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Abstract

Tau is a microtubule-binding protein that can receive various post-translational modifications (PTMs) including
phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Hyperphosphorylation
of tau is linked to its aggregation and the formation of neurofibrillary tangles (NFTs), which are a hallmark of
Alzheimer's disease (AD). While more than 70 phosphorylation sites have been detected previously on NFT tau, studies
of oligomeric and detergent-soluble tau in human brains during the early stages of AD are lacking. Here we
apply a comprehensive electrochemiluminescence ELISA assay to analyze twenty-five different PTM sites as well as tau
oligomerization in control and sporadic AD brain. The samples were classified as Braak stages 0-I, Il or IlI-IV,
corresponding to the progression of microscopically detectable tau pathology throughout different brain regions. We

found that soluble tau multimers are strongly increased at Braak stages Ill-IV in all brain regions under investigation,
including the temporal cortex, which does not contain NFTs or misfolded oligomers at this stage of pathology. We
additionally identified five phosphorylation sites that are specifically and consistently increased across the entorhinal
cortex, hippocampus and temporal cortex in the same donors. Three of these sites correlate with tau multimerization
in all three brain regions, but do not overlap with the epitopes of phospho-sensitive antibodies commonly used for
the immunohistochemical detection of NFTs. Our results thus suggest that soluble multimers are characterized by a
small set of specific phosphorylation events that differ from those dominating in mature NFTs. These findings shed
light on early PTM changes of tau during AD pathogenesis in human brains.
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Introduction

Alzheimer’s disease (AD) is the most common form of
neurodegenerative diseases and is characterized patho-
logically by the presence of both neurofibrillary tangles
(NFTs) and senile plaques [1-3]. While senile plaques
are extracellular deposits of amyloid [-peptides [4],
NFTs are formed intracellularly and consist of abnor-
mally phosphorylated tau, a microtubule binding protein
[5]. Mutations in the genes which affect the levels of
amyloid p-peptide, such as APP (amyloid precursor
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protein), PSEN1 (Presenilin 1) and PSEN2 (Presenilin 2)
cause familial AD (fAD) [6, 7]. On the other hand, spor-
adic AD (sAD), which accounts for more than 90% of all
AD cases, is a multifactorial disease likely due to both
genetic and environmental risk factors [8—10]. While
sAD usually has a later onset compared to fAD, the dis-
ease progresses otherwise in a similar fashion [11, 12].
Both biomarker and neuropathological data show that
tau pathology parallels cognitive dysfunction in AD
more closely than amyloid B pathology [13, 14]. In
particular, tau NFTs spread in a stereotypical manner
throughout the brain, which has been used by Braak and
colleagues as a method to differentiate disease stages
[15]. In Braak stages I and II, which are very common in
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the elderly [13], NFTs are localized to the transentorh-
inal cortex. In Braak stages III and IV, the limbic regions
such as hippocampus are additionally positive for NFTs.
Finally, in Braak stages V and VI, neocortical involve-
ment of NFTs is observed [15, 16].

While NFT formation is difficult to recapitulate in
disease models and its exact cellular mechanisms remain
to be further elucidated, it is well established that post-
translational modifications (PTMs) on tau protein have a
role in this process [17, 18]. Tau is heavily modified in
both health and disease by several different PTMs such
as phosphorylation, nitration, glycosylation, methylation,
acetylation, sumolyation, ubiquitination and truncation
[19, 20]. Among all these different types of modifica-
tions, phosphorylation is studied most extensively [21].
Hyperphosphorylated tau molecules dissociate from micro-
tubules and form detergent-soluble oligomeric structures,
which later progress into detergent-insoluble aggregates
[22]. The tau oligomer, an intermediate structure formed
before the formation of NFTs, is thereby likely responsible
for neuronal toxicity [23—28]. Even tau monomers were re-
cently shown to be capable of adopting a conformation
that promotes the seeding and spreading of pathology [29—
31]. To analyze different tau structures, conformation-
specific antibodies have been developed, which are thought
to react with the different folding states of the protein:
Antibodies raised against oligomeric forms of tau such as
T22, TOC1 and TOMA selectively label tau oligomers over
monomers [24, 25, 32], whereas Alz50 and MC1 detect
PHFs and NFTs [33, 34].

To date, many studies focusing on tau PTMs were
carried out either under cell-free conditions, in cultured
cell lines or in animal models. These studies provided
valuable information on the enzymes modifying tau,
such as kinases and phosphatases, and on the conse-
quences of these modifications. For example, phosphor-
ylation events at the sites T231, S235, S262, S293, S324,
S356 decrease the affinity of tau to microtubules and
result in destabilization of the neuronal cytoskeleton
[35—37], while phosphorylation at C-terminal sites such
as S422 promotes tau self-aggregation and can inhibit
tau truncation at D421 [38, 39]. Studies using human
brains are more limited, but several tau PTMs have been
identified in postmortem samples using mass spectrom-
etry and immunohistochemistry approaches, which we
summarized previously (www.tauptm.org) [19]. How-
ever, most of these studies focused on PTMs present on
NFTs, since detergent-soluble, oligomeric tau is more
difficult either to discern by immunohistochemistry or
to purify for mass spectrometry approaches.

ELISA-based techniques, on the other hand, are quan-
titative and allow for the detection of tau PTMs in whole
tissue lysates [40]. We have previously established a
panel of validated tau antibodies covering twenty-five
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PTM sites [19], which we applied here to study tau
PTMs in aged brains. We studied controls and sporadic
AD samples ranging from Braak stages 0 to IV, and
brain regions that are sequentially affected by tau
pathology in AD: entorhinal cortex, hippocampus and
temporal cortex. We furthermore developed an ELISA
method to quantify non-monomeric tau species in
detergent-soluble extracts and demonstrated that these
species increase in all analyzed brain regions at Braak
stages III-1V, in parallel with specific alterations in tau
PTMs. Importantly, these PTMs were not changed at
Braak stage II or in iPSC-derived neurons, where
detergent-soluble tau multimers were also not detected.
The pattern of altered tau PTMs was strikingly similar
in all brain regions analyzed, which led us to define a tau
PTM signature characteristic for early, disease-associated
changes in AD. These results thus advance our knowledge
on tau pathology and have implications for future diag-
nostic and therapeutic approaches targeting tau.

