
RESEARCH Open Access

Meta-analysis of human prefrontal cortex
reveals activation of GFAP and decline of
synaptic transmission in the aging brain
Wasco Wruck and James Adjaye*

Abstract

Despite ongoing research efforts, mechanisms of brain aging are still enigmatic and need to be elucidated for a
better understanding of age-associated cognitive decline. The aim of this study is to investigate aging in the
prefrontal cortex region of human brain in a meta-analysis of transcriptome datasets. We analyzed 591 gene
expression datasets pertaining to female and male human prefrontal cortex biopsies of distinct ages. We used
hierarchical clustering and principal component analysis (PCA) to determine the influence of sex and age on global
transcriptome levels. In sex-specific analysis we identified genes correlating with age and differentially expressed
between groups of young, middle-aged and aged. Pathways and gene ontologies (GOs) over-represented in the
resulting gene sets were calculated. Potential causal relationships between genes and between GOs were explored
employing the Granger test of gene expression time series over the range of ages. The most outstanding results
were the age-related decline of synaptic transmission and activated expression of glial fibrillary acidic protein
(GFAP) in both sexes. We found an antagonistic relationship between calcium/calmodulin dependent protein kinase
IV (CAMK4) and GFAP which may include regulatory mechanisms involving cAMP responsive element binding
protein (CREB) and mitogen-activated protein kinase (MAPK, alias ERK). Common to both sexes was a decline in
synaptic transmission, neurogenesis and an increased base-level of inflammatory and immune-related processes.
Furthermore, we detected differences in dendritic spine morphogenesis, catecholamine signaling and cellular
responses to external stimuli, particularly to metal (Zinc and cadmium) ions which were higher in female brains.
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Introduction
Mechanisms associated with time-dependent physical
decline, i.e., aging are complex and despite its omnipres-
ence in biological organisms our understanding of it is
still not complete. Recently, López-Otín et al. proposed
nine hallmarks of aging [35] into: (i) the four causative
hallmarks Genomic instability, Telomere attrition, Epi-
genetic alterations and Loss of proteostasis, (ii) the three
hallmarks as response to damage De-regulated nutrient
sensing, Mitochondrial dysfunction and Cellular

senescence and (iii) the two integrative hallmarks Stem
cell exhaustion and Altered intercellular communication
which as a result from the others are responsible for
functional decline. Roles of oxidative stress in aging have
been manifested in a large body of publications, e.g. [7]
but have also been challenged recently [26]. Hekimi
et al. do not consider reactive oxygen species (ROS) as
the primary cause of aging but rather as a mediator of
stress response to age-dependent damage. Brink et al.
propose the metabolic stability theory of aging, which
postulates that the aging process depends on maintain-
ing stable concentrations of reactive oxygen species
(ROS) and other critical metabolites [7].
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The rate of aging varies in an organ-specific manner ([7]).
The observation that adult brains do not grow further led
to the notion that neurogenesis declines with age, this how-
ever remains contentious. The dogma of no postnatal
neurogenesis was rejected as far back as the 1990s by stud-
ies dating back to the 1960s [2] also finding neurogenesis in
adult brains [32]. However, the level of neurogenesis in the
adult brain is at a low level and therefore the established
conclusions that most of the cognitive tasks are controlled
by synapsis dynamics still holds true. We previously de-
scribed that aging is the most important factor in the eti-
ology of Late-onset-Alzheimer’s disease (LOAD) and
identified gene-regulatory networks in hippocampus correl-
ating with metabolic instability and oxidative stress [53].
The distinction between disease-associated and aging-
related phenotypes is important. Whilst AD and Mild cog-
nitive impairment (MCI) are associated with the loss of
neurons, age-related cognitive impairment (ARCI) is not
characterized by neuronal loss but rather by changes in the
dynamics of synapses. Synapse dynamics depend on three
types of dendritic spines: stubby, thin and mushroom
spines [25]. Mushroom spines are considered responsible
for long-term memory while thin spines are considered to
arrange synapses for flexible cognitive tasks [6]. Morrison
et al. reported that these thin spines were found to be re-
duced during aging and their density showed the highest
correlation to performance on a cognitive task (DNMS: de-
layed nonmatching-to-sample) in non-human primates
[39]. Mostany et al. reported that old mice possess the same
spine density but a higher stability of spines when com-
pared to mature mice and therefore might imply that age-
related deficits in sensory perception are rather associated
with alterations in the size and stability of spines and bou-
tons than with the loss of synases [40]. Dendritic spine
density can be increased by estradiol [52], thus, hormonal
balance plays an important role in cognitive performance.
Furthermore, age-associated decrease in hormone levels
can also be considered as a reason for cognitive decline in
elderly persons. In females after menopause, cognitive per-
formance has been shown to be improved by estrogen-
replacement therapies [45]. The body of literature is much

smaller for males but regulation of dendritic spine density
by testosterone has also been reported [20].
The role of astrocytes in healthy and diseased brain is

gaining more attention due to the observation that astro-
cytes play major roles in synaptic transmission, information
processing, energy supply and control of blood flow [46].
Analogous to inflammation, the re-activation of astrocytes
in response to neural injury is indispensable, and uncon-
trolled reactivation can be detrimental- ultimately leading
to brain disease. In this study, we investigated changes in
the transcriptomes, associated pathways and gene ontol-
ogies in the brains of males and females during aging by a
meta-analysis of 591 datasets from prefrontal cortex biop-
sies taking into account sex-specific differences and
commonalities.

