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Abstract

A previous study reported that a massive cerebral infarct in the territory of the middle cerebral artery (MCA) may be
associated with development of neurofibrillary tangles (NFTs) in the ipsilateral basal nucleus of Meynert (BNM). We
analyzed 19 cases of an MCA territory infarct and 12 with a putaminal hemorrhage (mean age 82.5 years; female/
male ratio 8/23; mean time from stroke onset to autopsy 4182 days). In both groups, 74–100% had a significantly
higher rate of phosphorylated tau immunoreactive or Gallyas Braak silver stain-positive neurons on the BNM-
affected side than on the BNM-unaffected side. These NFTs were immunoreactive for anti-RD3 and anti-RD4
antibodies, and a triple-band pattern was observed by immunoblot analysis with anti-tau antibody. Most NFTs
might be formed within the 5–10 years after stroke onset. There were significantly more TAR DNA-binding protein
43 (TDP43) immunoreactive structures on the BNM-affected side than on the BNM-unaffected side. We showed that
many NFTs with TDP43-immunoreactive structures were observed in the ipsilateral BNM associated with a massive
cerebral infarct in the MCA territory or a putaminal hemorrhage.
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Introduction
Tau is a protein that binds to and stabilizes microtubules,
which is required for maintaining neuronal shape and
transport of cellular cargo [3]. Hyperphosphorylated tau is
the major component of helical or straight filaments in
degenerating neurons and/or glial cells in many neurode-
generative diseases. Abnormal tau accumulation is usually
observed in the somata of neurons and glial cells. These
filamentous tau aggregates contribute to pathologies of
the central nervous system, such as Alzheimer’s disease
(AD) and other tauopathies.
A previous study reported that massive cerebral infarct

in the territory of the middle cerebral artery (MCA) on

one side of the hemisphere is associated with the develop-
ment of numerous neurofibrillary tangles (NFTs) in the
basal nucleus of Meynert (BNM) on the side ipsilateral to
the infarct [11]. Those results, however, have not been well
analyzed by other researchers or for other types of stroke.
In addition, as described in detail previously TAR

DNA-binding protein 43 (TDP-43)-immunoreactive de-
position can be detected in neurodegenerative tauopathy,
including Alzheimer disease [2, 16], Pick disease [4], corti-
cobasal degeneration [19], progressive supranuclear palsy
[20], and argyrophilic grain disease [5]. In addition, aggre-
gation of TDP-43 may affect cognitive impairment in
deing points using tissue samples registered in the Brain
Bank for Aging Research (BBAR; http://www.mci.gr.jp/
BrainBank/). 1) We wanted to clarify whether NFTs are
present in BNMs in individuals with an ischemic stroke as
well as those with a hemorrhagic stroke. 2) If NFTs are
present, are there TDP-43 deposits in the BNM?
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Materials and methods
Cases
Tissue samples were obtained from autopsy materials that
were collected at the Tokyo Metropolitan Geriatric Hos-
pital and the Institute of Gerontology [1, 6, 10]. Among
them, we analyzed all cases of cerebrovascular disease
(CVD) (including cerebral infarcts or hemorrhage) with a
lobar lesion. For this study, we defined a lobar infarct or
hemorrhage as involving more than one-third of the MCA
area. We excluded cases with brain tumors or neuroinflam-
matory diseases.
Three neuropathologists reviewed each case separately

and then conferred to reach the final diagnosis. Clinical
information was obtained retrospectively from medical
charts and summaries and was reviewed by two
board-certified neurologists.

Neuropathologic analysis
Sampling and routine and immunohistochemical staining
Brains and spinal cords were examined according to our
BBAR protocol [1, 6, 10]. The brains and spinal cords
were fixed in 20% buffered formalin (Wako, Osaka, Japan)
for 7–13 days and then dehydrated in a graded alcohol
series, cleared in xylene, and embedded in paraffin. Serial
sections (6 μm thick) were cut and stained with
hematoxylin and eosin and by the Klüver–Barrera
method. They were further examined with Gallyas Braak
silver staining [7].
For immunohistochemistry, we used the Ventana Bench-

mark XT autoimmunostainer (Ventana, Tucson, AZ, USA)
according to the manufacture’s protocol [1, 6, 10]. The
BNM sections were immunostained using the following
antibodies raised against synthetic peptide corresponding
to phosphorylated tau (ptau; AT-8, 1:100, monoclonal;
Innogenetics, Ghent, Belgium), phosphorylated α-synuclein
(pSyn#64, polyclonal, 1:20,000; Wako, Osaka, Japan), and
phosphorylated TDP-43 (pTDP43; pSer409/410, monoclo-
nal, 1:10,000; Cosmo Bio, Tokyo, Japan). The signals from
monoclonal and polyclonal antibodies were detected using
the automatic system on a Ventana Discovery with the
I-View DAB Universal Kit (Roche, Basel, Switzerland) ac-
cording to the manufacturer’s instructions. Sections were
counterstained with hematoxylin.

