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Abstract

Age is the most robust risk factor for Alzheimer's dementia, however there is little data on the relation of age to
Alzheimer's disease (AD) and other common neuropathologies that contribute to Alzheimer's dementia. We use
data from two community-based, clinical-pathologic cohorts to examine the association of age with AD and
other common pathologies. Participants were 1420 autopsied individuals from the Religious Orders Study or Rush
Memory and Aging Project who underwent annual clinical evaluations for diagnosis of Alzheimer's dementia, mild
cognitive impairment (MCl), and level of cognition. The neuropathologic traits of interest were pathologic AD
according to modified NIA-Reagan criteria, three quantitative measures of AD pathology (global AD pathology
score, B-amyloid load and PHFtau tangle density), macro- and micro-scopic infarcts, neocortical Lewy bodies, TDP-
43 and hippocampal sclerosis. Semiparametric generalized additive models examined the nonlinear relationship
between age and the clinical and pathological outcomes. The probability of Alzheimer's dementia at death
increased with age such that for every additional year of age, the log odds of Alzheimer’s dementia was 0.067
higher, corresponding to an odds ratio of 1.070 (p < 0.001). Results were similar for cognitive impairment and level
of cognition. By contrast, a nonlinear relationship of age with multiple indices of AD pathology was observed (all
ps < 0.05), such that pathologic AD reached a peak around 95 years of age and leveled off afterwards; the
quantitative measures of AD pathology were significantly lower at ages above 95. The association of age with other
neuropathologies was quite distinct from that of AD in that most increased with advancing age. AD pathology
appears to peak around 95 years of age while other common pathologies continue to increase with age.
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Introduction

Increasing age is the most robust risk factor for Alzhei-
mer’s dementia. Population-based studies show that the
age-specific incidence and prevalence of Alzheimer’s de-
mentia increase markedly after age 65 [9, 19, 21]. Most
studies suggest that the incidence and prevalence of Alz-
heimer’s dementia continues to increase across the entire
age spectrum, including in the oldest-old [6, 7]. Although
data from one study suggests that the incidence and preva-
lence may decline slightly after age 95 raising the possibil-
ity that the effect of age on Alzheimer’s dementia risk
might attenuate in the 10th decade [23, 32].
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The newly developed National Institute on Aging and
Alzheimer’s Association (NIA-AA) framework defines
Alzheimer’s disease (AD) pathologically, based on find-
ings from neuroimaging or biofluid biomarkers, or aut-
opsy [15]. While several studies suggest that the relation
of AD to dementia is weaker in the oldest-old [11, 29],
limited data is available on the association of age with
AD and other common neuropathologies in very old
persons [5, 26]. In a recent study, we found indirect evi-
dence suggesting a non-linear relationship between age
and AD pathology in a study examining sex differences
in AD and other neuropathologies [27]. Here, we use
data from two community-based cohort studies of aging
in which all participants enroll without known dementia
and are organ donors, the Religious Orders Study (ROS)
and the Rush Memory and Aging Project (MAP). We
extend our prior work by examining both linear and
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non-linear associations of age with Alzheimer’s demen-
tia, cognition, multiple indices of AD and other common
neuropathologies in more than 1400 persons aged 66 to
108 at death.

Methods

Participants

Data came from ROSMAP, a pair of community-based,
clinical-pathologic cohort studies of aging and dementia.
ROS enrolled older Catholic nuns, priests and brothers
across the United States since 1994. MAP enrolled older
residents in the Chicago metropolitan area since 1997.
Participants signed an informed consent and an Ana-
tomic Gift Act agreeing to post-mortem brain donation.
Participants were free of known dementia at enrollment.
Both studies were approved by the Institutional Review
Board of Rush University Medical Center. Combined,
the overall follow-up rate exceeds 95% and the autopsy
rate exceeds 85%. Detailed information for ROSMAP is
available (www.radc.rush.edu) [1].

At the time of these analyses, 1444 participants had
undergone complete autopsy. We excluded 24 partici-
pants diagnosed with non-Alzheimer’s dementia. Of the
remaining 1420, the average age at death was 89.0 years
(SD: 6.7 years, range 65.9 to 108.3 years). There were 267
participants (18.8%) who died at the age 95years and
older, including 63 (4.4%) who died at the age of 100
years and older (Table 1).

