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Secernin-1 is a novel phosphorylated tau
binding protein that accumulates in
Alzheimer’s disease and not in other
tauopathies
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Abstract

We recently identified Secernin-1 (SCRN1) as a novel amyloid plaque associated protein using localized proteomics.
Immunohistochemistry studies confirmed that SCRN1 was present in plaque-associated dystrophic neurites and also
revealed distinct and abundant co-localization with neurofibrillary tangles (NFTs). Little is known about the
physiological function of SCRN1 and its role in Alzheimer’s disease (AD) and other neurodegenerative diseases has
not been studied. Therefore, we performed a comprehensive study of SCRN1 distribution in neurodegenerative
diseases. Immunohistochemistry was used to map SCRN1 accumulation throughout the progression of AD in a
cohort of 58 patients with a range of NFT pathology (Abundant NFT, n = 21; Moderate NFT, n = 22; Low/No NFT,
n = 15), who were clinically diagnosed as having AD, mild cognitive impairment or normal cognition. SCRN1
accumulation was also examined in two cases with both Frontotemporal Lobar Degeneration (FTLD)-Tau and AD-
related neuropathology, cases of Down Syndrome (DS) with AD (n = 5), one case of hereditary cerebral hemorrhage
with amyloidosis – Dutch type (HCHWA-D) and other non-AD tauopathies including: primary age-related tauopathy
(PART, [n = 5]), Corticobasal Degeneration (CBD, [n = 5]), Progressive Supranuclear Palsy (PSP, [n = 5]) and Pick’s
disease (PiD, [n = 4]). Immunohistochemistry showed that SCRN1 was a neuronal protein that abundantly
accumulated in NFTs and plaque-associated dystrophic neurites throughout the progression of AD. Quantification
of SCRN1 immunohistochemistry confirmed that SCRN1 preferentially accumulated in NFTs in comparison to
surrounding non-tangle containing neurons at both early and late stages of AD. Similar results were observed in DS
with AD and PART. However, SCRN1 did not co-localize with phosphorylated tau inclusions in CBD, PSP or PiD. Co-
immunoprecipitation revealed that SCRN1 interacted with phosphorylated tau in human AD brain tissue. Together,
these results suggest that SCRN1 is uniquely associated with tau pathology in AD, DS and PART. As such, SCRN1
has potential as a novel therapeutic target and could serve as a useful biomarker to distinguish AD from other
tauopathies.
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Introduction
Alzheimer’s disease (AD) is the most common form of
dementia. It is characterized by extracellular aggregation
of the amyloid-β (Aβ) peptide into plaques and intra-
neuronal accumulation of aggregated and hyperpho-
sphorylated tau (pTau) into neurofibrillary tangles
(NFTs) [17, 49]. In physiological conditions, tau is a
microtubule-associated protein that promotes micro-
tubule stabilization and axonal transport in the brain [6,
74]. In the adult brain, there are 6 tau isoforms derived
from alternative splicing of exon 2, 3 and 10 of the
MAPT gene [6, 30]. These 6 isoforms differ from one
another by the absence or presence of two inserts in the
N-terminus and by the presence of either three (3R-tau
isoforms) or four (4R-tau isoforms) repeats in the
microtubule-binding domain [6, 30, 35]. In neurodegen-
erative diseases, tau is hyper-phosphorylated and under-
goes important conformational changes, causing it to
aggregate and form lesions in the brain [3, 31, 32, 35]. In
AD, both Aβ and pTau contribute to the development
of disease. However, in other neuropathological condi-
tions, dysfunction of tau alone is sufficient to cause de-
mentia [29, 43]. Together, these neurodegenerative
diseases are referred to as tauopathies, a group of dis-
eases that includes (but is not limited to) AD, Down
Syndrome (DS), Pick’s Disease (PiD), Corticobasal De-
generation (CBD), Progressive Supranuclear Palsy (PSP)
and Primary age-related tauopathy (PART) [10, 18, 23].
Each type of tauopathy has a distinct clinical phenotype
and distinct neuropathology of pTau aggregates that
contain different ratios of 3R and 4R tau isoforms. pTau
aggregates in AD, DS and PART contain a mixture of
3R and 4R tau [42], pTau aggregates in CBD and PSP
contain only 4R tau [62] and pTau aggregates in PiD
contain only 3R tau [43]. It has been proposed that the
ratio of 3R:4R tau is of particular pathological import-
ance as this ratio determines the conformation of pTau
aggregates and the associated cofactors, which in turn
determines mechanism of disease [5, 16, 66].
Protein-protein interactions between pTau and sur-

rounding proteins likely mediates the toxic effects of
pTau and influences the development of pTau aggre-
gates in tauopathies. Here, we show that Secernin-1
(SCRN1) is a new protein that interacts with pTau in se-
lect tauopathies. We first identified SCRN1 as a new
protein associated with AD in our study of the amyloid
plaque proteome [11, 12]. In this study, SCRN1 was se-
lected for validation because it was one of the most
abundant novel proteins present in amyloid plaques.
Our preliminary IHC studies confirmed that SCRN1 was
present in amyloid plaques, but unexpectedly, it was
present in plaques with a distribution consistent with
dystrophic neurites rather than diffuse distribution
throughout amyloid plaques. In these preliminary studies