Methods

Human brain tissue lysate preparation

Anonymized human post-mortem tissues (Table 1) were
obtained from the London Neurodegenerative Diseases
Brain Bank, a member of the Brains for Dementia Re-
search Network. Lysates from human entorhinal cortices,
hippocampi and temporal cortices were prepared in lysis
buffer containing 150 mM NaCl, 20 mM Tris pH7.5, 1
mM EDTA, 1 mM EGTA, 1% Triton-X100 and protease,
phosphatase, demethylase (500 uM I0X1 (Active Motif),
2puM Daminozide (Active Motif), 10pM Paragyline
Hydrochloride (Sigma)), deacetylase (10 uM Trichostatin
A (Sigma), 5mM Nicotinamide (Sigma)), O-GlcNAcase
(I pM Thiamet-G (Sigma)) inhibitors. Lysis was per-
formed with a dounce homogenizer. The homogenized ly-
sates were spun down at 18000xg at 4 °C for 30 min. The
supernatant was collected, and the protein concentration
was measured by BCA assay according to manufacturer’s
instructions (BioRad).

Electrochemiluminescence ELISA

Meso Scale Discovery (MSD) Gold Streptavidin small-
spot 96-well plates were blocked with 5% (w/v) Blocker
A solution in Tris wash buffer (50 mM Tris-HCI pH 7.5,
150 mM NaCl and 0.02% Tween-20). Plates were sealed
and allowed to block for 1h at room temperature (RT)
on a plate shaker. The plates were then washed three
times with Tris wash buffer and coated with 25 uL of
biotinylated antibody diluted in 1% Blocker A solution.
The biotinylation of the antibodies was performed
according to the manufacturer’s instructions (EZ-Link
Sulfo-NHS-Biotin, Cat No. 21217, Thermo Scientific). Be-
fore biotinylation, BSA was removed with the Melon Gel
IgG Purification Kit (Cat. No 45212, Thermo Scientific), if
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Table 1 List of anonymized brain samples received from Brains for Dementia Research Network. EC: Entorhinal Cortex, Hip:

Hippocampus, TC: Temporal Cortex

Tissues obtained  Brain bank

D Sex Age Braak tangle stage Thal phase APOE genotype Postmortem delay (h)
Crlt M 78 0 0 3/4 56
Ctrl2 F 86 1 1 3/3 385
Crl3 F 9% 1 0 3/3 49
Crld M 92 1 2 3/4 56.5
Curl5 F 70 1 0 2/4 555
Crle F 69 0 1 3/4 48
Crl7 M 741 1 3/3 24
Crlg M 77 0 0 3/3 1
AD1 F 83 2 N/A 3/4 39
AD2 M 80 2 1 3/3 31
AD3 F 76 2 N/A 3/3 22
AD4 F 86 2 1 3/3 45
AD5 M 9% 3 3 3/3 255
AD6 F 85 3 0 2/2 135
AD7 F 95 3 4 2/4 65.5
AD8 F 87 4 4 3/4 715
AD9 M 81 4 5 3/4 38

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC London Neurodegenerative Diseases
Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

EC, Hip, TC South West Dementia Brain Bank

necessary. After incubating for 1 h at RT on a plate shaker,
plates were washed three times with Tris wash buffer. For
each sample 1 pg of protein lysate (diluted in 50 ul 1xTBS)
was incubated for 1 h at RT on a plate shaker. For analysis
of denatured samples, samples were boiled in SDS-
containing buffer (62.5mM Tris-HCl pH6.8, 10% Gly-
cerol, 2% SDS) where the final amount of detergent did
not exceed 0.02%. Plates were washed three times with
Tris wash buffer to get rid of unbound lysates and then in-
cubated with 25 pl of 0.5 pg/ml detection antibody (Taul2
labeled with MSD Sulfo-Tag-NHS-Ester, Cat. No: R31AA,
Meso Scale Discovery) diluted in 1% Blocker A solution
for 1h at RT on a plate shaker. The plates were then
washed three times with Tris wash buffer. 150 ul of 2X
Read Buffer (Cat. No. R92TC, Meso Scale Discovery) were
added 5 min before the signal was measured on a Meso
Scale Discovery Quickplex platform.

Antibodies

The antibodies used in this study were characterized
previously [19]. Information on the supplier and catalog
numbers can be found in Table 2.

Statistical analysis of ELISA data

Total tau intensity values were scaled within each
sample type by dividing them by their geometric mean.
The data was then normalized by the dividing the
background-corrected signal intensity by the scaled total
tau values. Subsequently, we used the generalized loga-
rithm on the log2 scale to put our normalized values on
the log2-scale [41]. We then removed all normalized
values below 0, which correspond to signal intensities
below the background range.