Clinical assessment

Participants underwent uniform, annual clinical evalua-
tions including a detailed cognitive assessment with a
structured battery of 21 cognitive performance tests.
Diagnostic classification of Alzheimer’s dementia pro-
ceeded in a multi-step process based on accepted criteria
[22]. Mild cognitive impairment (MCI) referred to those
persons with cognitive impairment without dementia. Of
the 19 tests in common among the two cohorts, 17 were
used to make a composite measure of global cognition,
and seven were used to make a composite measure of
episodic memory, as previously described [2].

Neuropathological assessment

Brain removal and processing followed a standard proto-
col previously detailed [1]. Five regions were dissected
and stained with modified Bielschowsky to assess for
neuritic plaques (NP), diffuse plaques (DP), and neuro-
fibrillary tangles (NFT). CERAD criteria was derived
from NP counts and Braak stage was derived from the
distribution and severity of NFTs [4, 24]. The three
pathologic indices were also counted separately in each
of the five regions in the area of the slide showing great-
est density of pathology using a graticule to mark a 1-
mm? area at a magnification of 100X. The procedure
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resulted in 15 individual measures of pathology for each
person that were averaged. to generate a global AD
score, as previously described [3]. AD diagnosis was
based on the modified National Institute on Aging
(NIA)—Reagan criteria [13]. The diagnosis required an
intermediate or high likelihood pathologic AD.

Immunohistochemistry and computer-assisted image
analysis were used to estimate [(-amyloid load across
eight different brain regions. Immunohistochemistry and
stereology was used to estimate Paired helical filament
tau (PHFtau) tangle density and averaged across all re-
gions as previously reported [18].

Lewy bodies (LB) were identified using alpha-synuclein
immunostaining and recorded as absent, nigral, limbic,
or neocortical [31]. Hematoxylin and eosin (H&E) was
used to histologically confirm the presence of macro-
scopic infarcts, document microscopic infarcts in at least
9 regions, and to identify severe neuronal loss and gliosis
in the hippocampus, characterized as hippocampal scler-
osis (HS) [25, 28]. Cytoplasmic inclusions of TDP-43
pathology were assessed with immunostaining in 6 brain
regions [25].

APOE genotyping

DNA was extracted from white blood cells or frozen
brain tissue. APOE genotyping was obtained by sequen-
cing the codons 112 and 158 of exon 4 of the APOE
gene. Participants with at least one copy of the €4 were
considered as €4 carriers [8].

Statistical analysis

First, we examined the association of age with Alzhei-
mer’s dementia. We started with a logistic regression
model with Alzheimer’s dementia as the binary outcome.
This model examines the linear relationship between age
and log odds (logit) of Alzheimer’s dementia. The corre-
sponding regression coefficient estimates the difference
in the logit of Alzheimer’s dementia with every 1 add-
itional year of age. To assess the nonlinear relationship
of age, we employed a semiparametric generalized addi-
tive model with a logit link function. In addition to a
parametric linear term of age, this model also included a
nonparametric cubic spline term for age [12]. The devi-
ance between the models with and without the spline
term was compared using a x> test with 3 degrees of
freedom. A significant test statistic indicates that the
spline term improves the model fit, thus supporting a
nonlinear relationship of age with the logit. The pres-
ence of a peak age for Alzheimer’s dementia was deter-
mined by plotting the model predicted probabilities of
Alzheimer’s dementia against age. We repeated the ana-
lysis for cognitive impairment (combination of MCI and
Alzheimer’s dementia). Separately, we repeated the ana-
lysis to examine the association of age with the diagnosis
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of pathologic AD according to NIA-Reagan criteria. We
repeated the analysis by adjusting for APOE €4 status.

Linear regression models examined the linear associ-
ation of age with quantitative measures of global cogni-
tion, and episodic memory, the clinical hallmark of AD,
proximate to death, and the three quantitative AD
pathologic indices (i.e. global AD score, B-amyloid load
and PHFtau tangle density, all square root transformed
due to positive skewness. In these models, each cognitive
or AD measure was the continuous outcome and age
was the predictor. The regression coefficient for age esti-
mates the difference in cognition or the burden of AD
with every additional year of age. Semiparametric gener-
alized additive models with an identity link function
examined the nonlinear relationship of age. Similar to
the analysis for AD dementia, these additive models in-
cluded both a linear term and a cubic spline term for
age. Without the spline term, the models reduce to regu-
lar linear regression models. A x* statistic compared the
deviance between the models with and without the
spline term, and a significant test statistic supports a
nonlinear relationship of age with the quantitative meas-
ure of cognition or AD. We repeated the analyses by
adjusting for APOE &4 status.