Materials and methods
Data analysis
Transcriptome datasets of 591 pre-frontal cortex biop-
sies measured on several Affymetrix microarray plat-
forms and via rnaSeq (Illumina HiSeq) were downloaded
from NCBI GEO (Supplementary Table 1). These data-
sets originate from studies by Narayan et al. [41], Barnes
et al. [4], Lu et al. [36], Lanz et al. [34], Chen et al. [10],
Hagenauer et al. [24] and Cheng et al. [11]. Table 1
shows the distribution of the datasets between female
and male samples and over age groups. All data were
read into R/Bioconductor [21] and normalized together
employing the R package inSilicoMerging [48] parame-
trized to use the Combat method in order to remove
batch effects. For the generation of dendrograms, genes
were filtered with a coefficient of variation greater than
0.1 and afterwards subjected to hierarchical cluster ana-
lysis using complete linkage as an agglomeration method
and Pearson correlation as similarity measure. Colour
bars indicative of aging or sex were added to the dendro-
grams via the R package dendextend [19]. Genes for
Principal Component Analysis (PCA) were filtered
analogously as for dendrograms and afterwards the PCA
of their logarithmic (base 2) gene expression was calcu-
lated using the R function prcomp. Based on the PCA,

Table 1 Characteristics of PFC datasets, distribution of female and male samples and in age groups

Dataset Age < 30 Age 30–65 Age > 65 Male Female M/F Total

GSE21138 6 19 4 24 5 4.80 29

GSE21935 2 5 12 10 9 1.11 19

GSE53890 8 12 21 20 21 0.95 41

GSE53987 1 17 1 10 9 1.11 19

GSE71620 52 316 52 332 88 3.77 420

GSE92538 3 37 15 35 20 1.75 55

GSE106669 1 3 4 8 8 1.00 8

Total 73 409 109 439 160 2.74 591
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gene expression was predicted employing the function
predict and the prediction for the first two components
was plotted with age- or sex -specific colour schemes.
The proportions of variance of the first two principal
components were determined using the attribute named
importance from the summary function of the prcomp
object. The screeplot was generated with the plot()
method of the prcomp object. Genes with most influence
on the principal components were found with the func-
tion get_pca_var() from the R package factoextra [30]
and plotted with the package corrplot [50].

Detection of age-associated gene expression
For each gene-g, the Pearson correlation with age rgxa
was calculated with the R function cor() using the nor-
malized logarithmic (base 2) gene expression as x and
the age of the corresponding individual as a. The corre-
sponding p-value was determined via the R function
cor.test(). The values were calculated separately for male
and female prefrontal cortex gene expression. Plots over
age were generated from the logarithmic normalized ex-
pression data with the R functions matplot() and
matlines() fitting a third order polynomial model to the
gene expression data for the regression curve.

Pathway and GO over-representation plots
Over-represented KEGG pathways were calculated
employing the R built-in hypergeometric test. Pathway
annotations were downloaded from the KEGG database
in March 2018 [29]. Over-represented GOs were deter-
mined via the R package GOStats [16]. The n most sig-
nificantly over-represented KEGG pathways and GOs
(n = 20) were plotted in a special dot plot indicating p-
value of the hypergeometric test, number of significant
genes per pathway/GO and gene ratio (ratio of signifi-
cant genes to all genes in the pathway/GO) using pack-
age ggplot2 [51].

Protein interaction networks
Human protein interactions and interactors of interac-
tors were extracted from the Biogrid database version
3.4.161 [9] using genes significantly correlated and anti-
correlated genes (Bonferroni-corrected p < 0.05). The
resulting complex network was reduced to the shortest
paths between the original set via the method get.shor-
test.paths from R package igraph [12] and was plotted
employing community cluster networks identifying com-
munities with more internal than external links via func-
tion cluster-edge-betweenness.

Time series analysis
In order to identify genes associated with GFAP, Pearson
correlation coefficient of the expression of all genes to
the expression of GFAP was calculated. The genes with

the highest positive or negative correlation were filtered
and subjected to time series analysis. As it was obviously
not possible to generate the time series from multiple
measurements at the same individual during aging they
represent only a model of aging reconstructed from sin-
gle measurements at multiple individuals. Thus, the
measurements include gene expression variability be-
tween individuals. In order to smoothen the time series,
a polynomial of degree three was fitted to the data. For
follow-up analyses a stationary time series was needed.
We used the function ndiffs() from the R package fore-
cast [28] to check the stationarity of the time series and
that no further differentiation was needed. The function
was parametrized to use the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test with the null hypothesis of a
stationary root. We adapted the Granger test which tests
causality between time series [22] to test Granger causal-
ity between these time series reconstructed from gene
expression measured in post-mortem brain biopsies
from individuals comprising a full spectrum of ages at
death. We test the null hypothesis that the time series g
of one gene does not cause the time series h of another
gene. This is tested via an auto-regression model of h to
which lagged values of g are added so that the null hy-
pothesis is equivalent to test the coefficients bi for equal-
ity to zero:

ht ¼
XL

i¼1

aiht−i þ
XL

i¼1

bigt−i þ εt ð1Þ

H0 : b1 ¼ ⋯ ¼ bL
¼ 0 gene h does not Granger cause gene gð Þ ð2Þ

Here, ai are coefficients of the auto-regression model
of h and bi coefficients for the added lagged values of g,
εt is the error. The time series of the expression of these
genes during aging compared to the GFAP time series
were tested for Granger causality with the function gran-
gertest from the R package lmtest [56].

Time series analysis on the GO level
The above described time series analysis was extended
in order to uncover relationships between GOs and be-
tween genes and GOs. To achieve this, the means of the
expression values of genes significantly correlated or
anti-correlated with age and associated with a GO were
calculated. The time series consisting of these mean
values was considered a consensus time series for the
dedicated GO. Let A be the set of ages for which data
exists and Ggu and Ggd be the sets of genes significantly
correlated and anti-correlated with age from the GO g:

Ggu ¼ genes correlated upð Þ with age in GO gf g ð3Þ
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Ggd ¼ genes anticorrelated downð Þ with age in GO gf g
ð4Þ

Xu ¼ Xaui; a∈A; i∈Ggu
� � ð5Þ

Xd ¼ Xadi; a∈A; i∈Ggd
� � ð6Þ

The consensus time series Xgu and Xgd for GO g are
then:

Xgu ¼ 1

Ggu

�� ��
X

i∈Ggu

Xaui ð7Þ

Xgd ¼ 1

Ggd

�� ��
X

i∈Ggd

Xadi ð8Þ

Granger causality between this GO consensus time
series and other significantly over-represented GO con-
sensus time series was determined. Furthermore,
Granger causality tests between genes of interest, e.g.
GFAP, and GO consensus time series were carried out.

