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Abstract

At the blood-brain barrier (BBB), laminin-a5 is predominantly synthesized by endothelial cells and mural cells. Endothelial
laminin-a5 is dispensable for BBB maintenance under homeostatic conditions but inhibits inflammatory cell extravasation
in pathological conditions. Whether mural cell-derived laminin-a5 is involved in vascular integrity regulation, however,
remains unknown. To answer this question, we generated transgenic mice with laminin-a5 deficiency in mural cells (a5-
PKO). Under homeostatic conditions, no defects in BBB integrity and cerebral blood flow (CBF) were observed in a5-PKO
mice, suggesting that mural cell-derived laminin-a5 is dispensable for BBB maintenance and CBF regulation under
homeostatic conditions. After ischemia-reperfusion (MCAO) injury, however, a5-PKO mice displayed less severe neuronal
injury, including reduced infarct volume, decreased neuronal death, and improved neurological function. In addition, a5-

may have a neuroprotective effect.

PKO mice also showed attenuated vascular damage (milder BBB disruption, reduced inflammatory cell infiltration,
decreased brain edema, and diminished hemorrhagic transformation). Mechanistic studies revealed less severe tight
junction protein (TJP) loss and pericyte coverage reduction in a5-PKO mice after ischemia-reperfusion injury, indicating
that the attenuated ischemic injury in a5-PKO mice is possibly due to less severe vascular damage. These findings
suggest that mural cell-derived laminin-a5 plays a detrimental role in ischemic stroke and that inhibiting its signaling
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Introduction

The blood-brain barrier (BBB) is a dynamic structure
mainly composed of brain microvascular endothelial cells
(BMEC:), pericytes, astrocytes, and a non-cellular compo-
nent---the basement membrane (BM) [7, 57, 77]. By
tightly regulating substance exchange between the CNS
and circulation system, the BBB functions to maintain
CNS homeostasis. Accumulating evidence suggests that
BBB disruption contributes to the pathogenesis and pro-
gression of various neurological disorders [48, 81, 82]. For
example, BBB breakdown affects inflammatory cell infil-
tration and is associated with the development/progres-
sion of ischemia-reperfusion injury [15, 32, 75]. It should
be noted that the majority of BBB studies focus on its cel-
lular constituents, and the role of the BM in BBB regula-
tion remains largely unknown.
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The BM consists of highly organized extracellular
matrix proteins synthesized by astrocytes, BMECs, and
mural cells, which include both pericytes and vascular
smooth muscle cells (vSMCs) [29, 51, 67, 76]. Laminin,
the only protein that is absolutely required for BM forma-
tion, is a trimer composed of o, 3, and y subunits [20, 51,
76, 77]. Among all five genetic variants of the a subunits,
laminin-a4 and -o5 are highly expressed in blood vessels
throughout the body [29, 67, 76]. Unlike laminin-a4,
which is ubiquitously distributed in the vasculature,
laminin-a5 expression shows a patchy pattern at smaller
vessels [73]. The major cell types that synthesize
laminin-a5 in the vasculature are BMECs and mural cells
[26, 29, 46, 62, 65, 67, 80]. Recent studies demonstrated
that knockout of laminin-a5 in endothelial cells failed to
affect BBB permeability under homeostatic conditions
[25, 63]. In TNFa-induced inflammation, however,
these mutants showed significantly enhanced neutrophil
extravasation in cremaster muscle [63]. In collagenase-in-
duced intracerebral hemorrhage (ICH) model, these mu-
tants displayed exacerbated inflammatory cell infiltration
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[25]. In addition, in the experimental autoimmune en-
cephalomyelitis (EAE) model, decreased T cell infiltration
into the brain and reduced disease susceptibility & severity
were observed in laminin-a4 null mice [73], which exhib-
ited compensatory and ubiquitous expression of
laminin-o5 along the vasculature [73]. These findings sug-
gest that endothelial laminin-a5 plays an inhibitory role in
inflammatory cell extravasation under pathological condi-
tions, although it is dispensable for BBB maintenance
under physiological conditions [25, 63]. Whether mural
cell-derived laminin-a5 is involved in BBB regulation
under physiological and pathological conditions, however,
remains unknown. Given that mural cell-derived
laminin-a5 is an important component of the BM at the
BBB [51, 76], we hypothesize that mural cell-derived
laminin-a5 may also contribute to BBB integrity. In this
study, we investigated the functions of mural cell-derived
laminin-a5 in BBB regulation under homeostatic condi-
tions and in ischemic stroke.

Materials and methods

Mice

The experimental protocols were reviewed and approved
by the Institutional Animal Care and Use Committee at
the University of Georgia and were in accordance with
the National Institute of Health Guide for Care and Use
of Laboratory Animals. The Animal Research: Reporting
In Vivo Experiments (ARRIVE) guidelines for reporting
experiments involving animals were strictly followed.
Laminin-a57%°% mice were generated as described
previously [50]. Pdgfrf-Cre" mice were a generous gift
from Dr. Volkhard Lindner. These two transgenic lines
were crossed to generate laminin-a57°1°%; Pdgfrp-Cre*
(a5-PKO) mice. Their wildtype littermates were used as
controls. In this study, 194 mice (102 control and 92 a5-
PKO) were used. All mice were housed in the animal fa-
cility at the University of Georgia with free access to
water and food.