we also observed abundant colocalization of SCRN1 in
neurofibrillary tangles, suggesting that it may have an
important interaction with pTau in AD. Very little is
known about SCRN1 and its function is poorly charac-
terized. SCRN1 is a cytosolic 50-kDa protein that was
initially identified as a regulator of exocytosis in mast
cells [73]. The majority of previous research studying
SCRN1 has examined its role in cancer, where it was
found to be overexpressed in a variety of cancers and de-
termined to be a tumor-associated protein that corre-
lated with tumor development and poor prognosis [46,
50, 55, 67]. Data mining of transcriptomic and prote-
omic datasets revealed that SCRN1 is highly expressed
in the brain in comparison to other tissue types, both at
the mRNA and protein levels [20, 33, 70]. Despite this,
we currently have a poor understanding of SCRN1
localization and function in the brain, both in physio-
logical and pathological conditions. SCRN1 overexpres-
sion has been observed in the cortex of people with
bipolar disorder [59] and in a chick model of retinitis
pigmentosa [26]. Recent evidence suggests that SCRN1
may have an important role in regulating endoplasmic
reticulum signaling and synaptic vesicle cycling in pre-
synaptic terminals [51], therefore providing new insight
into the physiological role of SCRN1 in the brain. Only a
few previous studies have described an association be-
tween SCRN1 and AD. One study identified SCRN1 as
an early marker of neurodegeneration in a transgenic
mouse overexpressing human tau [9]. A second study
detected SCRN1 in aggregates purified from human AD
brain tissue [2]. Recently, SCRN1 was identified as a
highly significant CSF biomarker for AD [39]. Together,
these three studies strongly hint that SCRN1 may poten-
tially have an important role in AD pathogenesis, per-
haps related to synaptic dysfunction, however no studies
to date have examined SCRN1 distribution in the human
AD brain.
Here, we have performed a comprehensive immuno-

histochemistry study to characterize SCRN1 through-
out the progression of AD and in a range of other
neurodegenerative diseases. We show that SCRN1 is a
neuronal protein that abundantly accumulates in
NFTs and plaque associated dystrophic neurites
throughout the progression of AD and in DS and
PART. Surprisingly, SCRN1 did not co-localize with
pTau-positive glial or neuronal inclusions in CBD,
PSP or PiD. Analysis of the interaction of SCRN1
with pTau in AD human brain tissue revealed a sig-
nificant interaction between SCRN1 and pTau. To-
gether, these results suggest that SCRN1 is uniquely
associated with tau pathology in AD, DS and PART.
Given its specificity to AD pathology, SCRN1 could
serve as a useful AD biomarker and has potential as a
novel therapeutic target.
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Methods
Ethics statement
All cases used in this study were from ethically-
approved longitudinally-assessed regional brain donor
programs on neurodegenerative diseases. All procedures
were performed under protocols approved by the New
York University Alzheimer Disease Center, NY, the
South Eastern Sydney and Illawarra Local Health District
and the Universities of New South Wales and Sydney,
Australia. In all cases, written informed consent for re-
search was obtained from the patient or legal guardian,
and the material used had appropriate ethical approval
for use in this project. All patients’ data and samples
were coded and handled according to NIH and NHMRC
guidelines to protect patients’ identities.

Human brain tissue
All human brain samples with a clinical diagnosis of AD,
mild cognitive impairment (MCI) or normal aged con-
trols were obtained from the New York University Alz-
heimer’s Disease Clinical Center (NYU ADC, New York,
NY) and were classified neuropathologically using an
“ABC” score [56]. This cohort of cases was separated
into three groups based on NFT load in the hippocam-
pus and neighboring cortex (“High NFT (++)” > 1% NFT
load; 0.01%< “Moderate NFT (+)” ≤1% NFT load; “Low/
No NFTs (-)” ≤ 0.01% NFT load). The “High NFT”
group (n = 21) had a clinical diagnosis of AD. The ma-
jority of cases included in the “Moderate NFT” group
(n = 22) had a clinical diagnosis of MCI. All control cases
with no cognitive impairment were in the “Low/No
NFT” group (n = 15). The DS cohort was selected from
donated brain tissue collected at the Institute for Basic
Research in Developmental Disabilities (IBR, Staten Is-
land, NY) and all had extensive AD neuropathology. The
CBD, PSP, PiD and PART cohorts were selected from
donated brain tissue held by the University of Sydney.
Individual patient information is included below in
Table 1.

Immunohistochemistry
Fluorescent immunohistochemistry was performed on
formalin-fixed paraffin-embedded tissue sections as de-
scribed previously [12]. Briefly, 8 μm thick sections were
deparaffinized and rehydrated through a series of xylene
and ethanol washes. Antigen retrieval was performed by
treatment with 88% formic acid for 7 min, followed by
boiling in citrate buffer (10 mM sodium citrate, 0.05%
Tween-20; pH 6). Sections were blocked with 10% nor-
mal goat serum, and incubated overnight at 4 °C with α-
SCRN1 primary antibody (1:100; LSBio, catalog #LS-
C162903) in combination with the anti-pTau antibodies
PHF1 (1:200; generously provided by Dr. Peter Davies,
Albert Einstein University, NY, NY), MC1 (1:200;

provided by Dr. Peter Davies) or AT8 (1:500; Thermo
Fisher Scientific; catalog #MN1020) to label neurofibril-
lary tangles and dystrophic neurites, RD3 or RD4 anti-
bodies (1:1000; Millipore, catalog #05–803 and #05–804)
to label specific 3R or 4R Tau isoforms, or a combin-
ation of anti-Aβ antibodies 4G8 (1:4000; BioLegend;
catalog #800702) and 6E10 (1:4000; BioLegend; catalog
#803001) to label amyloid plaques. Sections were then
incubated for 2 h at room temperature with appropriate
fluorescent secondary antibodies (all diluted 1:500, from
Jackson ImmunoResearch) and coverslipped (ProLong™
Diamond Antifade Mountant, Invitrogen).

Confirmation of antibody specificity
α-SCRN1 antibody specificity was confirmed by antibody
pre-absorption. Twomicrograms α-SCRN1 antibody was
pre-absorbed by incubation with recombinant human
SCRN1 protein (Novus Biologicals, catalog #NBP2–
52099) at a ratio of 10:1 for 1 h at RT with over-end ro-
tation. Staining intensity of pre-absorbed antibody was
compared to non-preabsorbed α-SCRN1 antibody that
was treated in the same way as the preabsorbed antibody
and negative control staining that was not treated with
primary antibody. Pre-absorption with SCRN1 protein
significantly reduced immunostaining, therefore showing
evidence of antibody specificity (Additional file 1: Figure
S1).