Results
Sex differences are more prominent than age differences
in prefrontal cortex
Five hundred ninety-one prefrontal cortex (PFC) biopsies-
derived transcriptome datasets (Supplementary Table 1)
from control donors without diagnosed disease were
downloaded from National Center for Biotechnology in-
formation (NCBI) Gene Expression Omnibus (GEO).
After normalization and batch effect adjustment, the data-
sets were characterized via Principal component analysis
(PCA). The plot of the first two components explaining
the highest percentage of variance (Fig. 1a) shows a separ-
ation between female (red) and male (blue). Pooled sam-
ples containing both sexes are located in the middle
between male and female. The dendrogram of male and
female transcriptomes essentially confirms the sex effect
showing large sex-specific contiguous regions (Fig. 1d).
Trying to find reasons for this sex effect, we directly com-
pared male and female transcriptomes and found that the
most significantly differentially expressed genes were lo-
cated on the sex chromosomes (Supplementary Table 2).
Based on this, we performed the follow-up analyses in a
sex-specific manner. Separate cluster analyses for male
and female showed predominantly age-independent clus-
ters with some sub-clusters possessing tendencies for
younger or older samples in male (Fig. 1b) as well as fe-
male (Fig. 1c).

Sex-specific differential expression between young,
middle-aged and old
Differentially down-regulated (ratio < 0.833, p < 0.05;
Fig. 2a, c, e) and up-regulated (ratio > 1.2, p < 0.05; Fig. 2b,

d, f) genes were calculated between three age groups and
compared in venn diagrams between female (red circles)
and male (green circles) prefrontal cortex. Sex-specific age
groups contained age younger than 30 (F30, M30), age be-
tween 30 and 65 (F30_65, M30_65) and age over 65 (F65,
M65). Most genes were differentially expressed between
the more distant groups of age > 65 and age < 30 while in
the comparisons with the middle-aged group there were
fewer genes differentially expressed. This demonstrates
continuous long-term changes in gene expression. In gen-
eral, in the male samples fewer genes were differentially
expressed than in females which may partly be due to the
different sample numbers in male and female. Thus, ex-
cept for the comparison of down-regulated middle-aged
vs. young (Fig. 2a) more genes found in male biopsies
overlapped with female genes than were exclusive in male.
This overlap between male and female shows congruency
between the sexes thus seeming to contradict the sex-
effect found previously in the PCA plot and dendrogram
(Fig. 1a, d). An explanation could be that while most genes
are expressed similarly in male and female, sex-specific ex-
pression is mostly induced by genes on the sex chromo-
somes. As more detailed functional annotation of genes
become available later in this study, analysis carried out so
far revealed that GFAP is up-regulated with increasing age
whereas ALB1 and CX3CR1 are down-regulated with age
in both sexes. For the complete gene lists corresponding
to the venn diagram analyses refer to Supplementary
Table 3.

Genes down-regulated during aging are associated with
synaptic processes
For each gene the Pearson correlation coefficient and
corresponding p-value of its expression with the age of
the associated individuals was calculated separately for
male and female prefrontal cortex (Supplementary Table
4). Figure 3a shows a plot of the expression of the ten
genes most significantly anti-correlated with age in fe-
male ranked by the correlation, Fig. 3c analogously in
male. CYP46A1 (F: r = − 0.57, M: r = − 0.53) and RIMS1
(F: r = − 0.58, M: r = − 0.51) were among these in both
sexes, CX3CL1 (r = − 0.61) was lowest in female, EXPH5
(r = − 0.58) was lowest in male (Supplementary Table 4).
Gene ontologies (GOs) of genes which were most sig-
nificantly anti-correlated with age (Bonferroni-corrected
p < 0.05, r < − 0.1) were analyzed separately for male and
female prefrontal cortex. The 20 most significantly over-
represented GO terms (GO type Biological process) are
shown in dot plots indicating p-value of hypergeometric
test, gene count and ratios of genes annotated with the
GO term (Fig. 3b for female, Fig. 3d for male). In both
sexes, GO terms related to synaptic signaling were found
as most significant (F: p = 1.2E-19, M: p = 8.1E-21, Sup-
plementary Table 5, Fig. 3b, d). Numerous neuron-
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related GO terms were detected as down-regulated with
age – amongst these are, axon development, nervous sys-
tem development, generation of neurons, glutamate re-
ceptor signaling pathway, cell morphogenesis involved in
neuron differentiation. Additionally, further functional
groups including hormones, glucocorticoids, catechol-
amine, neurogenesis and synapse related processes such

as Long-Term-Potentiation (LTP), cAMP signaling, den-
dritic spines, could be identified among the significant
GO terms (Table 2). While most of these GO terms pro-
vide further detail for the central finding of age-related
reduction of synaptic transmission hormones and den-
dritic spines may be causative. The expression levels of
numerous hormones such as estradiol decrease with age