Middle cerebral artery occlusion (MCAO)

Eight-week-old control and «5-PKO mice were subjected
to 45 min of focal cerebral ischemia produced by transi-
ent intraluminal occlusion of the middle cerebral artery
using a filament as described previously [49, 68]. Briefly,
mice were anesthetized with 2,2,2-tribromoethyl alcohol
(250 mg/kg, i.p.). A midline neck incision was made and
the common carotid artery (CCA), external carotid ar-
tery (ECA), and internal carotid artery (ICA) on the
right side were carefully isolated. The ECA and CCA
were ligated distal to the carotid bifurcation. The ICA
was clipped temporarily. A 6-0 silicone monofilament
suture (Doccol) with a 0.21 mm diameter was introduced
into the CCA via an incision, advanced 9 mm distal to
the carotid bifurcation and secured in place. Successful
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occlusion of the middle cerebral artery was confirmed
with the PeriCam PSI HR system (Perimed) based on
laser speckle contrast analysis technology. Animals
showing diminished blood flow of at least 80% during
occlusion with at least 75% recovery of blood flow after
reperfusion were used for experimentation. The body
temperature was maintained at 37.0 £ 0.5°C during the
surgery using a heating pad. Animals had free access to
food and water throughout the reperfusion period. This
ischemic model led to ~30% and ~ 20% mortality rates
for control and a5-PKO mice, respectively.

Body weight loss and neurological function

The body weight loss was evaluated daily from days 1 to
7 after surgery. Neurological function was assessed using
the modified neurological severity scores (mNSS) sys-
tem, which evaluates motor, sensory, reflex and balance
functions, as described previously [16, 38, 58]. Briefly,
mice were scored based on their performances in a var-
iety of tests as described in Additional file 1: Table S1.
The sum of these scores (0—14) was used to reflect their
neurological function after MCAO. Higher scores indi-
cate worse neurological function. Animals were habitu-
ated to the testing environment prior to experiments
and the investigator who scored the animals was blinded
to the genotypes.

Brain sectioning

Serial sectioning was used in this study. Briefly,
20 um-thick serial sections were cut with Cryostat (Mi-
cro HM 550, Thermo Scientific). Eight sections evenly
distributed along the rostral-to-caudal axis were col-
lected from each brain.

Infarct volume and neuronal death

Brain infarct volume was quantified as infarct volume per-
centage (%) as described previously [43, 53, 56]. Briefly,
cresyl violet-stained brain sections were imaged using the
Nikon Eclipse Ti microscope. The areas of the contralat-
eral hemisphere (C)), ipsilateral hemisphere (Z;), and ipsi-
lateral non-ischemic region (N;) were determined using
the Image ] software (NIH), and the infarct volume (%)
> (e

i i
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was calculated as:Infarctvolume(%) = (

100.

Neuronal death was assessed using Fluoro-Jade C (FJC)
staining as described previously [59, 79]. Specifically, the
number of FJC" cells was counted in each field. At least 3
random fields from each section, 8 serial sections per
brain, and 4 animals were used for quantification.
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BBB permeability

Evans blue (EB) and/or FITC-Dextran (4kD) were used
to assess BBB permeability as described previously [15].
Briefly, control and a5-PKO mice were injected
retro-orbitally with 80 ulEB (2%, Sigma E2129) and/or
50pul FITC-Dextran (25mg/ml, Sigma FD4). For
non-ischemic study, FITC-Dextran was allowed to cir-
culate for 12 h. After transcardial perfusion, the brains
were collected, homogenized in formamide, and centri-
fuged at 20,000rpm for 20min. The fluorescence
intensity of the supernatant was measured using a
SpectraMax M2 plate reader (Molecular Devices) at
450/550 nm. Mice without FITC-Dextran injection were
used to determine baseline reading, which was sub-
tracted from raw reading to obtain FITC-Dextran leak-
age. Leakage in a5-PKO mice was normalized to that in
controls. For ischemic study, both tracers were injected
4h before mice were transcardially perfused at each
time point after injury. Each brain hemisphere was ho-
mogenized in formamide and centrifuged at 20,000 rpm
for 20 min. The absorbance and fluorescence intensity
of the supernatant were measured using a SpectraMax
M2 plate reader at 620 nm and 450/550 nm, respect-
ively. EB or FITC-Dextran leakage was defined as the
difference of absorbance or fluorescence intensity be-
tween contralateral and ipsilateral hemispheres. Leak-
age in a5-PKO mice was normalized to that in controls.

Brain edema

Brain edema was assessed using both brain water con-
tent [79] and brain swelling [33] as described previously.
Briefly, control and o5-PKO mice were transcardially
perfused with PBS. Brains were collected and cut into
left and right hemispheres. The weights of each hemi-
sphere before and after drying at 85 °C for 4 h were mea-
sured and defined as wet and dry weights, respectively.
Brain water content (%) was calculated as (Wet Weight -
Dry Weight) / Wet Weight x 100. Brain swelling (%) was
calculated as (Final wet weight;,,; — Initial wet weight;;)
/ Initial wet weight;,s; x 100. In this equation, final wet
weight;,; is the wet weight of ipsilateral hemisphere. Ini-
tial wet weight;,; is defined as (Wet weightconera / Dry
weightconera) X Dry weightng.