Analysis of the BNM
The cerebrum was sliced in coronal sections vertical to
the anterior and posterior commissure line. The BNM
sections [12] at the level of the anterior commissure line
were immunostained using the following antibodies raised
against synthetic peptide corresponding to AT8: pSyn#64,
pSer409/410, anti-3-repeat tau (RD3, monoclonal, 1:2000;
Merck, Darmstadt, Germany), and 4-repeat tau (RD4,
monoclonal, 1:50; Merck) and (anti-4R, monoclonal, 1:500;

Cosmobio). They were further examined with Gallyas Braak
silver staining [7].

Quantitative analysis of phosphorylated tau
immunoreactive (ptau+) neurons in the BNM
To obtain the number of ptau+ neurons, we counted
only the number of the neurons with nucleoli. The
immunoreactive density of total BNM neurons was
calculated. In addition, the ratio of RD3−/RD4- or
anti-4R immunoreactive neurons was calculated.

Semi-quantitative analysis of pTDP43 immunoreactive
(pTDP43+) neurons in the BNM
We semi-quantitatively analyzed the immunohistochemi-
cal staining with pTDP43 antibody. Our grading system
was modified based on the scoring system of a previous
study [18]: Neuronal cytoplasmic inclusions (NCIs), glial
cytoplasmic inclusions (GCIs), and neuronal intranuclear
inclusions (NIIs) immunoreactive for pTDP43 were quan-
titatively analyzed and scored on a scale of 0–3, depending
on the total number of pTDP-43+ NCIs, GCIs, or NIIs: 0
= none; 1 = 1–3; 2 = 4–9; 3 = ≥10. pTDP43+ dystrophic
neurites (DNs) were semi-quantitatively scored as 0–3,
where 0, absent; 1, sparse; 2, moderate; 3, severe.

Immunoblot analysis
The sarkosyl-insoluble fractions were prepared as
described by Taniguchi-Watanabe et al. [17]. Frozen
BNM (0.25 g) from one MCA territory infarct case (case
1) was homogenized in 20 volumes (5 ml) of buffer A
(10 mM Tris-HCl, pH 7.5, containing 1 mM EGTA, 10%
sucrose, and 0.8M NaCl). After addition of Sarkosyl
(final concentration at 2%), the homogenate was incu-
bated for 30 min at 37 °C and spun at 20,000×g for 10
min at 25 °C. The supernatant was removed, transferred
to 1.5-mL tubes,+ and ultracentrifuged at 100,000×g for
20min at 25 °C. The pellets were washed by ultracentrifu-
gation with 0.5mL of sterile saline, solubilized in sodium
dodecyl sulfate-sample buffer, and subjected to 4–20%
gradient polyacrylamide gel (Wako) for electrophoresis.
Transferred proteins on PVDF membrane was probed
with the antibodies to tau T46 (Thermo) at 1:1000, RD3 at
1:500, RD4 at 1:500 and anti-4R at 1:1000, biotinylated
2nd antibody, avidin–biotin complex (Vector) and
developed with diaminobenzidine and nickel chloride.

Statistical analysis
The Mann-Whitney’s U test was used to analyze differences
in NFTs or pTDP43+ structures between the BNM-affected
and BNM-unaffected sides. The Spearman’s rank correl-
ation coefficient was used to analyze correlation between
the numbers of anti-RD3 antibody-immunoreactive (RD3+)
and anti-RD4 antibody-immunoreactive (RD4+) or anti-4R
immunoreactive (4R+) neurons. Statistical analysis was
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performed using SPSS 15.0J software (SPSS, Chicago, IL,
USA). Statistical significance was set at p < 0.05.