Fig. 1 Sex differences are more prominent than age differences in prefrontal cortex. a Principal component analysis (PCA) of pre-frontal cortex
gene expression data shows a separation between female (red) and male (blue). Pooled samples of both sexes are located in the middle
between male and female. Sex-specific clustering gives heterogeneous images of age groups where only tendencies for clusters of younger
samples to the left and more older samples to the right can be identified in male (b) as well as female (c). d The dendrogram of male and
female samples together shows large sex-specific contiguous regions
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Fig. 2 Most genes were differentially expressed between groups of age > 65 and age < 30. Down-regulated (a, c, e) and up-regulated (b, d, f)
genes were compared in venn diagrams between female (red circles) and male (green circles) prefrontal cortex. Age was grouped in a sex-
specific way into age < 30 (F30, M30), 30 < age < 65 (F30_65, M30_65) and age > 65 (F65, M65). a Genes down-regulated in F30_65 vs. F30 were
compared with genes down-regulated in M30_65 vs. M30. b Genes up-regulated in F30_65 vs. F30 were compared with genes up-regulated in
M30_65 vs. M30. c Genes down-regulated in F65 vs. F30_65 were compared with genes down-regulated in M65 vs. M30_65. d Genes up-
regulated in F65 vs. F30_65 were compared with genes up-regulated in M65 vs. M30_65. e Genes down-regulated in F65 vs. F30 were compared
with genes down-regulated in M65 vs. M30. f Genes up-regulated in F65 vs. F30 were compared with genes up-regulated in M65 vs. M30. Most
genes were differentially expressed between the more distant groups of age > 65 and age < 30 while in the comparisons between the adjacent
age groups there were fewer genes differentially expressed. This demonstrates continuous long-term changes in gene expression. From the
fewer genes differentially expressed in male biopsies most were in common with the female genes
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and are known to influence synaptic plasticity by chan-
ging the numbers and characteristics of dendritic spines.

Genes up-regulated during aging are associated with the
astrocyte marker GFAP and inflammation
Based on the Pearson correlations with age (Supplemen-
tary Table 4) the ten genes most significantly correlated
with age were plotted in female (Fig. 4a) and male (Fig.
4c). GFAP (F: r = 0.62, M: r = 0.55), FKBP5 (F: r = 0.62,
M: r = 0.47), ITGB4 (F: r = 0.56, M: r = 0.51) and ERB-
B2IP (F: r = 0.56, M: r = 0.44) were among these in both
sexes, GFAP was highest in both female and male (Sup-
plementary Table 4). GOs of genes which were most sig-
nificantly correlated with age (Bonferroni-corrected p <
0.05, r > 0.1) were analyzed separately for male and fe-
male prefrontal cortex. The dot plots in Fig. 4b (female)
and Fig. 4d (male) show the 20 most significantly over-
represented GO terms (as in Fig. 3b, d). The GO terms
extracellular matrix organization and circulatory system
development and positive regulation of gene expression

(probably due to selection of upregulated genes) appear
in both sexes while the rest of these top 20 terms differ
between sexes. Further functional GO term groups
shown in Table 3 include immunity, inflammation, ROS
and integrin-associated terms. The immunity and
inflammation-related terms are much more abundant in
females, thus implying probable sex-associated regula-
tion of inflammation and immune response during
aging.

Aging-related changes in pathways
Sex-specific pathway analysis of genes which were most
significantly correlated (Bonferroni-corrected p < 0.05, r >
0.1) and anti-correlated (Bonferroni-corrected p < 0.05,
r < − 0.1) revealed several over-represented KEGG path-
ways [29]. The dot plots in Fig. 5 show the 20 most signifi-
cantly over-represented KEGG pathways for each of these
four analyses. The full pathway analysis results are pro-
vided in Supplementary Table 6. Down-regulation (anti-
correlation) with age was associated with various types of

Fig. 3 Genes down-regulated during aging are associated with synaptic processes . Gene ontologies (GOs) of genes which were most
significantly anti-correlated with age were analyzed separately for male and female prefrontal cortex. GO terms related to synaptic signaling were
found in both sexes
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Table 2 Selected groups of significant GO terms overrepresented in genes anti-correlated with age in female and male
Group Term_female P

value_F
Term_male P

value_
M

Catecholamine catecholamine uptake involved in synaptic transmission 1.47E-
04

catecholamine secretion 5.33E-04

cellular response to catecholamine stimulus 8.13E-
04

catecholamine transport 1.47E-
03

regulation of catecholamine secretion 1.76E-
02

catecholamine binding 4.99E-
02

Hormone hormone transport 8.20E-
07

hormone transport 6.75E-07

regulation of hormone secretion 2.56E-
06

regulation of hormone secretion 3.64E-06

peptide hormone secretion 4.88E-
05

peptide hormone secretion 1.77E-05

response to peptide hormone 1.01E-
03

response to peptide hormone 2.62E-05

hormone-mediated apoptotic signaling pathway 4.18E-
03

cellular response to hormone stimulus 1.11E-04

cellular response to hormone stimulus 5.97E-
03

positive regulation of peptide hormone secretion 9.68E-03

negative regulation of peptide hormone secretion 6.89E-
03

hormone-mediated apoptotic signaling pathway 1.06E-02

regulation of intracellular steroid hormone receptor
signaling pathway

1.97E-
02

thyroid hormone transport 1.72E-02

neuropeptide hormone activity 2.45E-
06

positive regulation of corticosteroid hormone
secretion

3.41E-02

regulation of intracellular steroid hormone receptor
signaling pathway

3.90E-02

cellular response to parathyroid hormone stimulus 4.42E-02

neuropeptide hormone activity 6.12E-05

peptide hormone receptor binding 7.63E-03

Corticoid positive regulation of glucocorticoid receptor signaling
pathway

1.94E-
05

positive regulation of glucocorticoid receptor
signaling pathway

8.12E-05

corticosteroid receptor signaling pathway 1.17E-
03

corticosteroid receptor signaling pathway 6.59E-03

positive regulation of corticosteroid hormone
secretion

3.41E-02

Neurogenesis positive regulation of neurogenesis 2.84E-
05

positive regulation of neurogenesis 1.51E-05

negative regulation of neurogenesis 3.31E-
03

cAMP regulation of cAMP biosynthetic process 7.42E-
05

regulation of cAMP biosynthetic process 6.39E-07

negative regulation of cAMP metabolic process 7.43E-
04

negative regulation of cAMP metabolic process 5.18E-05

positive regulation of cAMP metabolic process 1.01E-
02

positive regulation of cAMP metabolic process 4.47E-04

hippocampus development 7.40E-04

cAMP-mediated signaling 9.50E-04

negative regulation of cAMP-mediated signaling 3.86E-03

cAMP catabolic process 4.08E-02

LTP positive regulation of long-term synaptic potentiation 6.25E-
04

long-term synaptic potentiation 5.54E-06

long-term synaptic potentiation 4.07E- positive regulation of long-term synaptic potentiation 2.49E-03
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Table 2 Selected groups of significant GO terms overrepresented in genes anti-correlated with age in female and male (Continued)
Group Term_female P