Immunofluorescence analyses

Immunofluorescence analyses were performed according
to standard protocols. Briefly, brain sections and/or cells
were fixed in 4% PFA for 15 min at room temperature
and washed in PBS 3 times. Next, the sections and cells
were blocked in blocking buffer (5% normal donkey
serum in PBS + 1% BSA + 0.3% Triton X-100) for 2 h at
room temperature, followed by incubation with
anti-Laminin-a2 (1:400, Sigma L0663), anti-Laminin-a5
(1:800, generated as described in [47]), anti-Smooth
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Muscle Actin-a (SMA)-FITC (1:1000, Sigma F3777),
anti-Hemoglobin (1:200, Cloud-Clone PAB409Mu01),
anti-Ly6G (1:200, Biolegend 108,402), anti-CD3 (1:200,
eBioscience 14-0032-82), anti-CD68 (1:200, Biolegend
137,002), anti-PDGFRP (1:200, Cell Signaling 3169S),
anti-Z0O-1(1:400, ThermoFisher 61-7300), anti-Claudin-
5 (1:200, Invitrogen 35-2500), anti-AQP4 (1:200, Milli-
pore AB3594), and anti-CD31 (1:200, BD Bioscience
553,370) antibodies overnight at 4°C. After extensive
washes in PBS, the sections and/or cells were incubated
with the following secondary antibodies: Alexa Fluor-
488 conjugated donkey anti-rabbit (1:1000, Invitrogen
A21206), Alexa Fluor-594 conjugated donkey anti-rabbit
(1:1000, Invitrogen A21207), FITC conjugated goat
anti-mouse (1:500, BD Pharmingen 554,001), Alexa
Fluor-594 conjugated donkey anti-mouse (1:1000, Invi-
trogen A21203), FITC conjugated goat anti-rat (1:500,
BD Pharmingen 554,016), Alexa Fluor-594 conjugated
donkey anti-rat (1:1000, Invitrogen A21209), and Alexa
Fluor-647 conjugated goat anti-rat (1:1000, Invitrogen
A21247) for 2 h at room temperature. Then, the sections
and/or cells were washed in PBS 3 times and mounted
in Fluoromount-G with DAPIL Images were taken under
a Nikon Eclipse Ti microscope or LSM710 confocal
microscope. Image processing was performed using Ima-
geJ] and Adobe Photoshop.

Image analyses

Brain angioarchitecture analyses were performed using
the open source “Angiotool” software (National Cancer
Institute, USA) as described previously [83]. Specifically,
CD31-stained brain sections were used for analyses. Ves-
sel length, defined as the sum of Euclidean distances be-
tween the pixels of all vessels; vessel density, defined as
the percentage of area occupied by vessels inside the ex-
plant area; and branching index, defined as the number
of vessel junctions per unit area, were computed in the
cortex and striatum. Thresholding was applied to re-
move small particles so that only actual vessels were
quantified [24]. For quantification, 8 serial sections along
the rostral-to-caudal axis were analyzed for each brain
and 4 mice were used. Data in a5-PKO mice were nor-
malized to that in controls.

For pericyte coverage, PDGFRB- and CD31-positive
fluorescent areas were determined using Image] area
measurement tool. Pericyte coverage was determined as
the percentage (%) of PDGFRp-positive fluorescent area
covering CD31-positive capillary area, as previously de-
scribed [8]. For TJP and AQP4 coverage, ZO-1/Clau-
din-5/AQP4- and CD31-positive fluorescent areas were
determined using Image] area measurement tool. ZO-1/
Claudin-5/AQP4 coverage was determined as the per-
centage (%) of ZO-1/Claudin-5/AQP4-positive fluores-
cent area covering CD31-positive capillary area. For



Nirwane et al. Acta Neuropathologica Communications (2019) 7:23

inflammatory cell infiltration, total numbers of Ly6G*/
CD3"/CD68" cells were counted. For hemoglobin stain-
ing, mean fluorescence intensity was used. For quantifi-
cation, at least three random fields from each section, 8
serial sections along the rostral-to-caudal axis for each
brain, and 4-5 animals were used. All data analyses were
performed on z-projection (10-12 um) images by a blinded
investigator.

For laminin-a5 immunocytochemistry, the percentage
of laminin-a5" cells were calculated. For quantification,
6 independent experiments were performed and at least
50 cells were examined in each experiment.

Brain mural cell isolation

Primary mural cells were isolated from mouse brains
using a well-established protocol. Briefly, brains were
collected under aseptic conditions. After removing men-
inges, the brains were minced with a blade and tritu-
rated. Brain tissue was then incubated with 0.1%
collagenase at 37°C for 1h followed by centrifuge at
700 g for 8 min. The pellet was resuspended in 17% ster-
ile dextran solution and centrifuged at 6000 g for 20 min
at 4°C. Blood vessel-containing pellet was washed in
DMEM for 3 times and further digested in 1 mg/ml col-
lagenase/dispase (Roche, 11,097,113,001) for 2h with
constant shaking at 37 °C. Next, red blood cells (RBCs)
were removed by washing the pellet in RBC lysis buffer.
The pellet was resuspended in sorting buffer and passed
through a 40 pm cell strainer. The single-cell solution
was then stained with anti-CD31-APC (1:100, Biolegend
102,509), anti-CD45-FITC (1:100, Biolegend 103,108),
and anti-Pdgfrp-PE (1:100, eBioscience 12—-1402) for 30
min at 4°C. After extensive wash, the cells were sub-
jected to FACS. Sorted mural cells (Pdgfrp*CD31"
CD457) were grown in Pericyte Medium (ScienCell,
1201) and used for immunocytochemistry.

Transmission electron microscopy (TEM)

Eight-week-old control and a5-PKO mice were anesthe-
tized and perfused with PBS followed by 0.1 M sodium
cacodylate buffer containing 2% paraformaldehyde and
2% glutaraldehyde. After perfusion, brain tissue was dis-
sected out, fixed overnight, and post-fixed in 1% osmium
tetroxide and 1% K-ferrocyanide. Next, the tissue was en
bloc stained with 2% uranyl acetate and embedded in
resin. Ultra-thin sections were cut on an RMC MT-X
microtome (Boeckeler Instruments) and post-stained
with 2% uranyl acetate and 1% lead citrate. Sections
were examined and photographed using JEOL JEM1011
(JEOL) at 80 kV.