Results
Clinical and pathologic studies
Among the 23 lobar infarct cases (female/male 6/17, mean
age 82.7 [SD 7.4] years), infarcts were found in the anterior
(ACA), middle (MCA), and posterior (PCA) cerebral artery
territories in 1, 19, and 3 cases, respectively (Table 1).
Among the 17 lobar hemorrhage cases (female/male = 5/
12, mean age 81.6 [SD 9.6] years), 12 were putaminal
hemorrhage. Other hemorrhage sites were a frontal lobe
(n = 1), occipital lobes (n = 2), cerebellum (n = 1), and
brain stem (n = 1) (Table 1). The mean interval from the
onset of stroke to death (autopsy) in the MCA territory
infarct cases was 3500 (SD 2721) days, and that for the pu-
taminal hemorrhage was 5262 (SD 4223) days.

NFTs of the BNM in CVD cases
In most MCA territory infarct cases (14/19, 74%), the rate
of ptau+ neurons was higher on the BNM-affected side
than on the BNM-unaffected side (Figs. 1b, 2a). The me-
dian rate was significantly higher on the BNM-affected
side than on the BNM-unaffected side (p < 0.01).

� MCA territory infarct cases (16/19, 84%): The rate
of Gallyas Braak stain-positive (GB+) neurons was
higher on the BNM-affected side than on the BNM-
unaffected side (Figs. 1a, 2b). The median rate was
significantly higher on the BNM-affected side than
on the BNM-unaffected side (p < 0.01).

� Putaminal hemorrhage cases (11/12, 92%): The rate
of ptau+ neurons was higher on the BNM-affected
side than on the BNM-unaffected side (Fig. 2c). The
median rate was significantly higher on the BNM-

Table 1 Profile of lobar infarct and lobar hemorrhage cases

Infarct cases Hemorrhage cases

case side Braak
stage

interval
(days)

age
(y.o.)

sex case side Braak
stage

interval
(days)

age
(y.o.)

sex

MCA territory putamen

1 R 1 177 74 M 24 R 1 967 82 M

2 L 1 606 74 M 25 R 1 2720 58 M

3 R 1 1787 84 M 26 L 1 5017 81 M

4 L 1 2790 74 M 27 R 1 5955 83 M

5 L 1 3511 75 M 28 L 1 10,415 89 M

6 R 1 3975 85 M 29 R 2 2922 65 M

7 R 1 4821 71 M 30 R 2 5844 95 F

8 R 1 5114 92 M 31 R 3 1592 84 M

9 L 1 5114 77 M 32 L 3 2526 88 M

10 L 1 9869 87 M 33 L 4 4383 81 F

11 L 2 119 74 M 34 L 5 16,048 92 F

12 R 2 1707 83 M 35 R 6 4749 85 F

13 R 2 3525 82 F

14 R 2 7305 90 M Frontal lobe

15 L 2 7345 79 M 36 L 5 2376 82 F

16 R 3 4502 82 M

17 L 4 344 102 F Occipital lobe

18 L 4 730 91 F 37 L 1 7305 79 M

19 L 5 3168 86 F 38 L 2 3288 88 M

ACA territory

20 R 2 3891 75 M Cerebellum

PCA territory 39 L 2 1820 86 M

21 L 1 1144 81 M

22 R 1 4564 87 F Brain stem

23 L 2 5516 83 F 40 L 1 529 69 M

Braak stage Braak neurofibrillary stage, interval interval from the onset of stroke to death (autopsy), MCA middle cerebral artery, ACA anterior cerebral artery, PCA
posterior cerebral artery, R right, L left, F female, M male
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affected side than on the BNM-unaffected side
(p < 0.01).

� Putaminal hemorrhage cases (11/11, 100%): The rate of
GB+ neurons was higher on the BNM-affected
side than on the BNM-unaffected side (Fig. 2d).
The median rate was significantly higher on the
BNM-affected side than on the BNM-unaffected
side (p < 0.01).

� Other CVD cases: There were no significant
differences in the number of ptau+ or GB+ BNM
neurons between the BNM-affected and BNM-
unaffected sides (Fig. 2e, f ).

Furthermore, because of the similar results in each
stroke subtype, we also studied 19 MCA territory infarct
cases and 12 putaminal hemorrhage cases together
(mean age 82.5 years; female/male = 8/23; mean time
from the stroke onset to autopsy 4182 days).