value_F
Term_male P

value_
M

03

Dendritic
spine

negative regulation of dendritic spine development 2.02E-
03

dendritic spine morphogenesis 4.75E-05

dendritic spine organization 3.74E-
03

regulation of dendritic spine morphogenesis 2.44E-03

regulation of dendritic spine morphogenesis 5.59E-
03

negative regulation of dendritic spine development 7.75E-03

dendritic spine development 9.70E-
03

positive regulation of dendritic spine morphogenesis 1.03E-02

positive regulation of dendritic spine morphogenesis 3.38E-
02

dendritic spine 4.60E-09

dendritic spine 5.69E-
05

dendritic spine head 2.26E-03

dendritic spine head 5.73E-
04

dendritic spine membrane 2.17E-
02

Fig. 4 Genes up-regulated during aging are associated with the astrocyte marker GFAP and inflammation. Gene ontologies (GOs) of genes which
were most significantly correlated with age were analyzed separately for male and female pre-frontal cortex. In both sexes the astrocyte marker
GFAP has the highest correlation and GO terms related to inflammation were predominant
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synapses, calcium signaling and long-term-potentiation in
both sexes (Fig. 5a, b). To elucidate further causes leading
to decline of synaptic transmission pathways Cortisol syn-
thesis and secretion (F:p = 0.02,q = 0.1; M:p = 0.0001,q =
0.001), cAMP signaling (F:p = 0.05, q = 0.23; M:p = 0.0001,
q = 0.001) and Estrogen signaling (F:p = 0.03,q = 0.17;M:
p = 0.005,q = 0.03) were found (Fig. 5b, Supplementary
Table 6A,B). Estrogens have been reported to regulate
dendritic spine density [52].
Amonsgt the genes correlated with age, we identified

over-represented pathways associated with the extracellular
matrix, cytoskeleton and Hippo- and PI3K-Akt –signaling
(Fig. 5c, d). For the detailed pathways see (Fig. 5c, d, Sup-
plementary Table 6C, D): Regulation of actin cytoskeleton
(F:p = 0.001,q = 0.02; M:p = 0.0004,q = 0.09), Proteoglycans
in cancer (F:p = 7.6E-05,q = 0.01; M:p = 0.002,q = 0.16),
ECM-receptor interaction (F:p = 0.001,q = 0.02; M:p = 0.007,
q = 0.26), Hippo signaling (F:p = 0.0004,q = 0.02; M:p =
0.01,q = 0.27), and PI3K-Akt signaling (F:p = 0.0009,q =

0.02; M:p = 0.02,q = 0.38). Interestingly, the cholesterol me-
tabolism pathway was over-represented in male (p = 0.001,
q = 0.12) but not in female (p = 0.09, q = 0.28).

Protein interaction networks
Protein interaction networks were generated based on
interactions from the BioGrid database (version 3.4.161)
using proteins coded by genes going down with age as
filtered with the criteria of a Pearson correlation < − 0.4
and a Bonferroni adjusted p < 0.05 (Fig. 6a). G protein
subunit alpha L (GNAL; r = − 0.4, p = 4E-18 in male; r =
− 0.46, p = 2E-09 in female; Supplementary Table 4A) is
at the center of this network accounting for the involve-
ment of G-protein and its receptors in most physio-
logical responses to hormones, neurotransmitters.
Several clusters are arranged around GNAL which are
characterized by hub proteins BABAM1 (red), GNAS
(yellow), TRIM25 (petrol), SPATA2 (green), APP (violet)
and ELAVL1 (blue). Analogously to the downregulated

Table 3 Selected groups of significant GO terms overrepresented in genes correlated with age in female and male

Group Term_female P value_F Term_male P value_M

Immunity immune response 2.16E-04 negative regulation of immune
system process

1.25E-02

regulation of immune system process 2.58E-04

regulation of production of molecular
mediator of immune response

7.18E-03

positive regulation of cytokine
production involved in immune
response

1.67E-02

leukocyte mediated immunity 2.98E-02

immune system process 3.53E-02

activation of immune response 3.67E-02

regulation of innate immune response 4.00E-02

immunoglobulin secretion 4.47E-02

negative regulation of immune
response

4.80E-02

Inflammation positive regulation of inflammatory
response

6.21E-03 acute inflammatory response 1.69E-02

regulation of inflammatory response 6.90E-03

acute inflammatory response 1.12E-02

ROS regulation of reactive oxygen
species biosynthetic process

5.79E-04 positive regulation of reactive
oxygen species metabolic process

2.63E-03

positive regulation of reactive
oxygen species metabolic process

2.72E-03 regulation of reactive oxygen
species biosynthetic process

6.00E-03

response to oxidative stress 2.22E-02 response to oxidative stress 3.94E-02

intrinsic apoptotic signaling pathway
in response to oxidative stress

3.64E-02

Integrin-associated terms integrin-mediated signaling pathway 1.67E-05 integrin-mediated signaling
pathway

2.72E-04

integrin binding 7.38E-03 cell adhesion mediated by
integrin

3.53E-02

integrin binding 2.83E-04
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genes, the protein network of the upregulated genes was
generated by filtering with the same p-value but with a
Pearson correlation > 0.4 (Fig. 6b). The reactive astrocyte
marker GFAP – coded by the gene with the highest cor-
relation with age (r = 0.55 in male, r = 0.62 in female;
Supplementary Table 4A) - has a central role in this net-
work and is directly connected with APP.