Quantification of Secernin-1 inside and outside
neurofibrillary tangles
Quantification was performed on two separate cohorts.
The first cohort included n = 58 cases with AD-
associated pathology and n = 5 DS cases. Here, fluores-
cent imaging of the whole brain section was performed
at 20x magnification using a NanoZoomer HT2 (Hama-
matsu) whole slide scanner using the same imaging set-
tings for all slides. Four pictures containing the cortex
and three pictures containing the hippocampus (captur-
ing CA1, CA2, and CA3) were collected at 4x magnifica-
tion per case for quantification. The second cohort
included n = 5 cases of CBD, n = 5 cases of PSP, n = 4
cases of PiD, n = 6 cases of PART and n = 6 cases of AD
selected from the first cohort for comparison. All pic-
tures were collected at 20X magnification per case using
a Zeiss LSM700 Confocal microscope. For hippocampal
sections (PART, PiD and AD), four pictures containing
the hippocampus (capturing dentate gyrus, CA1, CA2
and CA3) and six pictures containing the adjacent ento-
rhinal and temporal cortex were taken for quantification.
For basal ganglia sections (PSP, CBD and AD), four pic-
tures of caudate, four pictures of putamen and two pic-
tures of globus pallidus were collected. Quantification
was performed using ImageJ. In each cohort, SCRN1
positive staining was identified as all pixels above a
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Table 1 Individual case information. Cases were recoded according to their PHF1% load in hippocampus into their respective NFT
score (“-“≤ 0.01%; 0.01%< “+” ≤1%;”++” > 1%). Hipp = Hippocampus. BG = Basal Ganglia. TCx = Temporal Cortex. ADRC = Alzheimer’s
disease related changes

ID Diagnosis ABC score Sex Age NFT score Region

High NFT 1 AD A3,B3,C3 M 89 ++ Hipp

High NFT 2 AD A3,B3,C3 F 80 ++ Hipp + BG

High NFT 3 AD A3,B3,C3 F 86 ++ Hipp

High NFT 4 AD A3,B3,C3 F 98 ++ Hipp

High NFT 5 AD A3,B3,C3 F 98 ++ Hipp

High NFT 6 AD A3,B3,C3 F 85 ++ Hipp

High NFT 7 AD A3,B3,C3 F 81 ++ Hipp

High NFT 8 AD A3,B3,C3 F 92 ++ Hipp

High NFT 9 AD A3,B3,C3 F 90 ++ Hipp

High NFT 10 AD A3,B3,C3 F 71 ++ Hipp

High NFT 11 AD A3,B3,C3 M 74 ++ Hipp + BG

High NFT 12 AD A3,B3,C3 F 88 ++ Hipp

High NFT 13 AD A3,B3,C3 M 79 ++ Hipp + BG

High NFT 14 AD A3,B3,C3 F 83 ++ Hipp

High NFT 15 AD (early onset) A3,B3,C3 M 69 ++ Hipp

High NFT 16 AD (early onset) A3,B3,C3 M 63 ++ Hipp

High NFT 17 AD (early onset) A3,B3,C3 M 63 ++ Hipp

High NFT 18 AD (early onset) A3,B3,C3 F 60 ++ Hipp

High NFT 19 AD (early onset) A3,B3,C3 M 62 ++ Hipp

High NFT 20 AD (early onset) A3,B3,C3 F 55 ++ Hipp

High NFT 21 AD A2,B2,C2 M 84 ++ Hipp

Moderate NFT 1 AD A2,B3,C2 M 94 + Hipp

Moderate NFT 2 AD A3,B3,C3 F 76 + Hipp

Moderate NFT 3 AD A3,B3,C3 M 69 + Hipp

Moderate NFT 4 AD A3,B3,C3 M 75 + Hipp

Moderate NFT 5 AD A3,B3,C3 F 89 + Hipp

Moderate NFT 6 MCI A1,B2,C1 F 97 + Hipp

Moderate NFT 7 MCI A1,B2,C1 F 85 + Hipp

Moderate NFT 8 MCI A2,B2,C2 M 84 + Hipp

Moderate NFT 9 AD A2,B2,C2 F 84 + Hipp

Moderate NFT 10 MCI A1,B1,C0 F 84 + Hipp

Moderate NFT 11 MCI A1,B1,C1 M 79 + Hipp

Moderate NFT 12 MCI A1,B1,C1 M 90 + Hipp

Moderate NFT 13 MCI A1,B1,C1 M 74 + Hipp

Moderate NFT 14 MCI A1,B1,C0 M 95 + Hipp

Moderate NFT 15 Normal A1,B1,C0 M 77 + Hipp

Moderate NFT 16 MCI A0,B1,C0 M 88 + Hipp

Moderate NFT 17 Vascular Dementia A1,B1,C0 F 89 + Hipp

Moderate NFT 18 Normal A1,B1,C0 M 69 + Hipp

Moderate NFT 19 Normal A0,B1,C0 F 56 + Hipp

Moderate NFT 20 Normal A0,B1,C0 F 59 + Hipp

Moderate NFT 21 Normal A0,B1,C0 M 59 + Hipp
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Table 1 Individual case information. Cases were recoded according to their PHF1% load in hippocampus into their respective NFT
score (“-“≤ 0.01%; 0.01%< “+” ≤1%;”++” > 1%). Hipp = Hippocampus. BG = Basal Ganglia. TCx = Temporal Cortex. ADRC = Alzheimer’s
disease related changes (Continued)