Finally, we repeated the analyses for the presence or
absence of non-AD pathologies including HS, cerebral
infarctions, cortical LB, and TDP43 pathology. In sec-
ondary analyses, we excluded 12 individuals aged 103
years and above to ensure that the results were not
driven by extremely old subjects. All models were ad-
justed for sex and education, and the analyses were per-
formed using SAS/STAT software, version 9.4 [SAS
Institute Inc., Cary, NC]. Statistical significance was de-
termined at the nominal level of p < 0.05.

Results
Demographic, clinical, and neuropathological characteris-
tics by age groups at death, not adjusted for covariates, are
shown in Table 1. The age-specific estimated probability
of Alzheimer’s dementia increased with age with the high-
est probability (56%) for the oldest-old (>100 years). Find-
ings were similar for the continuous measures of global
cognition and episodic memory which decreased with age.
By contrast, pathologic AD reached a peak of estimated
probability (76%) in the age group 95 to 100 following
which it did not increase. Findings were similar for the
continuous measures of global AD score, $-amyloid load,
and PHFtau tangle density. Macro and microscopic infarc-
tions had the highest probability over age 100, as did
TDP-43 and HS. By contrast, the frequency of cortical LB
remained stable across the age spectrum.

We first examined the association of age with Alzhei-
mer’s dementia, adjusted for sex and education. We found
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a linear association of age with the logit. For each add-
itional year of age, the logit was 0.067 higher, correspond-
ing to an OR of 1.070 (95% Confidence Interval [CI]:
1.051-1.088, p < 0.001). Thus, the odds of Alzheimer’s de-
mentia nearly doubles for each decade of life. The inclu-
sion of a spline term for age to examine non-linearity in
the model did not improve the fit (p =0.15). The esti-
mated probability of Alzheimer’s dementia continues to
rise with age from about 15% at age 70, to about 40% at
age 90, to about 65% at age 105 (Fig. 1a, red line). Separ-
ately, we found a linear association of age with the logit of
cognitive impairment. With each additional year of age,
the logit of having cognitive impairment was 0.080 higher,
corresponding to an OR of 1.083 (95% CI, 1.064-1.103,
p <0.001). The inclusion of a spline term for age did not
improve the model fit (p =0.39). The estimated probabil-
ity of cognitive impairment increased with age from about
30% at age 70, to about 65% at age 90, to nearly 90% at
age 105 (Fig. 1a, black line).

Next, we examined the association of age with patho-
logic AD. With each additional year of age, the logit of
having AD was 0.075 higher (OR=1.078, 95% CI:
1.059-1.097, p < 0.001), nearly doubling for each decade.
In contrast to the findings for Alzheimer’s dementia and
cognitive impairment, we observed an improvement in
the model fit after including a spline term for age to
examine non-linearity (x*(3) = 11.05, p = 0.01). The esti-
mated probability for AD diagnosis increased rapidly
from about 15% at age 70 to about 65% at age 85, it was
slightly higher at about 75% by age 95, following which
it was essentially flat (Fig. 1a, green line). To ensure that
the nonlinear relationship was not driven by extremely
old subjects, we reanalyzed the data after excluding par-
ticipants aged 103 and above. The findings were similar,
but the downturn after age 95 was more pronounced
(Fig. 1b, green line). To examine if the findings were af-
fected by APOE we repeated the analysis controlling for
APOE €4 status and the overall findings were similar
(data not shown).