Western blotting
Cortex and striatum were carefully dissected and imme-
diately homogenized on ice. Total protein concentration
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was determined using the BCA Protein Assay Kit (Pierce
23,227). Equal amount of protein was loaded and sepa-
rated in SDS-PAGE and transferred to PVDF mem-
branes (Millipore). Next, the membranes were probed
with primary antibodies [anti-Laminin-a2 (1:500, Sigma
L0663), anti-Laminin o5 (1:800, generated as described
in [47]), Claudin-5 (1:500, ThermoFisher 35-2500),
Z0O-1 (1:500, ThermoFisher 61-7300), and anti-GAPDH
(1:1000, Abcam AB9484)] over night at 4 °C, followed by
appropriate horseradish peroxidase-conjugated second-
ary antibodies [donkey anti-mouse (1:2500, Jackson
ImmunoResearch Laboratory 715-035-151), donkey
anti-rabbit (1:2500, Jackson ImmunoResearch Labora-
tory 711-035-152), and donkey anti-rat (1:2500, Jackson
ImmunoResearch Laboratory 712-035-153] at room
temperature for 1h. Then, target proteins were visual-
ized using the ChemiDoc Imaging System (Bio-Rad). For
quantification, the density of target blots was normalized
to that of GAPDH, and the expression of target proteins
in «5-PKO brains was normalized to that in control
brains. Four animals were used for quantification.

Statistical analyses

All statistical analyses were performed using the Graph-
Pad Prism 6 software. For normally distributed measure-
ments, unpaired Student’s ¢-test was used to determine
statistical significance between two groups, and one-way
analysis of variance (ANOVA) followed by Tukey
post-hoc test was used for three or more groups. For
measurements that are not normally distributed, the
non-parametric Mann-Whitney U test (two groups) and
Kruskal-Wallis test (three or more group) were used.
Significance was set at p <0.05. Data were presented as
mean + SD.

Results

Laminin-a5 is indeed abrogated in mural cells in a5-PKO
mice

The a5-PKO mice are born at the expected Mendelian ra-
tio, fail to show gross abnormalities, and have a normal
lifespan. Using lineage-tracing technique, we have demon-
strated that Pdgfrp-Cre specifically targets mural cells in
the brain [26]. Immunohistochemistry revealed
laminin-a2 and laminin-a5 expression in the cortex of
both control and a5-PKO mice (Fig. 1a). To quantitatively
determine the expression levels of laminin-a2 and
laminin-a5, western blot analysis was performed using
cortical tissue. As expected, comparable levels of
laminin-a2 were found in control and a5-PKO mice (Fig.
1b). Laminin-a5, on the other hand, was slightly reduced
in a5-PKO mice, although statistical significance was not
reached (Fig. 1b). Similar results were observed in the stri-
atum (not shown). The residual expression of laminin-a5
in a5-PKO brains is probably from endothelial cells, which
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Fig. 1 Lama5 expression is abrogated in mural cells in a5-PKO mice. a Representative images of laminin-a2 (green) and laminin-a5 (red) staining
in the cortex of control and a5-PKO mice. Scale bar = 100 um. b Representative western blotting and quantification of laminin-a2 and laminin-a5
levels in the cortex of control and a5-PKO mice. n = 4. ¢ Representative images of smooth muscle actin-a (SMA, green) and laminin-a5 (red)
staining in primary mural cells isolated from control and a5-PKO brains. Scale bar =50 um. d Quantification showing the lack of laminin-a5
expression in primary mural cells isolated from a5-PKO brains. n =6 independent experiments with at least 50 cells examined in each experiment.
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synthesize laminin-511 and -411 [29, 62, 65]. To further
determine if laminin-a5 expression is abrogated in mural
cells in o5-PKO mice, we isolated primary mural cells
from control and a5-PKO brains using a well-established
protocol [9, 26, 78] and examined laminin-a5 expression
in these cells. Isolated cells expressed mural cell marker
SMA (Fig. 1c), suggesting they were indeed mural cells.
Immunocytochemistry revealed laminin-a5 expression in
control but not a5-PKO mural cells (Fig. 1c). Quantifica-
tion showed that almost all control mural cells expressed
laminin-a5, whereas more than 95% of a5-PKO mural
cells were negative for laminin-a5 (Fig. 1d). These results
indicate that laminin-a5 is indeed abrogated in mural cells
in a5-PKO mice.

Brain angioarchitecture is unaffected in a5-PKO mice under
homeostatic conditions

To determine if o5-PKO mice have abnormal brain
angioarchitecture, we analyzed vessel length, vessel dens-
ity, and branching index in both cortex and striatum using
the “Angiotool” software. None of these parameters
showed significant differences in the cortex (Additional
file 1: Figure S1) or striatum (not shown) in a5-PKO mice
compared to the controls (Additional file 1: Figure S1),

strongly suggesting that loss of laminin-a5 in mural cells
does not affect brain angioarchitecture.