ID Diagnosis ABC score Sex Age NFT score Region

Moderate NFT 22 Normal A1,B1,C0 F 71 + Hipp

Low/no NFT 1 Normal A0,B0,C0 M 77 – Hipp

Low/no NFT 2 Normal A0,B0,C0 F 49 – Hipp

Low/no NFT 3 Normal A1,B1,C0 M 63 – Hipp

Low/no NFT 4 Normal A0,B0,C0 F 51 – Hipp

Low/no NFT 5 Normal A0,B0,C0 M 55 – Hipp

Low/no NFT 6 Normal A0,B0,C0 M 57 – Hipp

Low/no NFT 7 Normal A0,B0,C0 M 59 – Hipp

Low/no NFT 8 Normal A0,B0,C0 M 57 – Hipp

Low/no NFT 9 Normal A0,B0,C0 M 55 – Hipp

Low/no NFT 10 Normal A0,B0,C0 M 54 – Hipp

Low/no NFT 11 Normal A0,B0,C0 M 50 – Hipp

Low/no NFT 12 Normal A1,B0,C0 M 59 – Hipp

Low/no NFT 13 Normal A1,B1,C1 M 89 – Hipp

Low/no NFT 14 MCI A2,B1,C1 F 89 – Hipp

Low/no NFT 15 MCI A2,B1,C1 M 66 – Hipp

Down Syndrome 1 DS, AD A3,B3,C3 F 58 +++ Hipp

Down Syndrome 2 DS, AD A3,B3,C3 F 59 +++ Hipp

Down Syndrome 3 DS, AD A3,B3,C3 M 54 +++ Hipp

Down Syndrome 4 DS, AD A3,B3,C3 M 55 +++ Hipp

Down Syndrome 5 DS, AD A3,B3,C3 F 54 +++ Hipp

PART 1 PART A0,B2,C0 M 75 + Hipp

PART 2 PART A0,B2,C0 F 86 ++ Hipp

PART 3 PART A0,B2,C0 F 92 + Hipp

PART 4 PART A0,B2,C0 M 94 + Hipp

PART 5 PART A0,B2,C0 F 90 ++ Hipp

PART6 PART A0,B2,C0 M 92 ++ Hipp

CBD 1 CBD n/a F 73 +++ BG

CBD 2 CBD n/a M 75 +++ BG

CBD 3 CBD n/a M 79 ++ BG

CBD 4 CBD n/a F 80 + BG

CBD 5 CBD n/a M 68 + BG

PSP 1 PSP n/a M 74 + BG

PSP 2 PSP n/a M 71 ++ BG

PSP 3 PSP n/a M 71 + BG

PSP 4 PSP n/a M 71 + BG

PSP 5 PSP n/a F 87 + BG

PiD 1 Pick’s Disease n/a M 67 + Hipp

PiD 2 Pick’s Disease n/a M 67 ++ Hipp

PiD 3 Pick’s Disease n/a F 71 +++ Hipp

PiD 4 Picks Disease n/a F 65 +++ Hipp

HCHWA-D Dutch amyloidosis n/a F 54 n/a TCx
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binary threshold that was consistent for all images. Mul-
tiple image analyses were performed: (1) staining inten-
sity in SCRN1 positive pixels, (2) SCRN1 intensity in
pTau positive neurofibrillary tangles or dystrophic neur-
ites, (3) SCRN1 intensity outside neurofibrillary tangles
and dystrophic neurites. For SCRN1 intensity in NFTs
and dystrophic neurites, NFTs and dystrophic neurites
were identified by thresholding the PHF1 image to iden-
tify all pixels positive for pTau labelling. A mask of the
area selected in this PHF1 image was then applied to the
corresponding SCRN1 stained image. The number of
SCRN1 positive pixels and average intensity of SCRN1
in positive pixels was quantified inside and outside NFTs
and dystrophic neurites.
In our first analysis examining cases with AD-

associated pathology, statistical comparison of SCRN1
intensity inside and outside NFTs or dystrophic neurites
in the cortex and in the hippocampus in all groups was
performed using a one-way ANOVA with Tukey’s mul-
tiple comparisons test. Statistical comparison of SCRN1
intensity inside and outside NFTs or dystrophic neurites
in other tauopathies (DS, PART, PiD, CBD, PSP) was
performed using a two-tailed paired t-test for each
group. Representative images for figures (including
HCHWA-D) were collected using a Zeiss LSM700 Con-
focal Microscope. Individual images were collected every
1 μm through the depth of the 8 μm sections at 20x
magnification and presented images show the maximum
projection image. All images of a particular stain were
collected using the same confocal settings.

Human tissue homogenization
Frozen post-mortem frontal cortex tissue from healthy
controls (n = 2) and pathologically confirmed AD cases
(n = 2) were selected from the same cohort described in
Table 1. Grey matter was dissected from each tissue
sample and flash frozen until use. Frozen cortical tissue
(250 ± 20 mg) was pulverized and dounce homogenized
in 5mL/g (20% w/v) of ice-cold homogenization buffer
(50mM HEPES pH 7.0, 250mM sucrose, 1 mM EDTA,
Protease inhibitor cocktail [cOmplete™ ULTRA Tablets,
Mini, EDTA-free; Millipore Sigma; catalog #5892791001])
using approximately 25 pestle strokes. Protein concentra-
tion was determined using Bradford protein assay and ho-
mogenates were aliquoted and stored at −80 °C until use.

Co-immunoprecipitation
Immunoprecipitation of SCRN1 was performed using
300 μg of human brain homogenate, and 2 μg of anti-
SCRN1 (LSBio; catalog #LS-C162903) or rabbit IgG iso-
type control (Thermo Fisher Scientific, catalog #02–
6102) antibodies. Antibody and brain homogenate were
incubated overnight at 4 °C. Immunocomplexes were
then incubated with 1.5 mg Dynabeads Protein G mag-
netic beads (Invitrogen; catalog #1003D) overnight at
4 °C. Beads were washed four times and IP product was
eluted in elution buffer (glycine pH 2.8).