We performed a differential analysis using the software
package limma [42, 43]. For this, we created a design
matrix that compares the fold change between the AD
and control conditions within each of the tissues. In total,
we performed 4 comparisons: EC-Braak-II vs. EC-Braak-
0-1, EC-Braak-III-IV vs. EC-Braak-0-I, Hip-Braak-III-IV
vs. Hip-Braak-0-I, TC-Braak-III-IV vs. TC-Braak-0-I.
Statistical significance was determined with an “omnibus”
test (similar to an ANOVA procedure) to determine over-
all differences within the dataset and applied a FDR cutoff
of 5% to obtain a list of candidate PTMs. Finally, individ-
ual comparisons within each tissue type were performed
to determine the location of the change.
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Table 2 List of tau antibodies used in this study

(2019) 7:192

Name Species Company Cat No.
Taul12 mouse Biolegend SIG-39416
Tau5 mouse Abcam ab80579
Taul mouse Millipore MAB3420
Dako rabbit Agilent Dako A0024
BT2 mouse Thermo Fisher MN1010
HT7 mouse Thermo Fisher MN1000
T22 rabbit Sigma-Aldrich ABN454-|
nY18 mouse Biolegend 829,701
ny29 mouse Millipore MAB2244
ack280 rabbit Anaspec AS-56077
mek311 mouse Biolegend MMS-5102
C3-D421 mouse Millipore 36-017
pY18 mouse Novusbio NBP2-42402
pT181 rabbit Thermo Fisher 701,530
pS198 rabbit Abcam ab79540
pS199 rabbit Thermo Fisher 701,054
pS202 rabbit Anaspec AS-28017
pS199/202 rabbit Thermo Fisher 44-768G
pT205 rabbit Abcam ab181206
p1212 rabbit Abcam ab51053
pS214 rabbit Thermo Fisher PA5-35762
pT217 rabbit Thermo Fisher 44-744
pT231 rabbit Thermo Fisher 701,056
pS235 rabbit Thermo Fisher PIPA535761
pS238 mouse Abcam ab128889
pS356 rabbit Abcam ab51036
pS396 rabbit Thermo Fisher 44-752G
pS400 rabbit Anaspec AS-54978
pS404 rabbit Thermo Fisher 44-758G
pS409 rabbit Abcam ab4861
pS416 rabbit Abcam ab119391
pS422 rabbit Abcam ab79415

Recombinant tau protein purification

Tau variants (full length protein and a fragment encod-
ing amino acids 256-368) were cloned into the pET19b
vector (Novagen) in between the Ncol and BamHI re-
striction sites. The pET19b-Tau plasmids were trans-
formed into E. coli BL21(DE3) cells (Novagen). Cells
were grown in LB supplemented with ampicillin at 37 °C
until OD600 reached 0.6—0.8. The expression of the tau
proteins was induced by the addition of 1 mM IPTG.
The cells were then grown for an additional 3 h at 37 °C
and harvested by centrifugation. The cell pellet was
resuspended in running buffer (50 mM Na-phosphate
pH7.0, 1mM EGTA and 1mM DTT) supplemented
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with cOmplete protease inhibitors (Roche), benzonase
(Merck) and 10 pg/ml lysozyme (Sigma). The cells were
lysed by 4 passages through an EmulsiFlex C3 (Avestin).
After centrifugation and filtration, the cleared lysates
were boiled for 20 min at 100 °C. After another centrifu-
gation and filtration step the lysate was then loaded onto
a combination of a HiTrap Q and a HiTrap SP column
(GE Healthcare) pre-equilibrated with running buffer.
After loading the sample, the HiTrap Q column was
removed. The HiTrap SP column was washed with run-
ning buffer and eluted in a gradient to running buffer
containing 300 mM NaCl. The HiTrap SP elution frac-
tions containing the tau proteins were concentrated using
a 30 MWCO or 3 MWCO Amicon centrifugal filter unit
(Merck) and loaded on a HiLoad 16/600 Superdex 75 pg
size exclusion chromatography column (GE Healthcare)
equilibrated with running buffer. After SDS-PAGE ana-
lysis, the elution fractions with the highest purity were
pooled and quantified. The samples were aliquoted, flash-
frozen in liquid nitrogen and stored at — 80 °C.

Tau aggregation assay

Aggregation of tau proteins was evaluated with a thiofla-
vin T assay. 10 uM of tau protein was mixed with 20
mM Tris pH 7.5 containing 100 mM NaCl, 1 mM EDTA,
1mM DTT, 0.03 mg/mL heparin sodium salt and 30 pM
thioflavin T. Aggregation signal was measured every 30
min for a total duration of 40h using a fluorescence
plate reader (EX: 450 nm, EM: 520 nm) at 37 °C. In par-
allel, vials containing the same aggregation mix without
thioflavin T were incubated at 37 °C for indicated time
points. Samples were then flash-frozen in liquid nitrogen
before storage at — 80 °C. These samples were used for
electrochemiluminescence analysis as follows: aggrega-
tion samples were thawed, sonicated for 30 s and diluted
in 1X TBS. The samples were either boiled or not boiled
in SDS-containing buffer (62.5mM Tris-HCl pH®6.8,
10% Glycerol, 2% SDS) for 10 min as indicated, the final
amount of detergent in the sample did not exceed
0.02%. 100 pg of tau aggregation sample were added per
well of an MSD Gold Streptavidin small-spot 96 well
plate (Meso Scale Discovery). ELISA analysis was then
performed as described above and previously [19].

Immunoprecipitation of tau from EC lysates

100 pg of entorhinal cortex lysates from Braak 0-I and
Braak III-IV were used for immunoprecipitation with
Taul2 antibody. Magnetic Protein G beads (Dynabeads,
Thermo Fisher) were blocked with Pierce protein free
TBS blocking buffer and the beads were incubated with
8 pg of Taul2 antibody for 1h at RT. The beads were
washed with lysis buffer and incubated with 100 ug of
EC lysates overnight at RT. Next day, beads were washed
with lysis buffer and bound protein was eluted with
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100 pl of 50 mM Glycin pH 2.8 and the pH was neutral-
ized with Tris.