Time series analysis of GFAP
Time series of GFAP gene expression with age were ana-
lyzed and compared with highly age-correlated and anti-
correlated candidate genes with the aim of finding pos-
sible causal relationships. The gene CAMK4 was found
causative for the GFAP time series with the Granger
causality test from the R package lmtest (p = 0.015). The

Fig. 5 Pathways down-regulated during aging are associated with various types of synapses, calcium signaling and long-term potentiation while
up-regulated pathways are associated with the extracellular matrix, cytoskeleton, Hippo- and PI3K-Akt signaling. KEGG pathways of genes which
were most significantly correlated and anti-correlated with age were analyzed separately for male and female prefrontal cortex. In both sexes
pathways related to various types of synapses, calcium signaling and long-term potentiation were found overrepresented in the genes anti-
correlated with age. In the genes correlated with age pathways associated with the extracellular matrix, cytoskeleton, Hippo- and PI3K-Akt
-signaling are overrepresented
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test for causality in the opposite direction was not sig-
nificant (p = 0.52) indicating that regulation by a third
gene can be excluded. The time series of GFAP posses-
sing the highest positive and CAMK4 possessing nega-
tive correlation with age are plotted in Fig. 7a.
A simplified scheme (Fig. 7b) illustrates these findings

together with results from the previous analyses: astro-
cytes (marker GFAP) react to neuronal injury and ROS
thereby regulating inflammatory processes. They regulate
the uptake and release of neurotransmitters responsible
for synaptic transmission - as described by Sofroniew et al.
[46]. Age-related decline of Calcium signaling decreases
the levels of downstream CAMK4 – as mentioned above
Granger-causing - up-regulation of GFAP. CAMK4 has
been reported as a direct activator of CREB via phosphor-
ylation of the Ser-133 residue [5] or also indirectly via
MAPK [54] . By analyzing the GFAP promoter region we
identified binding sites for CREB - beside STAT and NF-
κB (Supplementary Table 7) which are usually considered
as regulators of GFAP expression [38]. Antagonistic regu-
lation of CREB and GFAP has been reported [43]. The
levels of hormones such as estrogen, which decline with
age play a major role in regulating the density of dendritic
spines and as a consequence, modulation of synaptic
transmission.

Time series analysis of GO synaptic transmission
In order to elucidate which processes induce synaptic
transmission, we set out to test Granger causality be-
tween significant GOs and the GO synaptic transmis-
sion. A consensus time series for the GO synaptic
transmission was generated by taking the mean of all
time series of genes significantly up-regulated with age
in this GO (for details see Methods section). Among the
over-represented GO terms we looked for causal rela-
tionships to this consensus time series of synaptic trans-
mission via the Granger test. Tables 4 and 5 show the
up- and down-regulated GOs found causative for synap-
tic transmission this way. Interestingly, on top of the up-
regulated terms in Table 4, numerous terms related to
nitric oxide appear as most significant. Nitric oxide plays
important roles in the nervous system and in mitochon-
dria and has been described to mediate mitochondrial
fragmentation leading to age-related neurodegenerative
diseases [31]. There was also evidence that nitric oxide
elevates intracellular calcium levels and thus mediates
reactive astrogliosis [47]. Furthermore, in Table 4, the
term negative regulation of monocyte chemotactic
protein-1 (MCP1/CCL2) production indicates an aging-
related loss of CCL2. CCL2 has been reported to be pro-
tective against neurotoxic effects of excessive glutamate

Fig. 6 Protein interaction networks highlight major role of astrocyte marker GFAP during aging. a Protein interaction network of proteins coded
by genes down-regulated with age based on interactions from the BioGrid database. G-protein subunit alpha L (GNAL) is at the center of several
clusters which are characterized by hub proteins BABAM1 (red), GNAS (yellow), TRIM25 (petrol), SPATA2 (green), APP (violet) and ELAVL1 (blue). b
Protein interaction network of proteins coded by genes up-regulated with age based on interactions from the BioGrid database. The astrocyte
marker-GFAP, has a central role and is directly connected to APP
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Fig. 7 Astrocyte marker GFAP has the highest correlation with prefrontal cortex aging and depends causally on CAMK4 in the time series. a The
plots display time series of the genes GFAP possessing the highest positive and CAMK4 possessing negative correlation with age. The Wald test
shows that the time series of CAMK4 is causative for GFAP time series. b A simplified scheme illustrates activation of astrocytes (marker GFAP) by
inflammation, ROS and neuronal injury regulating uptake and release of neurotransmitters responsible for synaptic transmission. GFAP is
regulated by CAMK4 – possibly via pERK and CREB (blue shading) - which is going down during aging and is downstream of Calcium signaling
pathway. Down-regulation during aging is marked with green colour, up-regulation with red colour

Table 4 GOs going up with age “granger-causing” GO synaptic transmission

Term ts2_c_ts1_p ts1_c_ts2_p

Nitric oxide metabolic process 0.0027 0.1969

Regulation of nitric-oxide synthase biosynthetic process 0.0034 0.1853

Positive regulation of nitric oxide biosynthetic process 0.0081 0.3591

Positive regulation of myelination 0.0107 0.0538

Negative regulation of monocyte chemotactic protein-1 production 0.0142 0.5627

Regulation of cell-matrix adhesion 0.0151 0.0445

Schwann cell development 0.0207 0.0897

Histamine secretion 0.0370 0.0772

Azole transport 0.0370 0.0772

Positive regulation of reactive oxygen species metabolic process 0.0372 0.3284

Macrophage activation 0.0386 0.9125

Skin development 0.0436 0.4341

Renal absorption 0.0451 0.9061

Response to muscle stretch 0.0497 0.3531

ts2_c_ts1_p: p-value from Granger test between time series 2 (ts2,synaptic transmission) and ts1 (order of lags = 4)
ts1_c_ts2_p: p-value from Granger test between ts1 and ts2 (order of lags = 4)
Significant p-values < 0.05 are marked in bold
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at NMDA receptors [15]. El Khoury et al. additionally
described protective effects of CCL2 in Alzheimer-like
disease by triggering the recruitment of astrocytes and
microglia and subsequent removal of Amyloid-β [14].
In Table 5, the first term microtubule nucleation has a

