brain samples, pSer208 immunoreactivity
is selective for neuronal and oligodendroglial pathology
over astrocytic pathology
In addition to AD and DLB cases, tau phosphorylation
patterns were investigated for other tauopathies such as
PSP and CBD. In the brain tissue of patients with CBD,
AT8, CP13, and 7F2 antibodies stained astrocytic pla-
ques in a similar manner (Fig. 7a). The 3G12 antibody
showed significantly less staining for astrocytic plaques
and many of these plaques were not captured. In PSP
brains, a similar selectiveness was observed where 3G12
revealed limited staining of tufted astrocytes (Fig. 7b). In
fact, barely any tufted astrocytes were detected with
3G12, while AT8, CP13, and 7F2 abundantly stained
tufted astrocytes. Interestingly, 3G12 antibody stained
neuronal globose tangles and oligodendroglial coiled

Fig. 5 Tau phosphorylated at Ser208 is present in pathological inclusions of PS19 and rTg4510 transgenic mouse models of tauopathies. Staining
of pSer208 specific antibody 3G12 is abundant in tau inclusions within the (a) hippocampus and (b) cortex of 6 month old rTg4510 tau
transgenic mice compared to other phospho-tau specific antibodies AT8, CP13, and 7F2. Staining of pSer208 specific antibody 3G12 is abundant
in tau inclusions within the (c) thalamus and (d) brainstem/pons of 12 month old PS19 tau transgenic mice compared to other phospho-tau
specific antibodies AT8, CP13, and 7F2. Scale bar shows 50 μm

Xia et al. Acta Neuropathologica Communications            (2020) 8:88 Page 10 of 17



bodies with the same distribution as AT8, CP13, and
7F2 antibodies (Fig. 7c, d). Although staining intensity
was less, 3G12 antibody appeared to capture most of the
neuronal and oligodendroglial pathology labeled by the
other antibodies. These data suggest that pSer208 in PSP
is more prominent in neuronal and oligodendroglial in-
clusions than in astrocytic inclusions.

Discussion
Elevated tau phosphorylation at over 45 sites is a hall-
mark of AD brain PHF-tau and many of these post-
translational modifications occur within the proline-rich
region of tau including Ser202, Thr205 and Ser208 [34].
Phosphorylation-specific antibodies such as AT8 can
react with multiple combinations of pSer202, pThr205,
and pSer208 [53, 65] and these antibodies are important
for postmortem Braak staging of AD [11]. Nevertheless,
tau phosphorylation at Ser208 remains poorly studied,

although recent in vitro studies have indicated that
Ser202/Thr205/Ser208 combined phosphorylation can
promote tau aggregation without the addition of typical
chemical inducers [19].
Due to difficulties with studying single phosphoryl-

ation specificity by kinases in vivo, phosphomimetic
alterations were used to model site-specific phosphoryl-
ation of Ser202, Thr205, and Ser208 in cell culture. Spe-
cific Ser or Thr residues were mutated to Glu that act to
mimic pSer or pThr respectively, in terms of size and
charge. Previous studies have shown that tau phospho-
mimetics can adopt pro-aggregative conformations like
in AD [7, 41]. From our phosphomimetic experiments,
we found that triple phosphomimetic S202E/T205E/
S208E promoted tau aggregation in cell culture, but
phosphomimetic of combined S202E/T205E and only
S208E did not by themselves (Fig. 1). This finding indi-
cated that Ser208 phosphorylation can be an enhancer
of tau aggregation when Ser202/Thr205 are also