Atomic force microscopy

Cluster sizes of tau oligomers were measured with
atomic force microscopy (AFM). Braak 0-I and Braak
[I-IV entorhinal cortex Taul2-IP eluates were depos-
ited on freshly cleaved mica sheets and incubated for 60
min in a closed chamber with 100% humidity to avoid
evaporation. The samples were then washed by 5x buffer
exchange with Tris buffer (50 mM Tris pH 7.5, 150 mM
NaCl). Atomic force microscopy measurements were
carried out with a NanoWizard4 AFM (JPK, Germany)
operated in the “QI Advanced Imaging” mode using BL-
AC40TS cantilevers (Olympus, Japan). Cantilevers were
calibrated using the automatic “contact-free” method of
the JPK NanoWizard Control software. AFM images
were acquired of 1 x 1 pum?® areas using a setpoint of 0.2
nN, a z-length of 100 nm and a pixel time of 6 ms. The
“measured height” data were saved and further proc-
essed in the Gwyddion software (ver. 2.53) [44] as
follows. Line levelling was done by subtracting first-
order polynomial fits from each scan line — for this, lar-
ger features of the image were masked. To remove noise,
the “conservative denoise” and the “Gaussian” filter were
applied to the images with their “size”-parameters set to
3 and 2 pixels, respectively. Cluster detection was carried
out using the “Interactive H_Watershed” plugin from
the “SCF MPI CBG” repository [45] of the software Fiji
[46]. For each detected cluster the maximum height value
was saved and statistics on all cluster heights were then
obtained using the software MATLAB (MathWorks).

Generation of hiPSC-derived neurons

Donor information as well as cell line identifiers are
summarized in Additional file 1: Table S1. iPSC lines
Ctrl3, sAD3, fAD1, fAD2, fAD3 and fAD4 were obtained
from StemBancc. Ctrll, Ctrl2, sAD1 and sAD2 were
generated using ReproRNA technology (Stem Cell Tech-
nologies) and characterized in detail elsewhere [47]. All
iPSCs were differentiated into neurons following a cor-
tical neuronal induction protocol [48] with minor modi-
fications. iPSC colonies were dissociated using Versene
(Invitrogen) and seeded at a density of 200,000 cells/cm?
in mTesR (Stemcell Technologies) with 10 pM Rock
inhibitor (SelleckChem). The next day, the medium was
switched to neural induction medium containing N2B27
Medium (50% DMEM/F 12, 50% Neurobasal, 1:200 N2, 1:
100 B27, 1% PenStrep, 0.5 mM Non-essential amino acids,
(all Invitrogen), 50 uM f3-mercaptoethanol (Gibco), 2.5 pg/
ml insulin and 1 mM sodium pyruvate (both Sigma)),
10 uM SB431542 (Selleckchem) and 1 uM Dorsomorphin
(Tocris) and changed daily for 11 more days. On day 12,
cells were split using Accutase (Invitrogen) to a density of
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220,000 cells/cm? in N2B27 Medium containing 10 uM
Rock inhibitor and 20ng/ml FGF2 (Peprotech). The
medium was changed every third day without Rock inhibi-
tor. On day 25, cells were split using Accutase to a density
of 220,000/cm® in final maturation medium containing
N2B27 medium with 20 ng/ml BDNF, 10 ng/ml GDNF
(both Peprotech), 1 mM dibutyryl-cAMP (Sigma), 200 uM
ascorbic acid (Sigma) and 10 uM Rock inhibitor (Selleck-
Chem). The medium was changed every third day without
Rock inhibitor until day 60.

Microscopy

iPSC derived neurons were seeded at day 40 in a density
of 20,000 cells/well on a 96-well imaging microplate
(Greiner) and fluorescence pictures were taken between
day 50-60. For imaging, cells were washed once with
PBS and fixed with 4% PFA (Fisher Scientific) for 20 min
at room temperature. Cells were permeabilized with
0.1% Triton X-100 (Sigma) in PBS for 10min and
blocked with 5% BSA (Sigma) in PBS for 1 h RT at room
temperature. Primary antibodies were diluted in 5% BSA
in PBS and cells were incubated over night at 4 °C. The
next day, cells were washed 3x with PBS and incubated
with secondary antibodies for 1h at room temperature
in the dark. Afterwards, cells were washed again 3x with
PBS and imaged with an Axio Observer D1 (Zeiss). Anti-
bodies used for microscopy analysis of iPSC-derived
neurons were: MAP 2 (Biolegend, 822,501), GABA (Sigma,
A2052), NeuN (Sigma, MAB377), VGlutl (Thermo Scien-
tific, 48—2400), Tujl (Cell Signaling Technologies, 4466),
Tbrl (Abcam, ab183032).

Results
In this study, we used Triton-X100-soluble fractions
from entorhinal cortices (EC), hippocampi (Hip) and
temporal cortices (TC) from the same patients (Braak
stages 0-I and III-1V) to monitor differences in Tau
PTMs between brain regions sequentially affected by
tauopathy in AD. We additionally analyzed the EC, Hip
and TC from donors classified as Braak II to investigate
whether alterations in Tau PTMs would already be
apparent at this stage. Donors from all groups were
within the same age range (69-96 years, Table 1).

To detect changes in tau PTMs quantitatively, we used
a previously established electrochemiluminescence
ELISA assay, with a validated tau PTM antibody panel
[19] (Table 2). Briefly, this consists of a sandwich ELISA
approach, with PTM-specific tau capture antibodies and
Taul2, a total tau antibody, for detection. We quantified
a total of twenty-five PTM sites: nitrated tyrosine 18
(nY18) and nitrated tyrosine 29 (nY29), acetylated lysine
280 (acK280), methylated lysine 311 (meK311), caspase
cleaved tau at aspartic acid 421 (C3-D421) and twenty
phosphorylation sites, including one tyrosine (pY18), five
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threonine (pT181, pT205, pT212, pT217, pT231) and
fourteen serine (pS198, pS199, pS199 +202, pS202,
pS214, pS235, pS238, pS356, pS396, pS400, pS404,
pS409, pS416, pS422) modifications (Table 2). We then
normalized the PTM signals to total tau determined
with the Tau5-Taul2 ELISA pair. However, it is import-
ant to note that comparisons across different sites (anti-
bodies) should be avoided due to potential differences in
biotinylation efficiencies and binding affinities of the
antibodies.