BBB integrity and cerebral blood flow (CBF) are unchanged
in a5-PKO mice under homeostatic conditions

To investigate if BBB integrity is disrupted in a5-PKO
mice, IgG leakage was examined by immunohistochemis-
try. No IgG signal was detected in the cortex (Fig. 2a) or
striatum (not shown) of control or a5-PKO mice, suggest-
ing that the BBB is not leaky to molecules with a size of
150kD or above. Next, FITC-Dextran (4kD), a smaller dye,
was used to assess BBB integrity. Comparable levels of
FITC-Dextran were found in control and o5-PKO brains
(Fig. 2b), suggesting intact BBB integrity in a5-PKO mice
under homeostatic conditions. To investigate if CBF is al-
tered in o5-PKO mice, real-time CBF in middle cerebral
artery regions was measured. Representative laser speckle
images of CBF in control and a5-PKO mice are shown in
Fig. 2c. Quantification revealed no significant difference in
CBF between control and a5-PKO mice (Fig. 2d), suggest-
ing unaffected CBF in o5-PKO mice under homeostatic
conditions. Together, these findings suggest that loss of
mural cell-derived laminin-a5 does not affect BBB integ-
rity or CBF under homeostatic conditions.
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Fig. 2 BBB integrity and CBF are unaffected in a5-PKO mice under homeostatic conditions. a Representative images of IgG (red) and CD31
(green) staining in the cortex of control and a5-PKO mice. Scale bar = 100 pm. b Quantification showing comparable levels of FITC-Dextran in
control and a5-PKO brains. n = 5. ¢ Representative laser speckle images of CBF/brain perfusion in control and a5-PKO brains. d Quantification
showing similar levels of CBF/brain perfusion in control and a5-PKO brains. n=5
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TJP expression and tight junction structure are unaltered
in a5-PKO mice under homeostatic conditions

BMECs express high levels of TJPs at the intercellular
space forming tight junctions, which contribute to BBB
integrity [3, 17, 78]. To determine if TJP expression is
altered, we examined the levels of two TJPs, ZO-1 and
claudin-5, in control and a5-PKO brains. Immunohis-
tochemistry revealed similar distribution patterns of
Z0O-1 and claudin-5 in control and a5-PKO brains.
Specifically, both proteins co-localized well with blood
vessel marker CD31, in both cortex (Fig. 3a, b) and stri-
atum (not shown). Similarly, western blotting was per-
formed to quantify TJP expression in control and
a5-PKO brains. No significant differences in ZO-1 and
claudin-5 levels were observed between genotypes in ei-
ther cortex (Fig. 3c) or striatum (not shown). Consist-
ent with these biochemical findings, TEM study
revealed no obvious defects in the structure of tight
junctions (Fig. 3d, arrowheads). These results suggest
that mural cell-derived laminin-a5 plays a dispensable
role in the regulation of TJP expression and tight junc-
tion structure under homeostatic conditions.

Pericyte coverage and astrocyte polarity are unaltered in
a5-PKO mice under homeostatic conditions

Pericyte coverage on capillaries plays an important role
in maintaining BBB integrity [4, 5, 8, 18]. To determine

if pericyte coverage is altered in a5-PKO brains, we per-
formed immunohistochemistry against PDGFRP and
CD31 (Fig. 4a). Quantification revealed comparable peri-
cyte coverage in control and a5-PKO mice in both cor-
tex (Fig. 4b) and striatum (not shown), suggesting that
pericyte coverage is unaffected in a5-PKO mice under
homeostatic conditions.

Astrocytes express AQP4 exclusively in their end-
feet, contributing to BBB maintenance [5, 26, 78]. To
determine if the polarized distribution of AQP4 is
altered in a5-PKO brains, we performed immunohis-
tochemistry against AQP4 and CD31 (Fig. 4c). Quanti-
fication revealed comparable AQP4 coverage in
control and a5-PKO mice in both cortex (Fig. 4d) and
striatum (not shown), suggesting that astrocyte polar-
ity is unchanged in a5-PKO mice under homeostatic
conditions.

a5-PKO mice have smaller infarct volume and improved
neurological function after ischemia-reperfusion injury

To investigate the function of mural cell-derived
laminin-a5 in ischemia-reperfusion injury, we first
examined brain infarct volume at various time points
after MCAOQ. Control mice demonstrated large infarct
volume at days 1 and 2 after injury, which was reduced
dramatically by day 7 after injury (Fig. 5a). A similar trend
was observed in a5-PKO mice (Fig. 5a). Quantification
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Fig. 3 Tight junctions are unaffected in a5-PKO mice under homeostatic conditions. a,b Representative images of ZO-1 (green)/CD31 (red) (a)
and Claudin-5 (green)/CD31 (red) (b) staining in the cortex of control and a5-PKO mice. Scale bar =50 um. ¢ Representative western blotting and
quantification of ZO-1 and Claudin-5 levels in the cortex of control and a5-PKO mice. n=4. d TEM images showing normal tight junction
structure in control and a5-PKO brains. Black arrowheads indicate tight junctions. TEM, transmission electron microscopy. Scale bar =800 nm
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revealed significantly smaller infarct volume (Fig. 5b) in
a5-PKO mice at all three time points compared to the
controls, suggesting reduced ischemic injury. To visualize
the spatial distribution of infarct areas in control and
a5-PKO brains at day 1 after injury, 5 brain sections along
the rostral-to-caudal axis (with equal distance) were used
for analyses. Similarly, a5-PKO mice demonstrated dimin-
ished infarct volume compared to the controls (Additional
file 1: Figure S2). Consistent with the reduced infarct
volume, significantly lower neurological severity score
was detected in a5-PKO mice at days 5 and 7 after in-
jury (Fig. 5¢), indicating improved neurological func-
tion. In addition, the o5-PKO mice also displayed
substantially less body weight loss at days 4—7 after in-
jury (Fig. 5d). Together, these results suggest better
pathological and functional outcomes in a5-PKO mice
after ischemia-reperfusion injury. To determine any gen-
der differences, these parameters were also analyzed in a
gender-specific manner. Compared to male mice, female
mice showed smaller infarct volume, lower neurological
score, and less body weight loss independent of genotype,

although these changes did not reach statistical signifi-
cance (Additional file 1: Figure S3).