Western blot analysis
Co-IP products and human brain homogenates were an-
alyzed using Western Blot. Samples were mixed in Bolt™
LDS Sample Buffer (Life Technologies) supplemented
with 100 mM 1,4-Dithiothreitol (DTT) and boiled 5 min
at 95 °C. For pTau western blot, samples were processed
without DTT or boiling in order to preserve the oligo-
meric organization of the paired helical filaments. Pro-
teins were resolved on 12–4% Bis-Tris gels (Life
Technologies) and transferred to 0.2 μm nitrocellulose
membranes (Bio-Rad). Blots were blocked with 5% milk
in TBST for 1 h and probed with primary antibodies at
room temperature for 1 h. Western blot results were vi-
sualized using enhanced chemiluminescence (Pierce
ECL; Thermo Scientific; #32106). Signals were captured
using ChemiDoc imaging system (Bio-Rad). The follow-
ing primary antibodies were used (dilutions): anti-pTau
PHF1 (1:200; kindly provided by Dr. P.Davies), anti-Tau
Phospho (Ser404, rabbit polyclonal, 1:3000; BioLegend;
catalog #SIG-39472), anti-SCRN1 (rabbit polyclonal, 1:
1000; LSBio; catalog #LS-C162903), anti-SCRN1 (mouse
monoclonal, 1:250; LSBio; catalog #LS-C338451), and
anti-GAPDH (1:2000; Cell Signaling; catalog #97166S).
Secondary antibodies were anti-rabbit and anti-mouse
horseradish peroxidase-labeled antibodies (both 1:3000;
GE Healthcare).

Results
Secernin-1 distribution in the brain throughout the
progression of AD
In order to determine the physiological localization of
SCRN1 and map the accumulation of SCRN1 through-
out the progression of AD, we used immunohistochem-
istry to compare SCRN1 distribution in cases with high

Table 1 Individual case information. Cases were recoded according to their PHF1% load in hippocampus into their respective NFT
score (“-“≤ 0.01%; 0.01%< “+” ≤1%;”++” > 1%). Hipp = Hippocampus. BG = Basal Ganglia. TCx = Temporal Cortex. ADRC = Alzheimer’s
disease related changes (Continued)

ID Diagnosis ABC score Sex Age NFT score Region

FTLD-ADRC 1 CBD with AD A0,B1,C0 M 72 n/a Hipp

FTLD-ADRC 2 PSP with AD A1,B3,C0 F 79 n/a Hipp
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AD-associated NFT pathology (n = 21 cases), moderate
AD-associated NFT pathology (n = 22) and in cognitively
normal controls with little or no NFT pathology (n =
15). Cases were included in a specific group according to
their NFT load as described in Table 1. SCRN1 was con-
sistently observed in the neuronal cytoplasm in control
subjects, confirming that it is a physiological neuronal
protein (Fig. 1a-f). The amount of basal SCRN1 neuronal
staining in neurons not containing NFTs was similar be-
tween the three groups (Fig. 3c, d). There also appeared
to be regional differences of basal SCRN1 immunoreac-
tivity: Comparison of SCRN1 in CA1, CA2, CA3 and
cortical regions showed comparatively higher SCRN1
staining intensity in CA3, entorhinal cortex and tem-
poral cortex, and lower levels in CA2 and CA1 (Fig. 1).
These basal regional differences were observed in all
cases regardless of pathology. There was also consistent
and bright staining of SCRN1 in the choroid plexus, sug-
gesting that there may be potential secretion, transport
or clearance of SCRN1 into or out of the CSF.
A striking pattern of SCRN1 staining was observed in

the cases with AD-associated neuropathology. Particularly
bright SCRN1 staining was observed in neurofibrillary

tangles and in dystrophic neurites present in neuritic pla-
ques (Fig. 2). To determine if there was a particular colo-
calization of SCRN1 with specific pTau species, we
performed double immunohistochemistry of SCRN1 with
the antibodies PHF1 (raised against pS404/pS396), AT8
(raised against pSer202/pThr205) and MC1 (conform-
ation-dependent antibody; commonly used as a marker of
early-stage tangles). SCRN1 showed consistent colocaliza-
tion with all three markers, with a striking and obvious ac-
cumulation in tangle-bearing neurons and in dystrophic
neurites regardless of the pTau species present (Fig. 2).
We confirmed that SCRN1 was associated with Aβ pla-
ques, however, the colocalization was limited to the
plaque-associated dystrophic neurites rather than the Aβ
itself (Fig. 2a-c).
In order to determine the timing and extent of SCRN1

accumulation in NFTs we quantified and compared the
average staining intensity of SCRN1 inside and outside
PHF1-positive NFTs in the cortex and hippocampus in
cases with high, moderate and low NFT pathology (Fig. 3a).
We found significantly more SCRN1 in NFTs in compari-
son to surrounding neurons in all cases where NFTs were
present (Fig. 3c, d). Importantly, accumulation of SCRN1

Fig. 1 Secernin-1 distribution in the hippocampal section in a cognitively normal subject with no NFTs. a Whole-slide fluorescent scan of the
hippocampus with α-SCRN1 antibody (green). Boxed regions shown in higher magnification images of CA3 (dark red, b), CA2 (red, c), CA1
(orange, d) and adjacent temporal cortex (yellow, e). f Double immunohistochemistry of SCRN1 with α-MAP2 antibody showing SCRN1
physiological expression in neurons (asterix) in a cognitively normal subject
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was consistently observed in the small number of early-
stage NFTs present in the moderate NFT and low/no NFT
group (Fig. 3d). This observation, coupled with the colocali-
zation of SCRN1 with the early stage NFT marker MC1,
suggests that SCRN1 accumulates early in the formation of
NFTs and may therefore have an early role in tangle
pathology.