Native Braak IlI-IV, but not Braak Il brain extracts show
extensive changes in all tau PTMs analyzed

First we compared tau PTMs in the EC, Hip and TC
from donors classified as Braak 0-1 to those classified as
Braak II [13]. While PTMs were present in all samples
under investigation (Fig. 1 and Additional file 2: Figure
S1), fold changes were small and not significant.

We therefore moved on to the comparison between
Braak stages 0-I and III-IV, where we investigated tau
PTMs in the EC, Hip and TC from the same donors. In
this analysis, both EC and Hip tissues derived from
Braak stages III-IV showed an increase in phosphoryl-
ation at most sites, with the exception of pT212, pT217,
pS404 and pS409 (Fig. 2 a and b). In TC, this set of four
was among the eight sites unaltered in Braak III-IV pa-
tients, while 12 sites were also significantly increased in
this tissue (Fig. 2c). Among the non-phospho PTMs that
are part of our panel [19], only cleavage at D421 was in-
creased in all three brain regions, while nitration at Y18
showed a significant increase in the EC (Additional file 3:
Figure S2). Although this reflects the expected severity
of tauopathy in the different brain regions (EC > Hip >
TC), we were concerned that potential soluble tau oligo-
mers may influence ELISA signals when an assembly
containing more than one tau molecule is bound by each
capture antibody. We therefore analyzed whether any
multimeric tau structures were present in our samples.

Triton-X100-soluble brain fractions contain tau multimers
and Braak IlI-1V ECs contain more of multimeric tau
structures with heights differing between 10 nm - 30 nm
For the analysis of tau multimers in detergent-soluble
brain extracts we established an ELISA that uses Taul2
both as the capture and the detection antibody. In
monomeric tau, the Taul2 epitope will be blocked upon
binding to the capture antibody and, as a consequence,
the detection antibody will not be able to bind and no
signal will be generated. In contrast, multimeric tau
contains additional, free Taul2 epitopes on other tau
molecules in the same structure and thus will give a sig-
nal. Such an approach of using monoclonal antibodies
raised against tau has been previously applied to detect
multimeric species [40, 49]. During the oligomerization
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(p > 0.05, t-tests)

and aggregation process, tau furthermore undergoes a
conformational shift which has been associated with tox-
icity and can be detected with conformation-specific
antibodies such as T22 ([25, 50]).We therefore set up an
additional ELISA method to detect oligomers containing
misfolded tau using the conformation-specific antibody
T22 as a capture and Taul2 for detection.
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We first validated these methods using an in vitro
aggregation assay with recombinant tau (2N4R). In par-
allel, we performed a Thioflavin T (ThT) binding assay
to monitor the formation of beta sheet-containing struc-
tures as a readout for tau aggregation over time. Since
full-length tau aggregation is a slow process in vitro, we
added a pre-aggregated recombinant tau fragment encom-
passing the amino acids 256 to 368 as aggregation seeds
[51]. As these seeds do not contain the Taul2 epitope,
they should not interfere with the ELISA-based detection
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of full-length tau multimers. As expected, neither buffer
nor seeds alone, nor full-length tau without seeds showed
any increase in ThT signal over time (Fig. 3a). In contrast,
the incubation of full-length tau with seeds led to an expo-
nential increase in signal, slowing down after app. 8 h of
incubation (Fig. 3a). Next, we performed an electrochemi-
luminescence ELISA with the Taul2-Taul2 pair to detect
multimers. While we only observed a low baseline signal
at the O h timepoint, the signal increased significantly for
aggregated tau at 48 h (Fig. 3b). Interestingly, the signal of
tau alone at 48 h also showed a significant increase, which
was not detected by ThT assay. This suggests that com-
pared to the ThT assay, the Taul2-Taul2 ELISA assay is
more sensitive and detects additional non-monomeric tau
species that may be either very small or do not contain -
sheet structures. Importantly, the signals from tau alone
and tau with seeds at 48 h were completely abolished
when the samples were boiled in SDS-containing buffer,
confirming that the Taul2-Taul2 ELISA method can
identify non-monomeric detergent-soluble tau species
(Fig. 3b). In addition, the T22-Taul2 assay, which is ex-
pected to detect misfolded tau oligomers, showed a similar
signal increase over time for both tau alone and tau with
seeds, with the seeded aggregation reaction leading to the
strongest signal, as expected (Fig. 3c). The boiling of
samples with SDS-containing buffer abolished the signals,
suggesting that the boiling process resolves oligomeric tau
structures consistent with the Taul2-Taul2 assay. More-
over, dot blot analysis confirmed the time- and seeding-
dependent generation of T22-positive oligomers (Fig. 3d).

Using the same Taul2-Taul2 setup, we then deter-
mined the presence of tau multimers in EC, Hip and TC
tissues from donors classified as Braak stages 0-I, II, or
I-IV (Fig. 4a and b). While we did not detect any
significant differences between Braak 0-I and Braak II
(Fig. 4a), all brain regions from Braak III-IV resulted in
a significantly increased ELISA signal, suggesting that
tau multimers are present (Fig. 4b). On the other hand,
the analysis of the Braak III-IV brain regions with the
T22-Taul2 assay showed that only EC and Hip contain
significantly increased misfolded tau oligomers, suggest-
ing that the T22-Taul2 assay may only detect a subset
of the multimeric tau species recognized by the Taul2-
Taul2 assay (Fig. 4c).