Braak NFT stage and NFTs of the BNM in MCA territory
infarct and Putaminal hemorrhage cases
In most Braak NFT stage I and II cases (22/31, 71%), the
rate of ptau+ neurons was higher on the BNM-affected
side than on the BNM-unaffected side (21/22, 95%),
(Fig. 3a). The median rate was significantly higher on
the BNM-affected side than on the BNM-unaffected side
(p < 0.01). In addition, in most Braak NFT stage I and II
cases, the rate of GB+ neurons was higher on the

BNM-affected side than on the BNM-unaffected side
(21/22, 95%) (Fig. 3b). The median rate was significantly
higher on the BNM-affected side than on the
BNM-unaffected side (p < 0.01). In Braak NFT stage III
and IV (6/31, 19%) or V and VI (3/31, 10%) cases, there
were no differences in the ptau+ or GB+ neurons
between the BNM-affected and BNM-unaffected sides
(Fig. 3c–f ).

Tau isoform analysis of NFTs in the BNM
RD3+, RD4+ and 4R+ neurons were observed in the BNM
of the 31 cases (Fig. 1c-e). The number of RD3+ neurons
increased simultaneously with the RD4+ or 4R+ neurons
regardless of the Braak stage (Fig. 4). Thus, except for the
neurons in Braak stage V or VI (r = 0.26, p = 0.83), the
number of RD3+ and RD4+ neurons were strongly cor-
related (total: r = 0.78, p < 0.01; stage I or II: r = 0.83, p
< 0.01; stage III or IV: r = 0.82, p = 0.046) (Fig. 4a). The
total number of RD3+ and 4R+ neurons or in Braak
stage I or II were strongly correlated (total: r = 0.78, p <
0.01; stage I or II: r = 0.69, p < 0.01), whereas there was
no correlation in stage III or IV (r = − 0.14, p = 0.78) or
stage V or VI (r = − 1.00) (Fig. 4b).

NFTs of the BNM and the interval from stroke to death
We compared the difference in the NFT numbers
between BNM-affected and BNM-unaffected sides and
the time interval from stroke to death (Fig. 5). In the 22

Fig. 1 Gallyas Braak stain in the BNM (a). Immunocytochemistry by anti-tau antibodies AT8 (b), RD3 (c), RD4 (d) and anti-4R (e) in the BNM.
Immunocytochemistry by anti-phosphorylated TDP-43 antibody in the BNM. (f) Granular neuronal cytoplasmic inclusion (NCI). (g) Granular glial
cytoplasmic inclusion (GCI). (h) Cat’s-eye neuronal intranuclear inclusion (NII). (i) Thread-like structures (dystrophic neurites, DNs). Bar = 100 μm
(a-e), 10 μm (f-i)
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Fig. 2 (See legend on next page.)
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Braak stage I and II cases, the difference in ptau+ or GB
+ neurons in both numbers and stroke–death intervals
were strongly correlated (r = 0.48, p = 0.02; r = 0.69,
p < 0.01, respectively). The logarithmic curves with
the best fit to a series of data points are shown in
Fig. 5. The trajectories of the curves indicate that
the number NFTs continued to increase for 5–10
years after stroke onset (until the patient died).

pTDP43+ structures in the BNM
Various pTDP43+ structures—i.e., granular NCIs and GCIs,
thread-like structures (DNs), dot-like structures of neuro-
pil—were observed in the BNM (Fig. 1). pTDP43+ cat’s-eye
NIIs were rare (Fig. 1). pTDP+ NCIs/GCIs/NIIs and DNs
grades were significantly higher on the BNM-affected side
than on the BNM-unaffected side (p = 0.01, p < 0.01,
respectively) (Fig. 6).

Immunoblot analysis
Figure 7 shows the results of immunoblotting of
sarkosyl-insoluble fractions from case 1 (with an MCA
territory infarct and anti-T46, RD3, anti-4R, and RD4
antibodies). Three major abnormal tau bands of 60, 64,
and 68 kDa were detected. The pattern of these tau
bands was indistinguishable from those seen in AD.

Discussion
We showed that 1) there were many NFTs in the ipsila-
teral BNM of a case of massive cerebral infarct in the
MCA territory or putaminal hemorrhage on one side; 2)
most NFTs might be formed during the 5–10 years after
stroke onset and before death; and 3) pTDP43+ structures
were observed with NFTs in cases of massive CVD.