a5-PKO mice have reduced neuronal death after
ischemia-reperfusion injury

To investigate if loss of mural cell-derived laminin-a5 af-
fects neuronal death after ischemic injury, we performed
FJC staining, which labels degenerating neurons [11, 72].
FJC" cells were identified in both penumbra (Additional
file 1: Figure S4a) and ischemic core (Additional file 1:
Figure S4c) in control and a5-PKO brains. Consistent
with previous finding that FJC" cells peak at 24 h after
ischemic injury [41], quantitative data showed a continu-
ous decline of FJC' cell number in both penumbra
(Additional file 1: Figure S4b) and ischemic core
(Additional file 1: Figure S4d) in control mice from days
1 to 7 after ischemia-reperfusion injury. Although a simi-
lar trend was found in o5-PKO mice, these mutants
showed significantly fewer FJC' cells in both regions
(Additional file 1: Figure S4) at all three time points
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compared to the controls. These results suggest reduced
neuronal death in a5-PKO mice after ischemic injury.

a5-PKO mice have milder BBB disruption after ischemia-
reperfusion injury

BBB permeability was assessed by measuring EB and
FITC-Dextran leakage at days 1, 2 and 7 after injury.
Representative whole-brain images showing EB leakage
in control and a5-PKO mice at day 1 after injury are
shown in Fig. 6a. Compared to the controls, significantly
reduced EB leakage was detected in a5-PKO mice at
days 1, 2 and 7 after injury (Fig. 6b). Consistent with EB
data, dramatically diminished FITC-Dextran leakage was
found in a5-PKO mice at all three time points (Fig. 6c).
These results suggest milder BBB damage in o5-PKO
mice after ischemia-reperfusion injury.

a5-PKO mice have decreased inflammatory cell infiltration
after ischemia-reperfusion injury

Accumulating evidence demonstrates that immune cells
infiltrate into the brain and modulate disease progres-
sion after ischemic stroke [27, 31]. To investigate if

inflammatory cell extravasation is affected in o5-PKO
mice, we examined the infiltration of Ly6G" neutrophils,
CD3" lymphocytes, and CD68" mononuclear cells in
both penumbra and ischemic core at days 1, 2, and 7
after injury. In control mice, the number of Ly6G" neu-
trophils peaked at early time points (days 1 and 2) after
injury and gradually declined over time in both penumbra
(Fig. 7a, b) and ischemic core (Additional file 1: Figures S5a
and b). Compared to the controls, a5-PKO mice showed
significantly decreased Ly6G" neutrophil number at days 1
and 2 but not 7 after injury in both penumbra (Fig. 7a, b)
and ischemic core (Additional file 1: Figures S5a and b),
suggesting diminished neutrophil infiltration in the mu-
tants. Unlike Ly6G" neutrophils, the number of CD3" lym-
phocytes gradually increased over time after injury in
control mice in both penumbra (Fig. 7c, d) and ischemic
core (Additional file 1: Figure S5¢ and d). Compared to the
controls, a5-PKO mice displayed substantially less CD3*
lymphocytes in both penumbra (Fig. 7c, d) and ischemic
core (Additional file 1: Figure S5c and d) at all three time
points, suggesting decreased lymphocyte infiltration in the
mutants. Similar to CD3" lymphocytes, the number of
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Fig. 5 a5-PKO mice have smaller injury size, improved neurological function and alleviated body weight loss after ischemic stroke. a
Representative images of cresyl violet staining in control and a5-PKO brains at days 1, 2 and 7 after injury. b Quantification showing reduced
brain infarct volume in a5-PKO mice at days 1, 2 and 7 after injury. n =8. ¢ Quantification showing decreased neurological severity score in a5-
PKO mice at days 5 and 7 after injury. mNSS, modified neurological severity score. n = 8. d Quantification showing attenuated body weight loss in
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CD68" mononuclear cells gradually elevated overtime after
injury in control mice in both penumbra (Fig. 7e, f) and is-
chemic core (Additional file 1: Figure S5e and f). Compared
to the controls, «5-PKO mice demonstrated dramatically
reduced CD68" mononuclear cell number at days 1 and 2
but not 7 after injury in both penumbra (Fig. 7e, ) and is-
chemic core (Additional file 1: Figure S5e and f), suggesting
attenuated mononuclear cell infiltration in the mutants.
Altogether, these data suggest reduced inflammatory
cell  extravasation in  a5-PKO  mice  after
ischemia-reperfusion injury.

a5-PKO mice have less severe TJP loss after ischemia-
reperfusion injury

To explore the molecular mechanisms responsible for the
attenuated BBB disruption in o5-PKO mice, we first
examined the dynamic changes of TJPs after ischemia-re-
perfusion injury. Immunohistochemistry showed substan-
tial and mild loss of ZO-1 in CD31" blood vessels in
control mice early (at days 1 and 2) and late (at day 7)
after ischemic injury, respectively (Fig. 8a). Although a
similar trend was found in «5-PKO mice (Fig. 8a), ZO-1
levels were significantly higher in these mutants compared
to the controls at days 1 and 2 but not 7 after ischemic in-
jury (Fig. 8b). Like ZO-1, claudin-5 was dramatically re-
duced at days 1 and 2 after injury and slightly decreased at
day 7 after injury in both control and a5-PKO mice (Fig.