p-value below 0.05 in both directions indicating that a
third factor may cause both. The term lysophosphatic
acid binding has a low p-value of 0.0092 in the direction
of “granger-causing” synaptic transmission and a rela-
tively high p-value of 0.3682 in the opposite direction
thus pointing to lysophosphatic acid binding as “granger-
causing” synaptic transmission. Lysophosphatic acid has
been reported to play a crucial role in the formation of
vesicles at synapses [44]. The decline of this activity and
its consequences in the exchange of neurotransmitters
would be one coherent explanation for the decrease of
synaptic transmission. Besides, many synapsis-related
terms appear in Table 5 such as cAMP-, dendrite- and
calcium-transport–related terms and also aging-related
oxidative-stress-mediated apoptosis.

Discussion
In this meta-analysis of transcriptomes derived from 591
prefrontal cortex biopsies, we found a gene set with sig-
nificantly increasing and another with significantly de-
creasing expression during aging. The most outstanding
gene within these gene sets was the reactive astrocyte
marker GFAP which showed significantly increasing ex-
pression levels in the brains of aging males and females.
The biological process most significantly down-regulated
with aging was synaptic transmission - as expected due
to its close relation to the aging-related symptoms of re-
duced cognitive performance. On the other hand, there
is a complex causal chain of aging-related changes even-
tually leading to reduced synaptic transmission. We tried
to elucidate these mechanistically taking into account
known aging hallmarks such as metabolic instability, in-
creasing inflammation levels and changes in intercellular
communication and could identify several functional
groups. Directly related to the decline of synaptic trans-
mission was the observation of multiple types of synap-
ses negatively correlated with aging in the pathway
analyses - for example, glutamatergic, cholinergic, dopa-
minergic, GABAergic and serotonergic synapses. We
found expression of the reactive astrocyte marker GFAP
increasing with age. Of course, this has to be confirmed
experimentally but however beyond the scope of this
study. Astrocytes play an important role at synapses by
taking up and releasing excessive neurotransmitters and
transferring lactate as energy substrate [46]. Further-
more, they influence pruning and remodeling of synap-
ses [46]. In our previous meta-analysis of human
hippocampus derived biopsies, we also observed that
GFAP expression strongly correlated with Alzheimer’s

disease (AD) [53]. Thus, GFAP represents astroglia acti-
vation and gliosis not only in the AD-affected brain dur-
ing neurodegeneration [27] but also in the disease-free
aging brain.
We identified calcium signaling as decreasing with age

in both sexes. Calcium has been implicated in brain
aging in the Calcium dysregulation hypothesis of brain
aging and AD [33]. Calcium has a 10,000 times higher
concentration outside the cells and is shuffled inside
through ligand-gated glutamate receptors, such as N-
methyl-d-aspartate receptor (NMDAR) or various
voltage-gated channels [33]. The expression levels of
NMDARs decrease with age in our analysis (Fig. 3b,
Supplementary Table 5A, B). We found that up-
regulation of GFAP is connected to the decrease of
CAMK4 possibly involving gene-regulation by CREB.
CAMK4, a member of the family of calcium/calmodulin-
dependent kinases was also found oppositely regulated
to GFAP in the neocortex of frontotemporal dementia-
like mice with TDP-43 depletion [55]. Sticozzi et al. re-
ported that nitric oxide can elevate intracellular calcium
and via calcium together with the ERK/calmodulin sig-
naling pathway can mediate reactive astrogliosis tri-
gerred by cytokines in a specific time frame [47].
cAMP signaling decreases with age in our analysis

(Table 2) and has been reported to be disrupted by aging
while in the healthy brain it modulates the strength of
the synapses [39]. cAMP also regulates Ca2+ release
from the endoplasmic reticulum via ryanodine receptors
(RYR) to eventually release it to the cytosol [33, 42].
A further interesting functional group declining with

age are hormones (Table 2). Hormones are known to
decrease during aging and hormones such as estrogen
have a major impact on synaptic plasticity and cognitive
performance [39].
Interestingly, the KEGG pathway- insulin secretion de-

creases with age in both sexes (Supplementary Table 6).
It has not been fully clarified if there is insulin produc-
tion in the brain but there is some evidence for it and at
least it has been reported for several species [23]. An ex-
planation for our observation is more likely the consid-
erable overlap between down-regulated genes within the
pathways of Insulin secretion and cAMP signaling which
definitely plays a role in brain aging but also in pancre-
atic islets [18].. Frölich et al. found that insulin concen-
tration and insulin receptor densities in the brain
decrease with aging [17]. The role of insulin in aging has
been assessed by a body of literature stating one major
finding that insulin sensitivity is associated with longev-
ity while insulin resistance is associated with higher
mortality [1]. Evidence for the involvement of insulin in
brain aging is provided by the correlation between type
2 diabetes and neurodegenerative dementias [3] and it
culminates in the annotation of Alzheimer’s disease as
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Table 5 GOs going down with age “granger-causing” GO synaptic transmission
Term ts2_c_ts1_p ts1_c_ts2_p