Fig. 6 3G12 anti-tau pSer208 immunoreactivity for tau AD pathological inclusions compared to other phospho-tau specific antibodies with
adjacent epitopes. Representative images of (a) NFT, (b) neuritic plaques, and (c) neuropil threads in the hippocampal formation of an AD patient
with monoclonal antibodies AT8, CP13, 7F2 and 3G12. Scale bars represent 50 μm. (d) Quantification of percent of mature tangles over tau
positive neurons stained by AT8 and 3G12 antibodies. Clear circles show individual data points. Error bars show 95% confidence intervals as
represented by red bars. e Quantification of neuritic plaques stained by AT8 and 3G12. f Scoring of neuropil threads between AT8 and
3G12 staining
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phosphorylated. These results are congruent with previ-
ous in vitro experiments [19].
The studies were extended to assess the role of prion-

like seeding on tau aggregation by adding recombinant
K18 tau seeds to different phosphomimetics, since it has
been suggested that tau may propagate in a prion-like
mechanism [5, 27]. None of the phosphomimetics includ-
ing triple phosphomimetic S202E/T205E/208E were mod-
ulated by K18 seeding. Since P301L can be enhanced by
K18 seeding as previously demonstrated (Fig. 1c) [72, 84],
we added the triple phosphomimetic S202E/T205/S208E
to P301L. Surprisingly, there was not an additive or en-
hanced aggregation in this quadruple mutation of S202E/
T205E/S208E/P301L. Based on these results, P301L may
represent a different tau aggregation species that is dis-
tinctively enhanced by seeding and operates in a different
mechanism separate from this phosphorylation change. In
our prior screenings of more than 31 different tau mutants
[72, 84], we demonstrated that P301L and related muta-
tions in the P301 position are uniquely prone to aggrega-
tion induced by K18 tau seeds. Therefore, our findings
indicate that two types of modifications that individually
enhance aggregation are not necessarily additive if the

molecular alterations and conformations are not compat-
ible to promote further misfolding.
A major function of tau is to bind and stabilize MTs

[42, 83], which can be regulated by the phosphorylation of
amino acid residues like serine, threonine, or tyrosine [22,
47, 49, 71]. Using a cell-based assay [84], the effects on
MT binding of different phosphomimetics studies were
assessed. S208E was found to display increased MT bind-
ing, which acts similar to disease-causing tau mutants
R5H and R5L [84]. Abnormal MT binding may impair the
ability of tau to properly regulate MT assembly and dy-
namics. Surprisingly, the double phosphomimetic S202E/
T205E and triple phosphomimetic S202E/T205E/S208E
did not significantly alter MT binding. This may be a limi-
tation of using multiple phosphomimetics to model MT
function, because it has been previously demonstrated that
the effects are not necessarily additive [26, 47], likely due
to complex changes in protein structure/folding.
A monoclonal antibody (3G12) specific to tau phos-

phorylated at Ser208 was generated to allow to monitor
this modification in animal models and human brain tissue.
The specificity of the 3G12 antibody was compared to the
AT8 antibody and other related antibodies against nearby

Fig. 7 3G12 anti-tau pSer208 immunoreactivity for pathological inclusions in patients with PSP and CBD compared to other phospho-tau specific
antibodies with adjacent epitopes. a Staining of astrocytic plaques in the striatum of CBD patients with monoclonal antibodies AT8, CP13, 7F2
and 3G12. Staining of (b) tufted astrocytes, (c) coiled bodies, and (d) globose tangles in the striatum of PSP patients. Scale bar shows 25 μm
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sites. Although AT8 antibody binds around the center of
pSer202/pThr205 [24, 28], past studies have shown that
AT8 can also react with pS199 and pSer208 but is highly
selective for dual amino acid phosphorylation within its
binding site [53, 65] consistent with the data here. This spe-
cificity of AT8 is likely because it was created by immuniz-
ing mice with purified PHF-tau from AD brains which is
phosphorylated at many of these residues within the bind-
ing interaction of AT8 [58]. CP13 is a widely used tau
monoclonal antibody with reported specificity for tau phos-
phorylated at pSer202 [82], but little experimental data is
actually available on the characterization of this epitope.
Using synthetic peptides, it is confirmed that CP13 recog-
nizes tau phosphorylated at Ser202 and not Ser199 or
Thr205, but in addition phosphorylation at both Ser199
and Thr205 do not interfere with CP13 binding which is
also probably because this antibody was also raised against
PHF-tau from AD brains [82].
In two different mouse models of tauopathies, our