Tau oligomers associated with AD pathology have
previously been reported to have diameters of 5-15nm
[50].To investigate the tau species in the EC of our
Braak 0-I and Braak III-IV donors in more detail, we
therefore immunoprecipitated tau with the Taul2
antibody and employed atomic force microscopy with
quantitative image analysis. We found that for both
Braak 0-I and III-1V, as well as for a negative control
sample containing only Taul2 antibody without brain
lysate, the atomically flat mica substrates are covered
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with an isotropic layer of molecules, leading to a topog-
raphy with individual structures of up to 5nm height.
Clusters above 5nm in height were only found in brain
lysate samples. Here, the vast majority of clusters
between 10 and 30 nm in height were detected in the
Braak III-IV samples (Fig. 4d, e). This suggests that the
significant increase of Taul2-Taul2 signal we observed
in Braak III-IV EC may be due to these larger clusters.
We then asked whether the different amounts of
multimeric structures detected by Taul2-Taul2 or T22-
Taul2 assays were due to different total levels of tau in
the detergent-soluble fraction, and used six different
total tau antibodies (HT7, BT2, Taul, Tau5 and Dako-

Tau) raised against different domains of tau as capture
antibodies and Taul2 as detection antibody (Fig. 5).
While total tau levels in all Braak 0-I and Braak II
samples did not show any differences (Fig. 5a-c), all
three brain regions from Braak III-IV donors exhibited
an increased signal only with HT7 as capture antibody
but not with BT2, Taul, Tau5 and Dako-Tau antibodies
(Fig. 5d-f).

Since these changes may be caused by tau multimers
in the Braak III-IV samples, we next decided to assess
whether boiling in SDS-containing buffer would resolve
the difference to Braak O-I tissue, similar to what we
found for aggregates generated from recombinant tau
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protein (Fig. 3b and c). Indeed, the denaturation treat-
ment abolished the difference in Taul2-Taul2 ELISA
signal between Braak 0-I and Braak III-IV samples for
all three brain regions (Fig. 6a). Similarly, also the previ-
ously seen difference in HT7-Taul2 signal (Fig. 5d-f)
was not observed when boiled Braak 0—I and Braak III-
IV EC, Hip and TC tissue samples were compared
(Fig. 5b-d). Signals for all other total tau antibody combi-
nations stayed similar between Braak stages, suggesting
that the differences in Taul2-Taul2 and HT7-Taul2
signal in native samples were a result of tau multimeriza-
tion, while the other antibody pairs were not as sensitive
to aggregation state. Furthermore, these findings suggest

that overall tau levels were not different between Braak
stages in the Triton-soluble extracts.

Five consistently increased tau PTMs differentiate Braak
stages 0-I and llI-IV

Since we had detected high levels of tau oligomers in all
Braak III-IV samples, we next boiled the lysates with
SDS-containing buffer and re-analyzed the PTM levels.
Among the PTMs with previously observed increases
(Fig. 2 and Additional file 3: Figure S2), this treatment
dramatically reduced the differences between Braak
stages (Fig. 7): In denatured samples, we found that the
sites pS198, pS199, pT231, pS416 were significantly
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higher in the EC of Braak III-IV compared to Braak 0-I  sites pS199 and pS416 were elevated in Braak III-IV
samples (Fig. 7a, b), in Hip tissue pY18, pS198, pS199, compared to Braak 0-I (Fig. 7e, f).

pT231, pS400, pS416 and pS422 were significantly in- Since there was a lot of overlap with regards to which
creased at Braak stages III-IV (Fig. 7c, d), and in TC  PTMs were dysregulated in the different tissues, we next
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generated a linear model that takes changes in tau PTMs
in four sample types into account: EC from Braak stage
II, as well as EC, Hip and TC from Braak stages III-1V,
in comparison to their respective Braak 0-I controls.
This comparison revealed the sites pS198, pS199, pT231,
pS416 and pS422 to be significantly (adj. p-value < 0.01)
increased over control in our cohort (Table 3).

iPSC-derived neurons derived from sporadic and familial
AD patients do not exhibit tau multimerization or
aberrant tau PTMs

iPSC-derived neurons are an increasingly popular system
to model neurodegenerative diseases in vitro, and lines
generated from patient cells should in theory allow for
disease modeling even in the absence of a familial muta-
tion [52]. Nevertheless, these neuronal cultures represent
an early developmental stage and there are conflicting
reports as to whether AD-related tau phenotypes can
be observed [52—-54]. We therefore decided to investi-
gate whether Braak-stage dependent changes in tau

PTMs observed in brain tissue can be recapitulated in
iPSC-derived neurons.

To this end, we generated cortical neurons from three
control iPSC lines, three sporadic AD (sAD) and four
familial AD (fAD) iPSC lines, each from a different
donor fibroblast culture (Additional file 1: Table S1 and
Additional file 4: Figure S3, [47]). From each line, we
performed at least two independent differentiation
rounds to assess variability. As our first readout, we
checked whether tau multimers were present in sAD or
fAD cells. Using the Taul2-Taul2 ELISA assay, we did
not observe a consistent signal for any of the lines, and
no change in signal was observed when lysates were
boiled in SDS-containing buffer (Fig. 8a). This is in
agreement with previous reports showing that the iPSC-
derived neurons do not contain any forms of multimeric
or aggregated tau in the absence of additional triggers
such as tau mutations, overexpression or seeding [55,
56]. Similarly, no significant differences were observed
between control, sAD and fAD lines when comparing
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Table 3 Tau PTM events increased in at least one Braak IlI-IV
tissue. Statistical significance was determined with Omnibus test

PTM events P-value adjusted P-value
pS198 0.0007346 0.003306

pS199 0.0000003316 0.000005968
pT231 0.001081 0.003891

pS416 0.0004662 0.002797

pS422 0.00004812 0.0004331

the levels of pS198, pS199, pT231 and pS416 — four sites
that were significantly increased in brain tissues from
Braak III-IV donors (Fig. 8b). Taken together, these
findings suggest that the generation of iPSC-derived
neurons with a cortical identity is not sufficient to con-
sistently recapitulate changes in tau multimerization and
PTM status that is observed in post-mortem patient
tissues.

