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Tumor cell-free DNA detection in CSF for
primary CNS lymphoma diagnosis
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To the editor,
Primary central nervous system lymphoma (PCNSL) is a

rare disease accounting for around 3% of primary CNS tu-
mors. Its diagnosis is usually based on cranial MRI and brain
biopsy (including immunophenotyping for faster diagnostic
confirmation [4]). The identification of lymphoma cells in
the cerebrospinal fluid (CSF) or vitreous fluid by cytology
(generally associated with flow cytometry) in association
with typical neuroimaging allow faster and less invasive
diagnosis. PCNSL characterization, frequently leads to diag-
nosis of diffuse large B-cell lymphoma (DLBCL), belonging
to the ABC subgroup [3]. Moreover, MYD88 mutations are
detectable in 58 to 76% of PCNSL cases, in about 30% of
ABC DLBCL patients, and in the majority of lymphoplas-
macytic lymphoma cases [6, 7, 11, 13]. Since this mutation
is not described in glioblastoma or in other solid metastatic
tumors, its detection in the cerebrospinal fluid (CSF) [10]
could be helpful for PCNSL diagnosis without invasive sur-
gical biopsies, such as IL10 concentration [12] and micro-
RNA profiling [1]. The MYD88 L265P mutation detection
in cell DNA from vitreous aspirates [2] and CSF [10] was re-
ported to improve the PCNSL diagnosis. The aim of our
study was to evaluate the contribution of cell-free (cf) DNA
from the CSF with a valuable molecular tool detecting the
tumor-specific mutation MYD88L265P, using ddPCR in
known MYD88L265P PCNSL.
This retrospective study was conducted between August

2016 and June 2018 on a series of 11 MYD88L265P PCNSL
patients without ocular infiltration. The MYD88 mutation
status was established either on brain biopsy (n = 7) or in
cell DNA from CSF (n = 4) with an allele specific (AS)
PCR technique. CSF samples at initial diagnosis (n = 9) or
relapse (n = 5) were processed within 4 h after lumbar
puncture. After CSF centrifugation (Fig. 1), the cell pellet

and the previously discarded supernatant (1.5–5mL) were
collected for cfDNA isolation and ddPCR for the detection
of the NM_002468:exon5:c.T778C(p.Pro265Leu) MYD88
variant. Sensitivity thresholds were established by a dilu-
tion study with the lower limit of quantification and detec-
tion found to be 0.9 copy/μL and 0.2 copy/μL,
respectively. The specificity was evinced by the absence of
L265P-positive droplets in 10 CSF samples from nonlym-
phomatous lesions.
The presence of cfDNA was detected in PCNSL CSF

with a median value of 3.1 cfDNA copies/μL ddPCR mix
(Fig. 1). Substantial variations of the amount of cfDNA
were observed and four cases exhibited less than 1 copy/
μL ddPCR mix, even though special care was given to
the parameters affecting the quantity and quality of
cfDNA, such as pretreatment delay, sufficient CSF vol-
ume, DNA isolation process and storage. The
MYD88L265P mutation was detectable in 10 out of 14
cell-free CSF samples, and not in the four cases with less
than 1 copy wild-type MYD88/μL. In these samples,
MYD88L265P was detected in the CSF cell DNA using
ddPCR only (#10R) or AS PCR (#09D). The MYD88L265P

detection rate in CSF combining both CSF fractions
achieved 86% (12/14 cases). Two cases, at relapse,
remained negative for MYD88L265P detection in CSF,
most probably due to a low cfDNA input or possible
clonal evolution. The median fractional abundance (FA)
was 7%, varying from 2.6 to 92.9%. FA was higher than
in previous studies using plasma [5, 9], probably because
CSF directly bathes the brain tumor, without back-
ground hematopoietic DNA retained by the blood–brain
barrier. Furthermore, mutated cfDNA FA was higher
than in the cell pellet DNA in six out of seven available
samples. Moreover, in three cases (#01D; #03D; #07R),
the L265P variant could only be detected in the cell-free
fraction. Finally, cfMYD88L265P was present in the ab-
sence of lymphoma cells using cytology and flow cytom-
etry (FCM) in three cases at diagnosis (#01D; #02D;
#03D), as it was described in recurrent/refractory CNS
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lymphoma [8]. Even if hot spot mutation is predominant
in PCNSL, our cost-effective, highly sensitive ddPCR ap-
proach is limited to a restricted number of mutations
and will miss PCNSL bearing other mutations.
This is the first report comparing cell and cell-free

tumor load in CSF from PCNSL, showing the contribu-
tion of cell-free tumor detection in CSF for diagnosis.
This study shows that detection of tumor cell and
cell-free DNA is feasible using a workflow combining
FCM and molecular biology. Moreover, ddPCR could be
used for the tumor characterization of actionable muta-
tions and longitudinal monitoring of the disease. We an-
ticipate that this technique might also be applicable to
other brain tumors with known hotspot mutations.
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Fig. 1 MYD88 L265P quantification by ddPCR. Technical workflow for the CSF analysis and 2D ddPCR diagram of the fluorescence amplitude.
Lower left quadrant contains the droplets with no MYD88 alleles; upper left contains droplets with MYD88L265P cfDNA; upper right contains droplets
with both wild-type and mutant alleles; lower right contains droplets with MYD88 wild-type DNA. ddPCR results table for cell and cell-free CSF and
brain biopsy, comparison with cytology and FCM. NA, not available; ND, not determined; NI, not interpretable
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