3G12 antibody robustly stained tau inclusions in cortex
and hippocampus of rTg4510 mice, and in thalamus and
brainstem of PS19 mice. These two mouse models
expressed different tau mutations and variants: PS19
mice overexpress the 1N4R human isoform with the
P301S mutation [85] and rTg4510 transgenic mice over-
expressed the 0N4R human isoform with the P301L mu-
tation [67, 69]. These findings indicate that Ser208 is
phosphorylated within the pathological inclusion that ac-
cumulated in these different animal models similarly to
AT8, CP13, and 7F2 antibody staining, which corres-
pond to phosphorylation at Ser202 and Thr205.
In AD and DLB patients with AD-tau pathology, it is

shown that 3G12 antibody reveals strong preference for
mature tangles relative to pre-tangles and other unstruc-
tured aggregates of tau compared to AT8. This observa-
tion was consistent across multiple regions of the medial
temporal lobe. pSer208 is unique as a marker of aggrega-
tion and mature NFT compared to the other phosphoryl-
ation sites that stain all forms of tau. Phosphorylation at
Ser208 might occur sequentially after Ser202 and Thr205
phosphorylation as the S208E phosphomimetic signifi-
cantly reduces phosphorylation of these sites as deter-
mined by phosphorylation-specific antibodies AT8,
CP13, and 7F2, at least in HEK293T cells (Supple-
mental Figure 2). Since Braak staging is based on the
distribution of mature NFT [10, 11], pSer208 will be
useful for both early and late stage AD to track all
Braak stages I to VI. An aggregation-specific marker
like pSer208 could make diagnosis easier, since it
does not pick up extraneous staining of uncertain sig-
nificance. The other antibodies CP13 and 7F2 re-
vealed similar staining patterns as AT8, but might be
more specific for pathological tau aggregates, as AT8
has been shown to cross-react with MAP 2C [54, 73].

To further investigate phosphorylation differences in
other tauopathies, PSP and CBD cases were also selected
for histopathologic analysis (Table 3). 3G12 immunore-
activity showed a distinct preference for neuronal and
oligodendroglial pathology in PSP and detected less
astrocytic pathology in either CBD or PSP. There were
no major differences in AT8, CP13, or 7F2 staining in
PSP and CBD, which suggests that Ser208 may be
phosphorylated at different levels in different types of
PSP and CBD pathology. It is not entirely surprising that
different types of tau pathology can have variations in phos-
phorylation patterns; however, many phosphorylation-
specific antibodies like AT8 and PHF-1 do not stain PSP
and CBD pathology differently [21]. Recent cryo-EM stud-
ies suggest that CBD tau filaments may have different struc-
tures compared to AD tau filaments [86]. PSP tau filaments
likely also adopt a different structural conformation [4]. Ex-
perimentally, PSP and CBD tau pathology can be propa-
gated as distinctively different strains when injected into
the brains of different transgenic tau mouse models [14, 61,
62]. Since post-translational modifications can differentiate
CBD from AD [3], it is possible that CBD or PSP pathology
represent different tau conformations with distinctively dif-
ferent phosphorylation patterns that define their structure
and properties.
Based on our results and previous studies, we propose

a model for how tau hyperphosphorylation near the AT8
epitope might lead to tau aggregation (Fig. 8). Normally,
most tau protein is predominantly found in axons and
associated with MTs. Phosphorylation of Ser202 and
Thr205 may promote tau to mislocalize from the axon
to the soma and dendrites, often detected as pre-tangles
by the AT8 antibody [10, 11]. Combined phosphoryl-
ation of Ser202, Thr205, and Ser208 forms a unique
post-translational modification configuration that pro-
motes tau aggregation, accelerating the formation of tau
filaments, and eventually resulting in NFT.
Phosphorylation of Ser202 and Thr205 is likely regu-