8c). Compared to the controls, a5-PKO mice demonstrated
significantly higher levels of claudin-5 at days 1 and 2 but
not 7 after ischemic injury (Fig. 8d). These findings suggest
that mural cell-derived laminin-a5 negatively regulates TJP
expression early after ischemia-reperfusion injury.

a5-PKO mice have less severe pericyte coverage
reduction after ischemia-reperfusion injury

Next, we examined the dynamic changes of pericyte
coverage in control and o5-PKO mice after ischemia-re-
perfusion injury. Immunohistochemistry showed that both
PDGEFRp intensity (Fig. 9a) and pericyte coverage (Fig. 9b)
were substantially decreased in control mice at day 1 after
ischemic injury compared to uninjured mice (see Fig. 4a,
b). Pericyte coverage gradually recovered from day 1 to
day 7 after injury in control mice (Fig. 9b). Although a
similar trend was observed in o5-PKO mice (Fig. 9a),
these mutants displayed significantly higher pericyte
coverage at days 1 and 2 but not 7 after injury compared
to the controls (Fig. 9b). These results suggest that mural
cell-derived laminin-a5 negatively regulates pericyte
coverage early after ischemia-reperfusion injury.

Astrocyte polarity is unaffected in a5-PKO mice after
ischemia-reperfusion injury

In addition, we also examined AQP4 expression with re-
spect to CD31" blood vessels in control and «5-PKO mice
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after ischemia-reperfusion injury. Neither its expression
pattern nor expression level showed significant changes in
a5-PKO mice after injury (Fig. 9¢c, d), suggesting that
mural cell-derived laminin-a5 does not regulate astrocyte
polarity under ischemia-reperfusion condition.

a5-PKO mice have diminished brain edema after
ischemia-reperfusion injury

Both brain water content and brain swelling were used to
assess brain edema after injury. Compared to the contra-
lateral side, the ipsilateral side showed significantly higher
water content in both control and a5-PKO mice at days 1
and 2 after injury (Additional file 1: Figure S6), indicating
successful induction of ischemic injury. Comparison be-
tween genotypes revealed a dramatically reduced brain
water content in the ipsilateral side in a5-PKO mice at
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day 1 after injury (Additional file 1: Figure S6). Although
not statistically significant, a similar trend was observed at
day 2 after injury (Additional file 1: Figure S6). By day 7
after injury, no significant differences in brain water con-
tent were found between hemispheres or between geno-
types (Additional file 1: Figure S6), indicating successful
recovery in both control and a5-PKO mice. When brain
swelling was used to assess brain edema, statistical signifi-
cance was detected between control and a5-PKO mice at
days 1 and 2 but not 7 after injury (Fig. 10a). This differ-
ence is due to the fact that brain swelling is much more
sensitive to smaller changes in brain water level than brain
water content [33]. These results strongly suggest that
brain edema is less severe in «5-PKO mice after ischemia-
reperfusion injury.

a5-PKO mice have alleviated hemorrhagic transformation
after ischemia-reperfusion injury

Hemorrhagic transformation, a spectrum of an
ischemia-related brain hemorrhage, is a frequent spon-
taneous complication of ischemic stroke [66]. To investi-
gate if hemorrhagic transformation is altered in o5-PKO
mice, hemorrhage in the ischemic core was examined at
days 1, 2, and 7 after ischemic injury using hemoglobin
staining. Strong hemoglobin signal was found in control
mice, whereas weak staining was detected in a5-PKO
mice at all time points (Fig. 10b). Quantification revealed
significantly reduced hemoglobin intensity in o5-PKO
mice at all three time points compared to the controls
(Fig. 10c). These results suggest alleviated hemorrhagic
transformation in a5-PKO mice after
ischemia-reperfusion injury.

Discussion

Mural cells include pericytes and vSMCs, which cover ca-
pillaries and arteries/arterioles, respectively [4]. Although it
is known that mural cells are able to synthesize laminins,
the exact laminin isoforms they make remain largely un-
known. We have shown in a previous study that brain
pericytes express yl-containing laminins under homeo-
static conditions [26]. Although laminin-a2 was reported
in brain pericytes at mRNA level [5], our unpublished
study showed that pericytes primarily make laminin-a4
and -a5 at protein level. Like pericytes, vSMCs also
predominantly express laminin-a4 [30, 52, 69] and -a5
[46, 64, 65]. In addition, laminin-a2 has also been
found in vSMCs from large vessels [45], such as the
aorta and carotid arteries. There is also evidence show-
ing that laminin-p1 is expressed in vSMCs in develop-
ing vessels, whereas laminin-f2 is found in mature
vasculature [28], suggesting a switch from p1- to
B2-containing laminins during vessel maturation. Col-
lectively, these results suggest that mural cells mainly
express laminin-411, — 511, and possibly - 211 during
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Fig. 7 a5-PKO mice show decreased inflammatory cell infiltration after ischemic stroke. a Representative images of Ly6G (red) staining in the
penumbra of control and a5-PKO brains at days 1, 2 and 7 after injury. Scale bar =50 um. b Quantification showing reduced extravasation of
Ly6G* neutrophils in the penumbra of a5-PKO brains at days 1 and 2 but not 7 after injury. n = 5. ¢ Representative images of CD3 (red) staining
in the penumbra of control and a5-PKO brains at days 1, 2 and 7 after injury. Scale bar =50 um. d Quantification showing reduced extravasation
of CD3* lymphocytes in the penumbra of a5-PKO brains at days 1, 2 and 7 after injury. n = 5. e Representative images of CD68 (red) staining in
the penumbra of control and a5-PKO brains at days 1, 2 and 7 after injury. Scale bar =50 um. f Quantification showing reduced extravasation of
CD68" mononuclear cells in the penumbra of a5-PKO brains at days 1 and 2 but not 7 after injury. n=5.* p < 0.05, compared to controls at the
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development; and laminin-421, - 521, and possibly -
221 in adulthood under homeostatic conditions.