Massive CVD and tau
A previous study reported that there were numerous NFTs
in the BNM in cases of a massive MCA-area infarct that
had paired helical filaments, making them AD-type NFTs
[11]. In our study, immunohistochemistry showed that
these NFTs were positive for anti-RD3, anti-RD4, and
anti-4R antibodies. In addition, immunoblot analysis

with anti-tau antibody revealed a triple-band pattern.
These immunobiochemical analysis were consistent
with AD pattern.
We believed that the putaminal hemorrhage as well as

massive MCA-area infarcts may cause numerous NFTs
in the BNM on the ipsilateral side. In addition, the
results did not depend on the Braak stage. Asymmetrical
neuronal shrinkage, between affected and unaffected
sides, without actual changes in neuronal numbers, may
result in apparent differences in neuronal numbers.
However, it might be assumed that the BNM-affected
side neurons ipsilateral to the infarct would be more
likely to shrink after an infarct than the BNM-unaffected
side neurons, and that this shrinkage would tend to
reduce, rather than increase, the BNM-affected side
neuron counts. In most those cases, number of NFTs in
the BNM may reach the maximum number the 5–10
years after stroke onset, with the interval from stroke to
death being a good fit on logarithmic curves. As this
must be inferred from cross-section data (at death), this
result can only be tentative.
As described in detail previously [13], chronic traumatic

encephalopathy (CTE) is a type of progressive neurode-
generative disease caused by repetitive mild traumatic
brain injury, characterized by widespread deposition of
hyperphosphorylated tau, which appears as NFTs [14]. As
tau accumulation in the BNM associated with CVD as
well as CTE tauopathy have in common that tau accumu-
lates after 5–10 years or more due to destruction, both
may be caused by the same mechanism.

Massive CVD and TDP-43 lesions
Diseases with secondary TDP-43 pathology include AD
and hippocampal sclerosis [2, 16], Guam parkinsonism–
dementia complex [8], Pick disease [4], corticobasal de-
generation [19], progressive supranuclear palsy [20],
argyrophilic grain disease [5], and Lewy body disease
[15]. Widespread TDP-43-immunoreactive inclusions
have been observed in more than 80% of CTE cases
[17]. pTDP-43-immunoreactive structures and NFTs are
often observed in the BNM of massive CVD cases. There

(See figure on previous page.)
Fig. 2 Rate of neurofibrillary tangles (NFTs) in neurons of the basal nucleus of Meynert (BNM) of cardiovascular disease (CVD). (a, b) The 19 middle cerebral
artery (MCA) territory infarct cases. (c, d) The 11 putaminal hemorrhage cases. (e, f) Other CVD cases. (a, c, e) Phosphorylated tau-immunoreactive (ptau+)
neurons. (b, d, f) Gallyas Braak stain-positive (GB+) neurons. (a) In most cases (14/19, 74%), the ratio of ptau+ neurons in total neurons was higher on the
BNM-affected side than on the unaffected side. The median rate was also significantly higher on the BNM-affected side than on the unaffected side
(p< 0.01). (b) In most cases (16/19, 84%), the rate of GB+ neurons was higher on the BNM-affected side than on the unaffected side. The median rate was
also significantly higher on the BNM-affected side than on the unaffected side (p< 0.01). (c) In most cases (11/12, 92%), the rate of ptau+ neurons was
higher on the BNM-affected side than on the unaffected side. The median rate was significantly higher on the BNM-affected side than on the unaffected
side (p< 0.01). (d) In all 11 cases (100%), the rate of GB+ neurons was higher on the BNM-affected side than on the unaffected side. The median the rate
was significantly higher on the BNM-affected side than on the unaffected side (p< 0.01). (e, f) In the other CVD cases, there were no significant differences
in ptau+ or GB+ BNM neurons on the affected and unaffected sides
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Fig. 3 (See legend on next page.)
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are multiple other biological mechanisms by which head
injury may trigger the molecular pathways leading to
neuronal degeneration in CVD, including inflammation,
glutamate excitotoxicity, and oxidative stress.
Tau accumulation in neurons in the BNM might result

in a gradual cognitive decline of unknown cause in pa-
tients who had a first large stroke but lacked a recur-
rence. Further, considering that neurons in the BNM
project their axons to widespread areas of the ipsilateral
cerebral cortex including the frontal cortex [9], together
with the ability of tau aggregates to propagate along
neuronal pathways, it is also possible that the NFT for-
mations in the BNM subsequently cause abnormal tau
accumulation in remote and wider regions, including the
frontal cortex. The BNM is rich in acetylcholine and
choline acetyltransferase, and one of pharmacological
treatments of cognitive decline such cases having one