lated by different types of kinases compared to phos-
phorylation of Ser208. Ser202 and Thr205 have been
shown to be phosphorylated by proline-directed kinases
such as mitogen-activated protein kinases (MAPK) [68],
cyclin-dependent kinase 5 (CDK5) [46] and glycogen
stimulated kinase-3β (GSK-3β) when primed with pro-
tein kinase A (PKA) [50, 51]. In contrast, non-proline di-
rected kinases like checkpoint kinase 1 (Chk1) [57],
casein kinase 1 delta (CK-1) [36] and tau-tubulin kinases
(TTK) [76] have been shown to phosphorylate Ser208,
but none of these kinases reportedly phosphorylate
Ser202 and Thr205. This suggests that two distinct
groups of kinases phosphorylate Ser202 and Thr205
compared to Ser208. Phosphorylation of Ser208 likely oc-
curs at a different disease stage from phosphorylation of
Ser202 and Thr205. It is also possible that different
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tauopathies may have variations in phosphorylation
patterns that define different tau conformations and
species.
Besides histopathological diagnosis, an antibody

specific for mature tangles such as 3G12 might provide
high potential diagnostic value as a blood and cerebro-
spinal fluid (CSF) biomarker for NFT progression in AD
patients, as pSer208 was reported to be distinctively ele-
vated in the CSF of AD patients compared to healthy
controls [6]. Antibody 3G12 could also be used as im-
munotherapy for specific targeting of mature tangles in
AD as several phosphorylation-specific antibodies have
shown efficacy in different tau mouse models and in de-
veloping clinical trials [15, 45, 56, 79].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40478-020-00967-w.

Additional file 1: Figure S1. Soluble fractions of WT tau, tau mutant
P301L, and tau phosphomimetics have similar expression levels. Soluble

fractions of WT tau, P301L, and phosphomimetics S208E, S202E/T205E,
S202E/T205E/S208E, S202E/T205E/S208E/ P301L were immunoblotted
with a total tau antibody 3026. The relative molecular masses of protein
markers are indicated on the left.

Additional file 2: Figure S2. Tau S208E phosphomimetic presents
significantly reduced phosphorylation of nearby sites Ser202 and Thr205.
HEK293T cells were transfected to express WT tau or S208E tau
phosphomimetic 2N4R isoform. Whole cell lysates were immunoblotted
with a total tau antibody 3026 and phosphorylation specific antibodies
CP13, 7F2, and AT8. The relative molecular masses of protein markers are
indicated on the left.
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AD: Alzheimer’s disease; ADNC: Alzheimer’s disease with neuropathologic
change; Aβ: Beta-amyloid; ABC: Avidin-biotin complex; ARTAG: Aging-related
tau astrogliopathy; CAA: Cerebral amyloid angiopathy; CBD: Corticobasal
degeneration; CSF: Cerebrospinal fluid; CTRND: Center for Translational
Research in Neurodegenerative Disease; DAB: 3,3′-diaminobenzidine;
DLB: Dementia with Lewy bodies; ELISA: enzyme-linked immunosorbent
assay; FBS: Fetal bovine serum; FTLD-tau: Frontotemporal lobar dementia-tau;
HEK293T: Human embryonic kidney 293 cell line with SV40 large T antigen;
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athy; MAPT: Microtubule-associated protein tau; MT: Microtubules;
NFT: Neurofibrillary tangles; nTG: Nontransgenic; PBS: Phosphate buffered
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Fig. 8 Triple phosphorylation of Ser202, Thr205, and Ser208 promotes tau mislocalization and aggregation, leading to the formation of NFT. 1)
Physiologically, most tau protein is found in neuronal axons. 2) Tau phosphorylation at Ser202 and Thr205 leads to tau mislocalization to the
soma and dendrites. 3) Combined phosphorylation of tau at Ser202, Thr205, and Ser208 enhances formation of tau filaments that lead to
neurofibrillary tangles. Figure was created with Biorender
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