Because Alzheimer’s dementia, cognitive impairment,
and AD diagnosis each represent a dichotomization on
an underlying continuum [15], we next examined the as-
sociation of age with continuous measures of cognition
and AD pathology. We first examined the association of
age with the level of global cognition and episodic mem-
ory, the clinical hallmark of Alzheimer’s dementia, prox-
imate to death. Similar to the findings for Alzheimer’s
dementia and cognitive impairment, we found strong
linear associations of both global cognition (p <0.001)
and episodic memory (p <0.001), with no evidence of a
nonlinear association of age with global cognition (p =
0.45) or episodic memory (p =0.39) (Fig. 2a, black and
red, respectively). We next examined the associations of
age with three different quantitative measures of AD
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Given that the estimated probabilities of Alzheimer’s de-
mentia and cognitive impairment increased past age 95
and AD pathology leveled off and became lower after age
95, we anticipated that other pathologies would continue
to increase with age. In the final set of analyses, we exam-
ined the association of age with five non-AD neuropathol-
ogies. Older age was associated with greater odds of
macroinfarcts (OR =1.052, 95% CI=1.033-1.071, p <
0.001) and HS (OR=1.074, 95% CI=1.042-1.108, p <
0.001). For these two pathologies, the associations were
driven by the linear term of age with the logit, whereas the
spline term was not significant (p’s=0.10 and 0.63- re-
spectively) (Fig. 3, black and green). We found nonlinear
associations of age with the logits of microinfarcts (x*(3)
=99, p =0.02) and TDP-43 (x*(3) = 9.4, p =0.02). Not-
ably, however, one of these nonlinear relationships differed
from those for AD pathology. Specifically, the estimated
probability of microinfarcts was relatively stable until ap-
proximately 90 years, after which there was a sharp in-
crease with age (Fig. 3, red). Separately, the probability of
having TDP-43 pathology increased until around age 98,
after which a downward trend was observed (Fig. 3, pur-
ple). Unexpectedly, we did not observe an association of
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age with neocortical LB (p =0.34). The estimated prob-
ability of neocortical LB is approximately 10% and
remained stable across the age spectrum (Fig. 3, light
blue). After excluding the super-agers, the nonlinear term
was no longer significant for TDP-43 pathology (p = 0.15),
and the findings for other pathologies were unchanged
(data not shown). Finally, we repeated the analysis by add-
ing the 24 subjects with the diagnosis of non-AD demen-
tia and the results were unchanged.

Discussion

Multiple indices of Alzheimer’s dementia, cognitive im-
pairment, cognitive function, AD and other common
neuropathologies were assessed in two community-
based cohort studies with more than 1400 older persons
covering a range of age at death of more than four de-
cades. We found that the probability of Alzheimer’s de-
mentia and cognitive impairment proximate to death
increased with advancing age; correspondingly, level of
cognition decreased with advancing age. By contrast,
pathologic AD showed a peak probability at death
around the age of 95years and following which it did

o |
— Gross infarcts
—— Microinfarcts
—— Hippocampal sclerosis
© — TDP43
o 7 Cortical Lewy body
[72]
Q
= o |
o) o
©
Qo
o
o
©
[0]
5 <
BT o |
o
o
o
o
o |
o

visual comparisons

Age at death

Fig. 3 Estimated probabilities of non-AD neuropathologies according to age. Data are from separate models shown superimposed for ease of

T T T
90 100 110




Farfel et al. Acta Neuropathologica Communications (2019) 7:104

not increase further. The findings were much more
striking with three different quantitative measures of AD
pathology all of which were significantly lower as age in-
creased past 95 years. The findings were robust and not
driven by small numbers at extreme old age or APOE
status. By contrast, four other non-AD neuropathologies
increased dramatically with age after 95.

Little data from other studies focusing in other non-AD
pathologies are available on this topic [5, 26]. One prior
study on hippocampal sclerosis found that AD peaked at
about age 95 after which it declined, while hippocampal
sclerosis increased well past age 100 [26]. In that case-
control study, the decrease found for AD was not formally
tested for significance. Participants were mostly from a ter-
tiary care clinic with additional samples from the Nun
Study and a centenarian study. Clinic cases differ from
community-dwelling elderly, centenarian studies are left
censored, most participants had severe cognitive impair-
ment, and case-control designs are susceptible to bias rais-
ing questions about the veracity of the finding. We
designed our study to confirm and extend that finding in
several ways. We contextualized the pathology contrasting
it with clinical observations from the same persons cover-
ing the full spectrum of cognition. Further, we formally
tested non-linearity for significance. We also illustrated the
robustness with quantitative measures of AD pathology,
and by sensitivity analyses dropping those at extreme age
and adjusting for APOE. Finally, we examined five add-
itional common neuropathologies and found strikingly dif-
ferent associations with age.

