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Main text
Angiotensin II converting enzyme-1 (ACE1) now has a
recognised role in the pathogenesis of Alzheimer’s
disease (AD). ACE1 converts angiotensin-I (Ang-I) to
angiotensin-II (Ang-II) and is the rate-limiting enzyme
of the classical RAS axis that is commonly known for
regulating blood pressure. ACE1 is overactive within the
brain in AD and is associated with cognitive decline and
disease pathology [16] via overproduction of Ang-II (a
potent vasoconstrictor) and its downstream effects
mediated by angiotensin-II type 1 receptor (AT1R) sig-
nalling. The angiotensin hypothesis of AD describes how
Ang-II signalling contributes both directly and indirectly
to the development of disease pathology in AD [9],
which is supported by clinical observational and
pharmaco-epidemiological studies indicating that com-
monly prescribed ACE1 inhibitors (ACE1 Is), used to
treat hypertension, lower the incidence and rate of cog-
nitive decline in AD [2, 10, 15] and are associated with
reduced Aβ and Tau pathology [5, 6]. Yet, the role of
ACE1 in AD is complicated by seemingly paradoxical
associations whereby polymorphisms in ACE1, associ-
ated with lower levels of enzyme production (akin to a
net result of ACEIs), are risk factors for AD [4, 12, 14].
This divergent role of ACE1 may be partly explained by
studies in cell and mouse models of AD showing that
ACE1 has both endopeptidase and carboxypeptidase
activity and is capable of degrading Aβ in vitro [7, 8, 18,

19] and in vivo [21] although not all studies are support-
ive [3]. These dual properties of ACE1 seem somewhat
contradictory and make understanding the role of ACE1
in AD challenging, particularly as ACE1 activity in brain
tissue in AD correlated with, rather than inversely corre-
lated with, measures of Aβ pathology [16].
Somatic ACE1 contains two homologous catalytic

domains: the N- and C-domain, which have different
substrate specificities. The C-domain is reported to pref-
erentially convert Ang-I to Ang-II [1], whilst the
N-domain favours cleavage of amyloid beta (Aβ) at
Asp5His6 [19], as well as having carboxypeptidase activ-
ity that promotes the conversion of Aβ42 to Aβ40 [20].
We tested the hypothesis that domain-specific changes
in ACE1 in AD would favour elevated Ang-II production
whilst impeding Aβ degradation. We report novel find-
ings in post mortem AD brain tissue, using novel
immunocapture-based enzyme activity assays, that the
activity of the two catalytic domains of ACE1 are signifi-
cantly altered in opposing directions in AD.
We studied brain tissue from 72 AD and 48 controls

obtained from South West Dementia brain bank tissue
bank, University of Bristol, UK with ethics committee
approval. Cohorts were approximately matched for
age-at-death (AD Mean = 78.04, SD = 10.41; controls
Mean = 79.42, SD = 9.89), post-mortem delay (PM) (AD
Mean = 45.86, SD = 25.8; controls Mean = 48.25, SD =
37.96) and gender (AD = 27M: 45 F; controls = 29M: 19
F). AD cases were diagnosed according to international
neuropathological guidelines [17]. Controls were cogni-
tively normal and had few or absent neurofibrillary tan-
gles, a Braak stage less than 3, and no other
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neuropathological abnormalities. ACE1 C-domain and
N-domain activity was measured by immunocapture
-based FRET assays. Mouse monoclonal anti-human
ACE (R&D systems, UK) (0.5 mg/ml) was used in both
assays to coat 96-well plates (Nunc MaxiSorp), which
were blocked in PBS:1% bovine serum albumin (BSA)
before tissue homogenates prepared in 1% SDS lysis buf-
fer (5M NaCl, 1M Tris pH 7.6) (diluted 1:5) for C do-
main activity and (diluted 1:17) for N-domain activity,
recombinant human ACE1 (500–7.8125 ng/ml) (R&D
systems, UK) were added. Fluorogenic activity following
ACE1 cleavage was measured by addition of C-domain
or N-domain FRET substrates (Abz-LFK (DnP)-OH
trifluoroacetate salt) (Sigma-Aldrich, UK) (0.14 mM) and
(Abz-SDK (DnP)-P (Enzo Life Sciences, UK)) respect-
ively and measured with excitation at 320 nm and emis-
sion at 405 nm in a fluorescent plate reader (FLUOstar
OPTIMA, BMG labtech, UK) (0.68 mM) after 24 h incu-
bation at 37 °C. Captopril (10uM) or 10 μl of distilled
water was added to inhibited and uninhibited wells
respectively and incubated for 10 min at 37 °C prior to
the addition of the FRET substrates.
ACE1 C-domain activity was significantly elevated

in AD by 25.85% (median = 30,407 rfu in AD com-
pared to median = 24,161 rfu in controls) (p = 0.018)
(Fig. 1a). In contrast, ACE1 N-domain activity was
reduced by 49.18% in AD compared to controls (me-
dian = 6750 rfu compared to median = 13,283 rfu in
controls) (p = 0.024) (Fig. 1b).
Our findings show that ACE1 catalytic domain activity

is significantly altered in AD. ACE1 C-domain activity,
largely responsible for Ang-II production is significantly
increased in AD by ~ 25%, whereas N-domain activity,
likely contributing to Aβ cleavage and clearance, is

reduced by ~ 50% in AD. These data provide a possible
explanation for the divergent role of ACE1 in AD. The
combined effect of the domain-specific alterations would
favour Ang-II mediated disease progression, likely in-
volving other Ang-II linked AD-related pathological pro-
cesses according to the Angiotensin hypothesis of AD
[11] but also result in impeded Aβ clearance (via re-
duced N-domain activity) that is predicted to be protect-
ive in AD [13]. Our findings may also provide for the
first time, a mechanistic explanation for the apparent
discrepant findings in previous pharmaco-epidemiological
studies and AD risk and progression. Our data points to
the need for greater clarity on the extent to which differ-
ent ACE-Is interact with the two domains on ACE1 and
lends credence to the potential value of the development
of domain-selective (C-domain) ACE-I’s, that can con-
tinue to fulfil their hypertension-treating role, whilst
avoiding any potential interference with Aβ clearance and
degradation.
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Fig. 1 Divergent activity of ACE1 domains in Alzheimer’s disease. Bar charts showing (a) significantly higher ACE1 C-domain (Ang-II production)
activity in AD compared to age-matched controls and (b) significantly reduced ACE1 N-domain activity (Aβ degradation) compared to age-
matched controls in the mid-frontal cortex in AD (n = 72) and age-matched (n = 48). Bars show the median and 95% CI, Mann-Whitney test was
used to compare ACE1 C-domain activity between groups. p < 0.05 was considered statistically significant
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