Three PTMs correlate with tau multimerization

Tau hyperphosphorylation increases its aggregation pro-
pensity in vitro [57, 58], and PHF-tau isolated from AD
patient brains is heavily phosphorylated [59]. However,
it remains unclear whether aggregation in vivo is driven
by an increase in specific PTMs on soluble tau. We
therefore tested whether the changes in tau PTMs ob-
served in Braak III-IV brain tissues correlate with tau
multimerization and the formation of misfolded oligo-
mers. To this end, we performed a Spearman correlation
analysis between the state of tau obtained by Taul2-
Taul2 and T22-Taul2 assay, and fold changes of all PTM
sites for each individual denatured sample (Table 4). Mul-
tiple sites showed a strong (r>0.5) and significant (p <
0.05) correlation. The Taul2-Taul2 multimerization assay
revealed that in the EC, phosphorylation events at sites

(2019) 7:192
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S198, S199, T231 and S416 correlated with multimeriza-
tion. For Hip, pY18, pS198, pS199, pS202, pT205, pS238,
pS396, pS400, pS416 and pS422 showed a positive
correlation with tau multimerization, while a negative cor-
relation was observed for pS214. Lastly, for TC, the sites
pT181, pS198, pS199, pT231, pS416 correlated with tau
multimerization. The T22-Taul2 oligomerization assay
on the other hand did not reveal any correlation in EC,
but in Hip the sites nY18, pY18, pS198, pS199, pT205,
pS396, pS400, pS416 and pS422 showed a positive correl-
ation (Table 4). Since no changes were detected with the
T22-Taul2 ELISA in Braak III-IV TC (Fig. 4c), this tissue
was not included in the correlation analysis for misfolded
oligomers.

Among these phosphorylation events, pS198, pS199
and pS416 were consistently correlated with an increase
in Taul2-Taul2 or T22-Taul2 ELISA signal in all brain
regions analyzed (Table 4 and Fig. 9). Phosphorylation at
these three sites also emerged as significantly increased
in our analysis of PTM level differences (Table 3).
Increases in pT231 levels, on the other hand, only corre-
lated with multimerization in EC and TC, while the
increase in pS422 correlated with the Taul2-Taul2 and
the T22-Taul2 signals only in Hip (Table 4). These
findings suggest that three specific PTM sites are not
only increased at early Braak stages, but their presence
also strongly correlates with the formation of soluble tau
multimers and misfolded oligomers, a marker of tau
toxicity in AD.

Discussion

While tau dysfunction and toxicity has been linked to
the formation of soluble oligomeric structures, these
early intermediates are difficult to study in complex
samples such as human brain. Therefore, much is known
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about PTMs and in particular tau phosphorylation on
NFTs, but it is unclear whether the same sites are
already differentially modified on soluble tau before
aggregation. In this study we present a systematic ana-
lysis of PTM changes on soluble tau during early AD
from human brain samples. While total tau levels are
comparable between disease stages in these fractions, we
do observe a strong shift particularly in tau phosphoryl-
ation during the progression from Braak stages 0-I to
[I-IV. Since many phospho-sites demonstrate an in-
creased signal in native, but not in denatured Braak III-
IV samples, our data suggest that phospho-tau molecules
form multimers together with non-modified tau, which
thus provides additional binding sites for the Taul2
detection antibody. Interestingly, the sites showing a
consistent increase in denatured samples are different
from those that are traditionally used to stain NFTs and
perform immunohistochemical Braak staging such as
AT8 (pS202/pT205). However, despite the presence of
antibodies against these phospho-sites in our panel, we
did not observe an increase for their epitopes in the
Triton-soluble fraction of Braak III-IV brains, although
their signals did correlate with tau oligomerization in
Hip tissue. This is in line with previous findings that the
phospho-tau pattern differs during the development of
NFTs, with specific phospho-sites being associated with
pre-neurofibrillary tangles, intra- or extra-neuronal neuro-
fibrillary tangles [60]. AT8 staining in particular is strongly
associated with fibrillar aggregates [22], but has been
observed in individuals as young as 20 years of age [61].
Braak and colleagues have therefore proposed that the oc-
currence of clinical AD symptoms may require synergistic
effects between this age-dependent tauopathy and an
additional insult [61]. Our results show a clear shift
towards an increase of both tau multimerization and
specific tau PTMs at Braak stages III-IV in the EC. Since
ATS8 staining in the EC is a defining feature already at
Braak II, this suggests that tau pathology still increases in
this brain region with disease progression.

Although most individuals at Braak III-IV are still
clinically asymptomatic, we find biochemical manifesta-
tions of AD such as increased tau multimerization and
phosphorylation even in the TC, which at this stage is
largely AT8 negative. Importantly, we define a signature
of three tau PTMs that is consistently increased and
associated with multimerization throughout the EC, Hip
and TC. Among the PTM events we identified, only
pT231 has been previously linked to pre-tangle struc-
tures and was found increased at Braak stages corre-
sponding to early disease (III-IV) [60, 62]. However,
these studies were performed with a smaller antibody
panel and by immunostaining, which is inherently less
quantitative than ELISA. Furthermore, both pS199 and
pT231 are increased in the cerebrospinal fluid (CSF) of
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AD patients and are strongly increased in our samples,
while pT181, a third commonly used CSF biomarker
[63], did not differ between Braak stages in our study.
pS416 and pS422, on the other hand, are likely too far at
the tau C-terminus to be present on the truncated forms
of tau detectable in CSF [64].

pS416 and pS422 were both previously described as
being phosphorylated on synaptic tau in both human
patients and mouse models [65—-67]. pS422 in particular
has been targeted by a passive immunization strategy in
triple transgenic mice (TauPS2APP mice, [65]), and data
from the same mouse model suggest that this phosphor-
ylation event is promoted by the presence of amyloid
plaques [66]. The fact that tau pS422 is most promin-
ently changed in the Hip in our analysis therefore makes
it tempting to speculate that this form of tau may actu-
ally be located synaptically in projections from excitatory
pyramidal neurons in the EC, which are the most vul-
nerable neuron population at early stages of AD [68, 69].