Secernin-1 does not accumulate in pTau-positive lesions
in 3R-tau and 4R-tau specific tauopathies
To address whether SCRN1 also accumulated in NFTs
and dystrophic neurites in other tauopathies, we per-
formed double fluorescent immunohistochemistry on
basal ganglia or hippocampus sections from cases of
CBD (n = 5), PSP (n = 5) and PiD (n = 4) and compared
it to those of AD cases (n = 4 of hippocampus, n = 4 of
basal ganglia). These tauopathies are known as 4R-Tau
(CBD, PSP) or 3R-Tau specific (PiD) tauopathies as the
pTau positive lesions present in these diseases exclu-
sively contain either the 4R-Tau or 3R-Tau isoforms.
For each disease, we also stained sections with RD3 and
RD4 antibodies to confirm the exclusive presence of 4R-
Tau in the CBD and PSP cases and of 3R-Tau isoforms

in the PiD cases (Fig. 5d-f, g-i). Presence of both 3R and
4R-Tau isoforms was confirmed in the AD cases in both
the hippocampus and basal ganglia. In the 4R-Tau spe-
cific tauopathies, we observed extensive PHF1 positive
staining consistent with the presence of astrocytic pla-
ques (CBD), tufted astrocytes (PSP), pre-tangles, and
dystrophic neurites (Fig. 4a) in the basal ganglia. PHF1
pathology in PiD was consistent with Pick’s bodies
present in the dentate gyrus, CA regions or entorhinal/
transentorhinal region of the cortex (Fig. 4a). Surpris-
ingly, SCRN1 did not accumulate inside any of these
pTau immunoreactive lesions in CBD, PSP or PiD
(Fig. 4a, Fig. 5d-f, g-i). Quantification of SCRN1 intensity
inside and outside PHF1-positive lesions confirmed our
findings (Fig. 4d, e), showing that SCRN1 accumulation is
a feature unique to NFTs in AD where both 3R-Tau and
4R-Tau isoforms are present and that this occurs across
multiple brain regions (hippocampus, cortex and basal
ganglia examined in this study). Interestingly, we also ob-
served that SCRN1 consistently colocalized with both 3R
or 4R-Tau in NFTs in AD, therefore providing evidence
that SCRN1 did not preferentially associate with either 3R
or 4R-Tau isoforms (Fig. 5a-c).

Fig. 2 Secernin-1 accumulation in NFTs and dystrophic neurites in AD. Sections were immunostained with α-SCRN1 and 4G8/6E10 (aβ, a-c) or
the pTau markers PHF1 (d-f), AT8 (g-i) and MC1 (j-l)
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Secernin-1 accumulates in AD-associated NFTs in mixed
pathology cases with both FTLD-tau and AD-related
neuropathology
We also examined SCRN1 distribution in two rare cases
with mixed pathology: the first subject primarily had
CBD-associated neuropathology characterized by astro-
cytic plaques and pre-tangles, but also had a small num-
ber of AD-associated NFTs in the entorhinal cortex and
hippocampus. Interestingly, only PHF1 positive lesions
with morphology consistent with AD-associated NFTs
showed SCRN1 accumulation in this case (Fig. 6g).
Given the specificity of 4R tau in lesions present in
CBD, we then performed 3R and 4R specific immuno-
histochemistry on this case of mixed pathology to see if
SCRN1 was preferentially present in lesions containing
3R tau. Indeed, this analysis showed striking accumula-
tion of SCRN1 in NFTs containing both 3R and 4R tau

(Fig. 6h, i), but not with pre-tangles containing only 4R
tau (Fig. 6e). Interestingly, SCRN1 was predominantly
present in dystrophic neurites that were immunoreactive
for PHF1-positive pTau or 3R tau (Fig. 6g, i) in compari-
son to those that contained 4R tau (Fig. 6h). The second
case of mixed pathology that we examined presented
with pTau immunoreactive tufted astrocytes that are
commonly observed in PSP, and a small number of
thorn-shaped astrocytes that are commonly found in
aging-related tau astrogliopathy (ARTAG) [25, 47, 48].
There was also evidence of pre-tangles, as well as some
AD-associated NFTs in the hippocampus and adjacent
entorhinal cortex. In this case, the most predominant
SCRN1 accumulation was again observed in AD-
associated NFTs (Fig. 7a, b) and there was no evidence
of SCRN1 in tufted astrocytes (Fig. 7c, d). Unexpectedly,
we did observe a small amount of SCRN1 accumulation

Fig. 3 Secernin-1 significantly accumulates in neurofibrillary tangles and dystrophic neurites in AD. a Hippocampus sections were immunostained
with α-SCRN1 (green) and PHF1 antibody (red) in all three groups. b PHF1% load in High, Moderate and Low/no NFTs groups. c-d Quantification
of staining in the hippocampus and adjacent temporal cortex showed similar basal levels of SCRN1 across the three groups that were not
significantly altered by the presence of NFT pathology. In contrast, the amount of SCRN1 in NFTs was significantly higher than that present
outside of NFTs in all three groups in hippocampus (c) and temporal cortex (d). **** p-value < 0.0001; ** p-value < 0.01; one-way ANOVA, Tukey’s
multiple comparisons test. Scale bar: 25 μm
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inside thorn-shaped astrocytes (Fig. 7e, f). However in
contrast to the widespread SCRN1 colocalization in
NFTs, the presence of SCRN1 in thorn-shaped astro-
cytes was limited to a small proportion of the pTau
aggregate that was primarily adjacent to the nucleus
(Fig. 7a, b; Fig. 2; Fig. 4a).

Secernin-1 accumulates in NFTs present in cases of aged
Down syndrome and in PART
SCRN1 expression was also examined in cases of DS
with AD as well as cases of PART. Individuals with DS
all develop AD pathology at an early age [38, 52]. The
triplication of the amyloid precursor protein (APP) gene
on chromosome 21 results in a progressive accumulation
of Aβ starting in early life, such that, by middle age, all
people with DS will develop advanced AD pathology.

PART is characterized by tau aggregation confined to
the entorhinal cortex and hippocampus with no or min-
imal Aβ deposition [10]. We found that the SCRN1 dis-
tribution in DS with AD and PART was similar to that
observed in AD; SCRN1 accumulated in NFTs in both
types of disease and was present in the dystrophic neur-
ites present in neuritic plaques in DS with AD (Fig. 4a,
b, c). These findings suggest that there is a similar mech-
anism in place for SCRN1 accumulation in AD, DS with
AD pathology, and PART.