large CVD may focus on compensating for a faltering
BNM function through artificially increasing acetylcho-
line levels.
Our study was limited by the small number of cases. To

our knowledge, however, no other analyses of bilateral
BNM samples of patients with cerebral hemorrhage in
autopsy materials have been reported. In addition, we
present the relation between NFT formation and the
period during which NFTs are formed, from the vascular
event or pTDP-43 accumulation to death (stroke onset–
death interval).

Conclusion
We presented cases of massive cerebral infarct in the
territory of the MCA or putaminal hemorrhage on one
side of the brain. We focused on the NFTs with
pTDP-43-immunoreactive structures in the BNM-affected

(See figure on previous page.)
Fig. 3 Rate of NFTs in neurons of the BNM cases of infarcts in the MCA territory and putaminal hemorrhages, by Braak NFT stage. (a, b) Braak
NFT stages I and II cases. (c, d) Stages III and IV cases. (e, f) Stages V and VI cases. (a, c, e) Phosphorylated tau-immunoreactive (ptau+) neurons.
(b, d, f) Gallyas Braak stain-positive (GB+) neurons. (a) In most cases (21/22, 95%), the rate of ptau+ neurons was higher on the BNM-affected side
than on the unaffected side. The median rate was significantly higher on the BNM-affected side than on the unaffected side (p < 0.01). (b) In
most Braak NFT stage I and II cases (21/22, 95%), the rate of GB+ neurons was higher on the BNM-affected side than on the unaffected side. The
median rate was significantly higher on the BNM-affected side than on the unaffected side (p < 0.01). (c-f) No differences in ptau+ or GB+ BNM
neurons on BNM-affected and unaffected sides

Fig. 4 RD3+ and RD4+ (a) or anti-4R+ (b) neurons of the BNM in cases of MCA territory infarcts and putaminal hemorrhages. There were more
anti-RD3 antibody immunoreactive (RD3+) neurons when there were more anti-RD4 antibody immunoreactive (RD4+) neurons, regardless of
Braak stage. Except for stage V or VI (r = 0.26, p = 0.83), the numbers of RD3+ and RD4+ neurons were strongly correlated (total: r = 0.78, p < 0.01;
stage I or II: r = 0.83, p < 0.01; stage III or IV: r = 0.82, p = 0.046) (a). The total number of RD3+ and 4R+ neurons or in stage I or II were strongly
correlated (total: r = 0.78, p < 0.01; stage I or II: r = 0.69, p < 0.01), whereas there was no correlation in stage III or IV (r = − 0.14, p = 0.78) or stage V
or VI (r = − 1.00) (b)
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Fig. 5 NFTs in the BNM and the time interval from stroke to death. (a) In the 22 Braak stage I and II cases, the rate of the differences in the
number of phosphorylated tau-immunoreactive (ptau+) neurons between BNM-affected and BNM-unaffected sides and was correlated with the
time interval from stroke to death (r = 0.48, p = 0.02). (b) The rates of the number of GB+ neurons and the stroke–death interval were correlated
(r = 0.69, p < 0.01). According to the logarithmic curves, NFTs increased during the 5–10 years following stroke onset until death

Fig. 6 Grading the anti-phosphorylated TDP-43 (pTDP-43) structure in the BNM. pTDP-43 immunoreactive neuronal cytoplasmic inclusions (NCIs),
glial cytoplasmic inclusions (GCIs), and neuronal intranuclear inclusions (NIIs) were semi-quantitatively scored as 0–3 depending on their total
number: 0 = none; 1 = 1–3; 2 = 4–9; 3 =≥10. pTDP-43 immunoreactive dystrophic neurites (DNs) were semi-quantitatively scored as 0 to 3: 0,
absent; 1, sparse; 2, moderate; 3, severe. The grades of the pTDP immunoreactive NCIs/GCIs/NIIs and DNs were significantly higher on the BNM-
affected side than on the BNM-unaffected side (p = 0.01, p < 0.01, respectively)
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side (with the infarct) and the ipsilateral non-affected side.
Our findings may contribute to revealing the mechanism
of NFT formation and/or the development of BNM-tar-
geted therapy.
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