Microtubule nucleation 0.0041 0.0296

Nuclear lamina 0.0057 0.0501

Physiological muscle hypertrophy 0.0080 0.1201

Cell growth involved in cardiac muscle cell development 0.0080 0.1201

Lysophosphatidic acid binding 0.0092 0.3682

Positive regulation of dendrite morphogenesis 0.0094 0.3850

Cyclic purine nucleotide metabolic process 0.0098 0.0463

Regulation of synaptic transmission, glutamatergic 0.0114 0.0279

Dermatan sulfate biosynthetic process 0.0124 0.8968

Positive regulation of cAMP metabolic process 0.0125 0.2016

Positive regulation of cyclic nucleotide biosynthetic process 0.0125 0.2016

Uropod 0.0130 0.7732

1-phosphatidylinositol-4-phosphate 5-kinase activity 0.0130 0.7732

Proton-transporting V-type ATPase, V0 domain 0.0153 0.0617

Regulation of cAMP biosynthetic process 0.0160 0.0609

Regulation of cyclic nucleotide metabolic process 0.0160 0.0609

Synaptic vesicle docking 0.0180 0.2162

Cell-matrix adhesion 0.0183 0.0998

rRNA 3′-end processing 0.0186 0.0670

Asymmetric stem cell division 0.0192 0.1360

Rac GTPase binding 0.0197 0.5859

Macromolecular complex assembly 0.0203 0.0231

Golgi cis cisterna 0.0213 0.1023

Endomembrane system 0.0217 0.0247

Intrinsic apoptotic signaling pathway in response to oxidative stress 0.0222 0.1157

Positive regulation of purine nucleotide biosynthetic process 0.0241 0.1792

Positive regulation of nucleotide metabolic process 0.0249 0.1746

Muscle tissue development 0.0249 0.0884

Transporter activity 0.0250 0.0323

Spindle microtubule 0.0256 0.0620

Striated muscle cell development 0.0264 0.0765

Neuromuscular junction development 0.0269 0.3610

Regulation of nucleotide biosynthetic process 0.0275 0.0665

Endoplasmic reticulum 0.0356 0.0755

Calcium:cation antiporter activity 0.0385 0.3791

Ligand-gated channel activity 0.0400 0.0526

Lipid modification 0.0412 0.3182

Phosphatidylinositol phosphorylation 0.0429 0.6188

Proteoglycan biosynthetic process 0.0433 0.7653

Regulation of purine nucleotide metabolic process 0.0442 0.0842

Positive regulation of nucleocytoplasmic transport 0.0445 0.1855

Chloride channel inhibitor activity 0.0464 0.2701

Regulation of synaptic vesicle transport 0.0469 0.0834

Glutamate secretion 0.0480 0.0499

Dendrite terminus 0.0481 0.7091

ts2_c_ts1_p: p-value from Granger test between time series 2 (ts2,synaptic transmission) and ts1 (order of lags = 4)
ts1_c_ts2_p: p-value from Granger test between ts1 and ts2 (order of lags = 4)
Significant p-values < 0.05 are marked in bold
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“diabetes type 3” [13]. Anti-ageing effects have been at-
tributed to cAMP signaling which is part of a negative
feedback loop with insulin as it regulates insulin secre-
tion in the pancreatic islets but on the other hand is it-
self regulated by insulin [49]. Our findings of down-
regulated cAMP emphasize its role in aging because it
plays a dual role in regulating insulin secretion and syn-
apse strength.
Furthermore, the levels of reactive oxygen species

(ROS) increase with age in both sexes as indicated by
the significantly over-represented GOs Regulation of
ROS biosynthetic and metabolic processes and Response
to oxidative stress (Table 3). A large body of literature
has described oxidative stress as a major player in the
aging process, furthermore, Sofroniew et al. have associ-
ated increased levels of ROS as a trigger of astrogliosis
[46].
We also identified down-regulation of neurogenesis

with age in both sexes (Table 2). However, neurogenesis
in human brain is only reported for hippocampus but
not for cortex [37] and thus this finding may be rather
due to similar gene expression patterns with the hippo-
campus or cell migration from the hippocampus. For the
hippocampus, age-related decline in neurogenesis has
been reported [37] what may partially contribute to di-
minished cognitive abilities.
Finally, we found increased inflammation and immune

response predominantly in females (Table 3). These are
well known aging-associated factors [7, 35] and related
to reactive astrogliosis indicated by increased expression
of GFAP [46]. Inflammation and immunity seem to be
the only major functional group with sex differences.
However, also in males, inflammation and immune re-
sponses are activated, thus confirming the results re-
ported by Brink et al. [8].
This study may be limited by potential technical inac-

curacies including differences between platforms that
may not fully be equalized by cross-platform-
normalization and gene expression changes in the post-
mortem interval. Furthermore, causality tested by the
Granger test refers to the ability of prior values of one
time series to predict values of another time series that
may not be necessarily causative. For the explanatory
power of the time series one has to take into account
the construction from multiple individuals.
In this sex -specific meta-analysis of PFC biopsy-

derived transcriptomes, we uncovered gene sets posi-
tively and negatively correlated with age which eventu-
ally could be condensed to similar functionality in both
sexes. Synaptic transmission was found to be most sig-
nificantly down-regulated with age while the expression
of the reactive astrocyte marker GFAP was the most sig-
nificantly up–regulated gene with age. However, many
more players are involved in the complex mechanisms

of brain aging. We identified age-associated downregu-
lated expression of CAMK4 - potentially contributing to
up-regulation of GFAP - and Calcium signaling, hor-
mones, insulin secretion, cAMP, long-term potentiation,
neurogenesis and dendritic spines declining with age.
On the other hand, inflammation, oxidative stress and
neuronal injury increased with age. In summary, we
found that during aging synaptic transmission declines
due to a complex interplay of increasing factors such as
inflammation, oxidative stress, nitric oxide and decreas-
ing factors such as calcium signaling, cAMP, dendritic
spines, long-term potentiation, hormones and CCL2.
These findings are summarized in the scheme presented
in Fig. 7b.
The dataset provided here should be useful for experi-

mentalist to test and derive novel hypothesis on brain
aging using iPSC-based tools.
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ation between female and male. Genes with higher age correlation in
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corrected p < 0.05 and r < − 0.1 for anti-correlated genes or r > 0.1 for
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correlated in female, (B) anti-correlated in male, (C) correlated in female,
(D) correlated in male. Genes for GO analysis were filtered with
Bonferroni-corrected p < 0.05 and r < − 0.1 for anti-correlated genes or
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