Secernin-1 in HCHWA-D
We also analyzed SCRN1 distribution in the brain in
HCHWA-D, which is a rare autosomal dominant dis-
order caused by an APP 693 mutation that clinically
leads to recurrent hemorrhagic strokes and dementia [4].

Fig. 4 Secernin-1 accumulates in pTau aggregates in AD, DS and PART but not in PiD, CBD and PSP. a SCRN1 colocalization with PHF1 in AD, DS
and AD, PART, Pick’s disease, CBD and PSP. Representative images show SCRN1 staining in the hippocampus in AD, DS and AD, PART and Pick’s
disease and of SCRN1 staining in the basal ganglia in CBD and PSP. SCRN1 (green) accumulated in neurofibrillary tangles and in dystrophic
neurites in AD, Down syndrome and PART but not in PHF1 positive aggregates (red) in PiD, CBD or PSP. b-e SCRN1 levels were significantly
higher in PHF1 positive NFTs and dystrophic neurites than in surrounding neurons in both DS (b) and PART (c), similar to AD. There was limited/
no co-localization of SCRN1 with pTau positive neuropathological lesions in Pick’s disease (d), Corticobasal Degeneration and Progressive
Supranuclear Palsy (e). *** p-value < 0.001, ** p-value < 0.01, * p-value < 0.05; two-tailed paired t-test
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The disease is pathologically characterized by CAA and
amyloid plaques, without presence of neurofibrillary path-
ology [4]. In this case, we did not observe any pathologic ac-
cumulation of SCRN1, either in vessels or in plaques (Fig. 8).

Secernin-1 interacts with PHF-tau
The robust colocalization of SCRN1 and pTau observed
using immunohistochemistry implies that there may be
a direct interaction between SCRN1 and pTau. To test
whether this was the case, we performed co-IP of pTau
and SCRN1 using fresh-frozen human prefrontal cortex
tissue. Immunoprecipitation of SCRN1 from human AD
brain homogenates resulted in the co-IP of pTau, imply-
ing that SCRN1 interacts with PHF-Tau in vivo (Fig. 9).
There was no evidence of any interaction of SCRN1 and
pTau in control samples (n = 2; Fig. 9).

Discussion
Here, we present a comprehensive neuropathological
study showing that SCRN1 is a novel protein that

accumulates specifically in AD, DS and PART, which are
3R/4R tauopathies, but not in other tauopathies that are
either 3R or 4R tauopathies. To our knowledge, this is
the first example of a protein that distinguishes tau ag-
gregates in different tauopathies. We found that SCRN1
strongly colocalized with NFTs and dystrophic neurites
in all brain regions that we examined using AD brain tis-
sue and found SCRN1 to directly interact with phos-
phorylated tau in AD, a finding that was recently
confirmed in an additional study. This study showed sig-
nificant interaction between SCRN1 and tau in AD, but
only minimal interaction in controls, supporting an AD
specific interaction between these two proteins [40]. Im-
portantly, SCRN1 was observed in NFTs and dystrophic
neurites in preclinical stages of the AD process, suggest-
ing that it could be a key factor associated with the de-
velopment of NFTs in AD.
The absence of SCRN1 accumulation in pTau lesions

present in the 4R-specific tauopathies CBD and PSP
raised the possibility that SCRN1 preferentially

Fig. 5 Secernin-1 accumulation is not 3R- or 4R-Tau specific in AD. Sections from hippocampus (a-f) or basal ganglia (g-i) were immunostained
with α-SCRN1 (green) and PHF1 (a, d, g; red), RD3 (b, e, h; red) or RD4 (c, f, i; red) in AD (a-c), PiD (d-f) or PSP (g-i) cases
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colocalizes with 3R-tau isoforms, however the lack of
SCRN1 accumulation in the 3R-tau specific PiD showed
that this was not the case. Adding to the complexity of
the relationship between SCRN1 and pTau was the find-
ing that SCRN1 exclusively colocalized with pTau aggre-
gates with NFT morphology and not those aggregates
with CBD and PSP-associated morphology in mixed
pathology cases. Interestingly, very limited presence of
SCRN1 was observed in thorn-shaped astrocytes in one
of the mixed pathology cases. Thorn-shaped astrocytes
are commonly present in ARTAG, a specific neuro-
pathological condition defined by the existence of pTau-
bearing astrocytes in the brain of old-aged individuals
[25, 47, 48]. This finding shows that astrocytes have the
ability to accumulate SCRN1, suggesting that the ab-
sence of SCRN1 in tufted astrocytes or astrocytic pla-
ques is not due to SCRN1 neuronal specificity.

SCRN1 colocalization was also evident in cases of DS
with AD and in PART. Importantly, neurofibrillary tan-
gles in DS and PART also contain typical AD-like PHFs
that consist of both 3R and 4R tau isoforms [10, 18, 37].
Recent cryo-electron microscopy studies of AD NFTs
show that the tau aggregates contain a distinct C-shaped
curve with the 3R and 4R tau included in the core of the
fibrils [19, 27]. Hence the 3R/4R tau aggregates in AD
have a conformation that is distinct from tau species
containing only 3R or 4R tau. This was supported by the
recent finding that pTau aggregates in AD, PiD and
CBD are characterized by different tau molecular struc-
tures with different conformations [21, 22, 29, 76]. To-
gether, these findings suggest that the combination of
both 3R and 4R tau isoforms in pTau aggregates in AD,
DS with AD, and PART could result in the generation of
a common tau conformation, or tau “strain”, across

