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To the Editors,

Multiple system atrophy (MSA) is a fatal neurodegen-
erative disease and its aetiology remains elusive. The
pathological hallmark of MSA is the presence of glial
cytoplasmic inclusions (GCIs) containing fibrillar a-
synuclein in oligodendrocytes [3, 6], but the regional
vulnerability of the brain to these GCIs remains poorly
understood. We read with interest the paper by Rydbirk
and colleagues recently published in Acta Neuropatholo-
gica Communications [5]. They investigated DNA
methylation (5mC) and hydroxymethylation (5hmC)
changes in prefrontal cortex samples from MSA patients.
We reported previously [1] total DNA methylation
(5mC + 5hmC) changes in MSA, and this work by
Rydbirk et al. [5] further supports a contribution of
epigenetic factors, namely DNA methylation, to MSA
brain pathophysiology.
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Given the differentially methylated CpGs (e.g. in
AREL1 and KTN1), regions (DMRs) and blocks reported
for the 5mC fraction by Rydbirk and colleagues [5], we
performed additional loci-specific analysis of our MSA
DNA methylation data [1]. We used data from our
discovery cohort [1], which was composed of neuro-
pathologically confirmed MSA mixed cases and controls,
and investigated multiple brain regions characterized by
different degrees of GCI burden in MSA, including the
cerebellum, and the frontal and occipital lobes. In the
frontal lobe, no changes were detected in ARELI nor in
the reported intergenic CpGs (Supplementary Table
S1.1). Although with small effects (absolute delta betas
<5%), two CpGs in KTNI were nominally significant
(cg14002714 and cg21059882; p < 0.05). Regarding the
block covering PHF3, two CpGs were nominally signifi-
cant (cgl6049132 and cgl0435600; p < 0.05). Addition-
ally, 52 CpGs in the DMR genes were nominally
significant in our data, 14 of which (in 5 genes: FUT4,
BCARI, CTSZ, ZIC4 and FERMT3) demonstrated abso-
lute delta betas of =5%. With the exception of
¢g18023065 in FUT4, none of these changes passed mul-
tiple testing correction (p<9.07x10°° [0.05/551
CpGs]). Some of those CpGs and additional CpGs were
also nominally significant in the other brain regions

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-020-00946-1&domain=pdf
http://orcid.org/0000-0001-9090-7690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:c.bettencourt@ucl.ac.uk

Bettencourt et al. Acta Neuropathologica Communications

analysed (Supplementary Table S1.1). Interestingly,
the DMR in the FUT4/PIWIL4 promoter (chromo-
some 11: 94278407-94,279,068), replicates a DMR we
found in the frontal lobe and cross-region analyses of
our previous study (Supplementary Tables S3.1 and
S3.3 from [1]).

The study by Rydbirk et al. [5] and ours [1] have
markedly different designs: a) Rydbirk et al. [5] included
white and grey matter from the frontal lobe, whilst we
carefully dissected white matter to enrich for oligoden-
drocytes and analysed different brain regions; and b)
they investigated the contributions of 5mC and 5hmC
separately. We are aware that in our data alterations in
the 5mC and 5hmC proportions can counteract each
other and mask the detection of significant changes in
total methylation. As an example, the ARELI shift from
5mC to 5hmC reported by Rydbirk et al. [5] is masked
in our total DNA methylation data, highlighting an ad-
vantage of analysing 5mC and 5hmC separately. In
addition, distinct cell type compositions in the brain tis-
sue samples may contribute to discordant findings.
According to RNAseq data from major brain cell types
(data from Zhang et al. [7], Supplementary Fig. 1), our
results support methylation changes in genes that are
highly expressed in oligodendrocytes, including KTNI
and PHF3, or more highly expressed in microglia/macro-
phages, including FUT4, CTSZ, and FERMT3 (Supple-
mentary Fig. 1). Conversely, genes more highly
expressed in neurons and/or with low expression in oli-
godendrocytes, such as ARELI, were less susceptible to
DNA methylation changes in our dataset.

Findings from Rydbirk et al. [5] also report increased
ARELI and MHC class I HLA gene expression in MSA
brains. We therefore investigated in our MSA cerebellar
white matter RNAseq data [4] gene expression changes
in all of the genes reported by Rydbirk et al. [5]. Our
study includes two independent cohorts of 66 MSA and
66 healthy controls and laser captured oligodendrocytes
[4]. Although we did not find differential expression for
ARELI or PHF3, we found a nominally significant (p <
0.05) downregulation of KTNI (log2 FC = - 0.465), and
upregulation of CTSZ (log2 FC=0.817), NCSI (log2
FC=0.813) and ZIC4 (log2 FC =1.520) in some groups
of our cohort 1 (Supplementary Table S2). The upregu-
lation of ZIC4 was replicated in cohort 2 of our study
(log2 FC=1.551) and remained significant when ac-
counting for multiple testing adjustments in the com-
bined analysis of both cohorts 1 and 2 (log2 FC = 1.536;
adjusted-p = 0.022). In our RNAseq data, MHC class I
HLA genes have shown inconsistent results across
cohorts/groups, with only HLA-A showing nominally
significant upregulation in one group of cohort 1 (log2
FC =1.156 in MSA-P; p =0.002) and HLA-F in oligoden-
drocytes (log2 FC =1.982; p = 0.032). Some of the MHC
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class I HLA genes, including HLA-A, have also shown
nominally significant DNA methylation changes in our
data (Supplementary Table S1.2).

Overall, we consider that these recent studies by
Bettencourt et al. [1], Piras et al. [4], and Rydbirk et al.
[5] are complementary, and bring important insights
into the brain pathophysiology of MSA. All show
changes in DNA methylation or in gene expression
levels of genes that are more highly expressed in micro-
glia/macrophages, therefore supporting previous studies
highlighting the involvement of inflammatory processes
in MSA (e.g. [2]).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540478-020-00946-1.
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Additional file 1: Supplementary Table S1.1. Loci-specific analysis of
differentially methylated CpGs, regions and blocks identified by Rydbirk

et al. 2020. Supplementary Table S1.2. Loci-specific analysis of differen-
tial methylation in MHC class | HLA genes.

Additional file 2: Supplementary Table S2. Loci-specific analysis of
cerebellar white matter gene expression for genes reported to be differ-
entially methylated and/or differentially expressed by Rydbirk et al. 2020.

Additional file 3: Supplementary Figure 1. Boxplots of normalized
counts in different brain cell types [7] for the most relevant genes
detected in [1, 5]. Raw data were downloaded from Sequencing Reads
Archive (#SRP064454), pseudoalignment was conducted with Kallisto
v0.46.1, and counts were normalized with DESeq2 v1.26.0. Data were from
hippocampus, temporal lobe and fetal cortex. Tumor samples were
excluded from the dataset. FA: fetal astrocytes. A: astrocytes. N: neurons.
O: oligodendrocytes. M: microglia. E: endothelial cells.
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