Misfolded tau oligomers are thought to be a major
source of neuronal dysfunction in AD, and we detected
increased T22 signal in EC and Hip tissues, which also
show the most alterations in PTMs at Braak stage III-IV.
The increase in phosphorylation at the sites of our PTM
signature may therefore alter the oligomerization and/or
aggregation propensity of tau molecules, although such a
connection still has to be formally demonstrated. Our
correlation analysis between tau multimerization and
PTM fold changes showed that pS198, pS199 and pS416
correlate with tau multimerization in all brain regions. A
correlation with pT231 levels was only observed in EC
and TC, while pS422 correlates with Taul2-Taul2 and
T22 signals in Hip, where it is also most prominently
increased. This argues against non-specific, general hyper-
phosphorylation of tau as a trigger of pathology and may
thus be different from the physiological phosphorylation
events occurring during development, anesthesia and
hypothermia [20]. However, the factors responsible for the
specific changes we observed remain unknown. Potential
candidate enzymes include the kinases GSK3B, TTBK1,
CAMK, PKA, CDKS5 and the phosphatases PP2A and PP5
(www.tauptm.org) [19].

While further studies in human brain tissues are
hampered by factors that influence enzymatic activities
such as postmortem interval times [70], such studies are
much easier to perform in model systems, and the use of
iPSC-derived neurons for neurodegenerative disease re-
search has revolutionized the field in the last years [71].
However, when we studied the tau PTM signature in
iPSC-derived neurons from sporadic and familial AD
patients, we found that the pattern we observed in human
brains was not recapitulated, which might be due to their
developmental immaturity and the absence of tau
oligomerization in these cells. Developing cellular models
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analysis are summarized in Table 4

Fig. 9 Correlation of tau oligomerization with pS198, pS199, and pS416 fold changes in all brain regions. Spearman correlation of the fold
changes in Tau12-Tau12 signal with the fold changes (black squares: Braak O-I / average (Braak 0-I); red circles: Braak Ill-IV / average (Braak 0-1))
of a) pS198, b) pS199 and ¢) pS416 in entorhinal cortex (EC), d) pS198, e) pS199 and f) pS416 in hippocampus (Hip), g) pS198, h) pS199 and i)
pS416 in temporal cortex (TC) and Spearman correlation of the fold changes in T22-Tau12 signal with the fold changes (black squares: Braak 0-I /
average (Braak 0-1), red circles: Braak IlI-IV / average (Braak 0-1)) of j) pS198, k) pS199 and 1) pS416 in hippocampus (Hip). Results of the statistical

for AD and especially to study tau is challenging [56]. Des-
pite many advantages, iPSC-derived neurons have the cav-
eat that they express only one out of six isoforms of tau
[53], and reprogramming results in the loss of aging fac-
tors, which may affect disease pathology [54, 72]. Using
isogenic controls can be helpful to discern subtle disease
phenotypes, however this is not an option for sporadic dis-
eases without a single genetic cause [52].

For tau phosphorylation, previous studies have yielded
variable results with some, but not all sporadic AD lines
showing an increase [73, 74]. For familial AD, tau pheno-
types have been reported for lines containing APP, but
not presenilin mutations [75, 76]. As three out of our four
familial AD lines had PS1 mutations, this may be a reason
for the lack of tau phenotypes in our cultures. Further-
more, a new study has also revealed that inter-laboratory
variability is the largest source of failed reproducibility of
experiments performed by iPSC-derived neurons [77].

With the advent of more complex culture systems
such as 3D and co-culture models, it remains to be seen
if iPSC technology can yield more robust phenotypes for
sporadic and age-dependent disease in the future.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540478-019-0823-2.

Additional file 1: Table S1. List of iPSC-derived neurons used in the
study.

Additional file 2: Figure S1. Non-phospho tau PTMs do not change in
Braak Il. Normalized tau PTM signals (nY18, nY29, Ack280, meK311, C3-
D421) in Braak Il a) Entorhinal cortices (EC) b) Hippocampi (Hip) and ¢)
Temporal cortices (TC) compared to Braak 0-I controls. None of the ob-
served changes were significant (p > 0.05, t-tests).

Additional file 3: Figure S2. Specific increase in tau proteolysis at D421
and nitration at Y18 in native Braak IlI-IV compared to Braak 0-I samples.
a, b, ¢) Normalized tau PTM signals (nY18, nY29, Ack280, meK311, C3-
D421) from native Braak Il-IV and Braak 0-I entorhinal cortices, hippo-
campi and temporal cortices. Student’s t-tests: *, p < 0.05, **, p < 0.01, ***,
p <0007 (t-tests).

Additional file 4: Figure S3. Differentiation of iPSCs from control, fAD
and sAD donors to cortical neurons. Representative microscopy images
of iPSC-derived neurons stained for neuronal markers a) MAP 2 (red),
GABA (green) b) vGlut (red), NeuN (green) €) MAP 2 (green), Tau12 (red)
and d) Tuj1 (green) and Tbr1 (red) and DAPI for nuclei (blue). Scale bars
represent 50 um for all images.
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