Fig. 6 SCRN1 only colocalizes with AD-associated pathology in a CBD case with AD comorbidity. a-c Astrocytic plaques (asterix) consistent with
CBD pathology contained PHF1 positive pTau, but not SCRN1 (a). RD4 (b) and RD3 (c) immunostaining confirmed 4R tau specificity. d-f RD4
positive pre-tangles (e) associated with CBD pathology showed immunoreactivity for PHF1 (d) but not SCRN1. g-i Presence of SCRN1 in lesions
containing PHF1(g), RD4 (h) and RD3(i) positive pTau consistent with AD-associated NFTs pathology and dystrophic neurites (arrows). Scale bar
for inserts: 25 μm
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Fig. 7 SCRN1 had limited immunoreactivity in ARTAG-associated thorn-shaped astrocytes in a mixed pathology case. a, b SCRN1 showed
prominent accumulation in AD-associated NFTs. c, d Absence of SCRN1 in PSP-associated tufted astrocyte. e, f Minimal accumulation of SCRN1
around the nucleus in a thorn-shaped astrocyte

Fig. 8 SCRN1 in HCHWA-D. SCRN1/Aβ immunostaining showed no accumulation of SCRN1 in either vascular (a, b) or parenchymal lesions (c, d)
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these diseases that is then capable of interaction with
the same protein co-factors, such as SCRN1. Logically,
the different conformation of tau aggregates in other pri-
mary tauopathies could prevent interaction with SCRN1.
Structure-based inhibitors of tau aggregation are now
being developed [64]. Hence targeting the SCRN1/pTau
interaction may be a novel therapeutic strategy.
An alternative possibility is that the interaction be-

tween SCRN1 and pTau may require the presence of
both Aβ and tau. This is supported by the finding that
SCRN1 accumulation is present in AD, DS where co-
occurrence of Aβ and Tau is observed, while it is not
present in tau-only dementias (PSP, CBD, PiD) or in
HCHWA-D that only has accumulation of Aβ. The
interplay between Aβ and tau is a crucial factor in AD
pathogenesis. It has been suggested that this interplay
occurs intraneuronally [8, 36, 57, 58], where the inter-
action with SCRN1 also occurs. One could speculate
that Aβ may influence SCRN1 production or activation
and therefore influence the subsequent interaction with
pTau. Indeed, Aβ is known to stimulate many patho-
genic pathways that ultimately influence tau pathology
[7, 45, 68, 69, 75]. Therefore, it is possible that the inter-
action between SCRN1 and pTau is mediated by Aβ in a
similar way. However, the abundant presence of SCRN1
in PART does not fit with this hypothesis. Whether
PART represents an early stage of AD with very low
levels of Aβ or is a distinct pathological entity is still a
matter of debate [10, 18]. In our study, we did not find a
correlation between the extent of Aβ pathology and ac-
cumulation of SCRN1, but rather observed a consistent
accumulation of SCRN1 in NFTs in PART. Together,
our results suggest that NFTs in PART resemble those
present in early stage AD pathology.

The mechanistic involvement of SCRN1 in pTau ag-
gregation and NFT formation is unknown. Further stud-
ies are ongoing to determine why SCRN1 is present in
NFTs. Domain prediction analysis shows that SCRN1
does not contain a kinase domain, implying that it is un-
likely to be involved in the phosphorylation of tau. Inter-
estingly, SCRN1 does contain a conserved 142 amino-
acid domain present in members of the Peptidase c69
family. These dipeptidases are cysteine-dependent pepti-
dases that specifically hydrolyze X-Pro motifs [63]. A
large number of proteases that cleave tau, such as cal-
pains [24, 61], cathepsins [41, 61, 71], caspases [28, 34,
61, 78] and the lysosomal protease Asparagine endopep-
tidase (AEP) [61, 77] are also cysteine proteases that are
present in intracellular NFTs in AD, similar to SCRN1.
The cleavage of tau has been suggested to seed tau ag-
gregation [72]. Therefore, it would be very interesting
for future studies to determine if SCRN1 is possibly a
novel protease that is involved in pTau proteolysis or
degradation.
This study is an example of the powerful and inform-

ative nature of unbiased localized proteomics studies,
which permit the discovery of novel disease related pro-
teins present within neuropathological features through
unbiased analysis [12–15]. It is important to recognize
that SCRN1 was only brought to our attention as a novel
AD associated protein because of the localized nature of
our original proteomics study that identified SCRN1 in
dystrophic neurites in amyloid plaques [12]. In contrast,
previous transcriptomics and proteomics studies using
bulk tissue homogenates did not find it to be one of the
top proteins altered in AD [1, 33, 44, 53, 60, 65]. This
supports our Western blot results that showed no differ-
ence in the amount of SCRN1 in AD and controls in

Fig. 9 SCRN1 binds to phosphorylated tau in AD cortex tissue. Co-IP was performed on fresh frozen frontal cortex tissue from n = 2 AD and n = 2
cognitively normal samples. IP was performed using anti-SCRN1 or rabbit IgG isotype control. SCRN1 pulled down phosphorylated tau in AD
cortex samples, but not control cortex samples. Fiftee microgram protein per sample from total homogenate were loaded for inputs. Loading
control: GAPDH
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total brain homogenate. The obvious striking accumula-
tion of SCRN1that we observed using IHC shows that
localized proteomics studies are necessary and that
pathologically important protein differences may be
missed in studies of bulk tissue. This is additionally sup-
ported by the recent report that examined single-cell
transcriptomic changes that found SCRN1 mRNA to be
increased in neurons in AD, but not in other cell types
[54]. This suggests that the accumulation of SCRN1 in
NFTs may be a result of increased localized production
of SCRN1 in neurons in AD. Future studies using in situ
hybridization on human AD brain sections will help
confirm if this increased mRNA production is localized
inside NFT containing neurons in AD.
In conclusion, we have shown that the novel protein

SCRN1 is associated with neurofibrillary tangles in AD,
DS and PART but not in other tauopathies. Future stud-
ies both in vitro and in vivo are currently being per-
formed to determine the physiological and pathological
function of SCRN1 in the brain, as well as to determine
the consequences of its interaction with pTau. Together,
our results suggest that SCRN1 is a novel protein that is
involved in the pathogenesis of AD.
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