The explanation of age as a risk factor for AD has been
the subject of intense investigation for many years. Most
hypotheses consider age a metric of time on Earth such
that continuous dysfunctional processes lead to pathology
deposition and eventual cognitive impairment. For ex-
ample, an imbalance between [-amyloid production and
clearance could trigger a cascade of events resulting in de-
position of f-amyloid, tangle formation, and cognitive de-
cline [10]. Genetic and other time-invariant risk factors
may affect this imbalance and the timing of the events of
the cascade resulting in their association with age [30]. It
is likely that subgroups at high risk developed and died
from Alzheimer’s dementia by the tenth decade and exited
the population. This differential survival can result in an
exhaustion of known and unknown genetic or other time-
invariant risk factors and in a lower frequency of AD con-
sistent with the findings of our study. It is noteworthy that
we did not find similar effect for several other pathologies
suggesting that AD is relatively unique in that regard.
Thus, our finding is a demonstration that AD reaches a
peak age after which it is censored by death with AD. We
adjusted our models for APOE and our finding for AD
were unchanged. The differential survival is probably re-
lated to other genetic or time-invariant risk factors, not
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entered in our models. Future investigations are needed to
determine the risk factors related to AD differential
survival.

While AD reached a peak at about age 95, Alzheimer’s
dementia, cognitive impairment, and level of cognition
all continued to worsen into the eleventh decade. There-
fore, we also examined the association of age with five
common non-AD pathologies. In contrast to measures
of AD, the estimated probability of macroscopic infarc-
tions, and hippocampal sclerosis at death continued to
increase with age. The probability of microscopic infarc-
tions at death also increased with age with the effect op-
posite that of AD in that it increased more rapidly after
age 90. Further, TDP-43 likewise increased with age.
Interestingly, age was not related to neocortical LB. Our
data is consistent with prior studies showing a steady
rise of non-AD pathologies with advancing age [5, 14,
26] and with others that found that pathologies other
than AD become increasingly more important drivers of
dementia and cognitive impairment in the oldest-old
[17, 20]. These findings suggest that interventions that
target non-AD neuropathologies, specifically hippocam-
pal sclerosis, TDP-43 pathology, and vascular disease
may be of greatest utility in the oldest-old, the most rap-
idly growing segment of the population in the USA and
other developed countries.

This study has a number of strengths. The cohort studies
enroll persons without dementia and have very high rates
of clinical follow-up and autopsy, which increases the in-
ternal validity of findings. The study includes large numbers
of persons with and without cognitive impairment and AD
at very old ages. We examined multiple clinical measures
and multiple features of AD, and the results were highly
consistent and robust. These strengths lend confidence to
the findings. The study also has limitations. Age as a metric
provides the frequency of prevalent but not incident path-
ologies at death. While we had excellent coverage of ages
up to about 105, it is possible that other pathologic indices
also show an age peak at more extreme ages. The cohorts
enroll persons on average ages 75 and 80, without demen-
tia, leading to a healthy volunteer effect to some degree.
We strongly considered the possibility of survival bias as
discussed above. However, but this is highly unlikely given
the strikingly different patterns seen for AD and for both
the clinical findings as well as all of the other non-AD path-
ologies. It would be very peculiar for survival bias to be spe-
cific for AD pathologies. Thus, while the findings are likely
due to differential survival, this difference does not bias our
findings but rather explains it. Ultimately, biofluid and neu-
roimaging biomarker data will be needed to complement
our findings in living persons. Unfortunately, such data is
not currently available in persons over age 90, let alone the
large numbers who reach the eleventh decade of life needed
for robust non-linear modeling [16].
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Conclusion

In this manuscript, we found that AD pathology, mea-
sured through four different phenotypes, reaches a peak
around 95 years of age and is lower afterwards. By con-
trast, the frequency of Alzheimer’s dementia, cognitive
impairment, and impaired cognition, as well as measures
from four other non-AD pathologies continue to in-
crease with age. The findings of this study may influence
basic biological concepts in the field and highlight the
public health need to further understand the biology of
AD and other common neuropathologies in the rapidly
growing demographic 90+ age group. Further, the find-
ings suggest that interventions that target neuropathol-
ogies other than AD, specifically hippocampal sclerosis,
TDP-43 pathology, and vascular disease may be of great-
est utility in the oldest old.
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