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Glioblastoma multiforme (GBM) is an aggressive brain
tumor with a poor overall prognosis. Current standard of
care involves surgical resection followed by adjuvant treat-
ment with radiation (RT), temozolomide, and tumor treat-
ing fields (TTF) [13]. Despite this aggressive treatment
modality, median overall survival is approximately 15
months. Telomeres are terminal DNA elements found at
eukaryotic chromosomal ends consisting of hexagonal re-
peats of (TTAGGG)n which are essential for maintaining
genomic stability [1]. To maintain telomere length and
circumvent the end-replication problem, most cancer cells
express telomerase [8]. Telomerase is composed of two
subunits: a catalytic component with reverse-transcriptase
activity encoded by the gene TERT, and an 11 base-pair
RNA template encoded by the gene TERC [11]. Mutations
in the promoter region for TERT occur in approximately
60–80% of GBM, leading to increased telomerase activity
and enabling replicative immortality [10]. A defining fea-
ture of anaplastic astrocytomas and a small fraction of sec-
ondary GBM, is activation of a telomerase-independent
alternative lengthening of telomeres (ALT) mechanism,
driven by homologous recombination (HR) machinery [7].
ALT tumors can readily be detected by assaying for the
presence of extrachromosomal telomeric DNA C-Circles
(CCs) via qPCR or ALT-associated telomere foci by FISH
on pathological specimens [6]. ALT+ high grade glioma
(HGG) are enriched in tumors with loss of function muta-
tions in ATRX (alpha-thalassemia/mental retardation
X-linked) and less commonly, SMARCAL1. When these
chromatin remodeling genes are inactivated, the resultant
replication stress and aberrant HR at telomeres is hypoth-
esized to lead to ALT [2]. Mutations in both ATRX and

SMARCAL1 are mutually exclusive with TERT promoter
mutations suggesting functional redundancy between
these two mechanistic pathways [3, 4].
Here, we sought to identify and characterize ALT+

GBM by screening through a panel of 24 patient-derived
GBM stem cell lines (GSCs). We tested for ALT using a
novel qPCR method that measures both telomere content
(TC), which is indicative of overall telomere length, and
DNA C-Circles (CCs), which are specific and quantifiable
markers for ALT activity [9]. Telomerase expression was
assessed by quantifying mRNA levels of TERT using whole
transcriptome sequencing. ATRX protein expression was
measured by immunoblotting.
Of the 24 GSCs that were tested, 2 were found to be

ALT+ (8.3%), GS 5–22 and GS 8–18. These 2 cell lines
have significantly elevated DNA CC content (P < 0.001,
t-test) and telomere content (p < 0.001, t-test) relative to
other GSCs (Fig. 1a and b). Furthermore, both GS 5–22
and GS 8–18 lack detectable full length ATRX protein
upon immunoblot analysis (Fig. 1c). Whole transcriptome
sequencing data (available for 22 of 24 GSCs) identified
mRNA expression of TERT to be negligible in the two
ALT+ GSCs, indicating absence of telomerase activity,
whereas the remaining GSCs all had some quantifiable
level of TERT expression (p = 0.0087, Mann-Whitney test)
(Fig. 1d). Importantly, both GS 5–22 and GS 8–18 were
derived from patients with secondary glioblastoma with
concurrent IDH mutations. Also, p53 immunostaining
was positive in both ALT+ GSCs (data not shown) corrob-
orating p53 loss of function and mutant IDH along with
ATRX loss as important in the development of ALT+
GBM. GS 5–22 and 8–18 display longer doubling times in
vitro, 5 days and 8 days, respectively, relative to
ATRX-intact TERT-positive GSCs which have a mean
doubling time of ~ 3–4 days. We injected GS 522 cells
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Fig. 1 (See legend on next page.)
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intracranially into athymic mice to evaluate their ability to
generate stable xenografts, and saw tumors form within 1
months’ time (Fig. 1e).
To date, only 2 ALT+ glioma cell lines have been docu-

mented (TG-20 and JHH-GBM14) [5, 12], however in
these prior studies ALT was assayed for by immunofluores-
cent detection of telomere/PML body foci and lack of
telomerase activity via the telomerase repeat amplification
protocol (TRAP) assay. We report here that detection of
DNA CCs via qPCR and mRNA quantification of TERT
are also usable biomarkers that can reliably detect ALT and
may be more applicable in a clinical setting as both assays
require minute amounts of DNA and RNA. In conclusion,
identification of these ALT+ GSCs will enable future explo-
rations of the mechanisms and biology of the ALT pheno-
type, and will serve as pre-clinical models to test novel
chemotherapeutic agents in an effort to improve outcomes
in a subset of high-grade gliomas and secondary GBM.
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Fig. 1 ALT+ GSCs were detected by quantifying telomere (a) and DNA C-Circle content (b) in a panel of 24 cell lines. Using a threshold cut-off
value of 0.5 (dashed line) for telomere content and CCs, 2 ALT+ GSCs were identified, GS 8–18 and GS 5–22. Both GS 5–22 and GS 8–18 lack
detectable ATRX protein (c). Additionally, these cell lines have negligible mRNA expression for TERT (d), indicating lack of telomerase activity. U-2
OS, a commercially available ALT+ osteosarcoma cell line which is ATRX mutant was used as a positive control for ALT and negative control for
ATRX immunoblotting. Conversely, TS 603 and TS 543 which are known ATRX wild-type GSCs, were used as negative controls for ALT and positive
controls for ATRX immunoblotting. GS 5–22 cells, stably expressing the luciferase reporter, were injected intracranially into nude mice and formed
tumors within 4 weeks (e)
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