In this study, we failed to detect any changes in BBB
permeability and CBF between control and o5-PKO mice
under physiological conditions, suggesting that mural
cell-derived a5-containing laminins are dispensable for
BBB maintenance and CBF regulation under homeostatic
conditions. Unlike these o5-PKO mice, mutants with
laminin-yl deficiency (all yl-containing laminins) in
mural cells showed BBB breakdown and hydrocephalus in
C57Bl6-FVB mixed background [26], suggesting an im-
portant role of mural cell-derived yl-containing laminins

in BBB maintenance and hydrocephalus pathogenesis,
although we cannot exclude the possibility that BBB dis-
ruption is secondary to hydrocephalus. Together, these
findings suggest the existence of compensation between
mural cell-derived o5-containing laminins and a4/a2-con-
taining laminins. In addition, it is also possible that the
lack of phenotype in a5-PKO mice under homeostatic
conditions is due to compensation by laminin isoforms
from endothelial cells and/or astrocytes, which are in close
proximity of mural cells [67]. For example, mural cell-
derived a5-containing laminins and endothelial cell-
derived laminin-511 may be able to compensate for
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Fig. 8 a5-PKO mice have less severe TJP loss after ischemic stroke. a Representative images of ZO-1 (green) and CD31 (red) staining in the
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each other’s loss. In support of this possibility, mice
with laminin-a5 deficiency in endothelial cells are
grossly normal and fail to show any defects under
homeostatic conditions [25, 63].

After ischemia-reperfusion injury, a5-PKO mice dem-
onstrated alleviated BBB disruption at days 1, 2, and 7
after injury. Consistent with the reduced BBB leakage, TJP
(ZO-1 and claudin-5) levels were less severely reduced in
the mutants at days 1 and 2 after injury. By day 7 after in-
jury, however, BBB leakage but not TJP expression showed

a significant difference between genotypes. This finding
suggests that TJPs are not responsible for the difference in
BBB integrity between genotypes at this time point,
highlighting a possible role of transcytosis in BBB integrity
maintenance. Echoed with this observation, tight
junction-independent BBB disruption and the important
role of transcytosis in BBB regulation have been reported
in recent studies [2, 10, 17, 36, 71].

In addition, a5-PKO mice also displayed diminished in-
flammatory cell (neutrophil, lymphocyte, and mononuclear
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cell) infiltration, suggesting a “pro-infiltration” role of
mural cell-derived laminin-a5 after ischemic injury. This is
in contrast with a previously reported “anti-infiltration”
role of endothelial laminin-a5. It has been demonstrated
that loss of laminin-a5 in endothelial cells increased im-
mune cell extravasation in cremaster muscle after inflam-
mation [63] and in the brain after ICH [25]. In addition, in
the EAE model, reduced infiltration of T lymphocytes in
the brain was found in laminin-o4 null mice, which

demonstrated compensatory & ubiquitous expression of
laminin-a5 in the vasculature [73]. One explanation for
this discrepancy is that mural cells and endothelial cells
make different a5-containing laminins, which exert dis-
tinct functions to regulate immune cell extravasation. It
should be noted, however, that we cannot exclude the pos-
sibility that mural cells make “new” laminin isoforms after
ischemic injury, which are responsible for the observed
“pro-infiltration” effect. Another possibility is that different
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Fig. 10 a5-PKO mice have diminished brain swelling and
attenuated hemorrhagic transformation after ischemic stroke. a
Quantification showing reduced brain swelling in a5-PKO mice at
days 1 and 2 but not 7 after injury. n=5. b Representative images of
hemoglobin (green) and CD31 (magenta) staining in control and a5-
PKO mice at days 1, 2 and 7 after injury. Scale bar =50 um. c
Quantification showing reduced hemoglobin density in a5-PKO
mice at days 1, 2 and 7 after injury. n=5.* p <0.05, compared to
controls at the same time points

injury/animal models and time points are responsible for
this discrepancy. The “anti-infiltration” role of endothelial
laminin-a5 is mainly supported by studies using a muscle
inflammation model [63], an ICH model [25], and an EAE
model [73], whereas the “pro-infiltration” role of mural
cell-derived laminin-a5 is obtained from ischemia-
reperfusion study. Unlike ischemia-reperfusion injury, the
muscle inflammation model does not damage the BBB or
the CNS. Additionally, loss of endothelial laminin-a5
-induced increase of immune cell infiltration only occurs
at a specific time point (1.5 h after TNFa injection) in this
muscle inflammation model [63]. Although BBB
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disruption is replicated in the ICH model, brain pathology
in ICH is completely different from that in
ischemia-reperfusion injury. For example, blood vessel wall
and BM are disrupted in the collagenase-induced ICH
model, which causes immediate leakage of inflammatory
cells into the brain, whereas such vascular damage is ab-
sent in the ischemia-reperfusion model. Therefore, it is un-
clear whether the increased accumulation of inflammatory
cells in mutant brains is due to a direct “anti-infiltration”
effect of endothelium-derived laminin-a5. In the EAE
model, laminin-a4 global knockouts that showed compen-
satory up-regulation of laminin-a5 rather than
endothelium-specific laminin-a5 knockouts were used
[73]. Since mural cells also synthesize a4-containing lami-
nins [30, 52, 69], both endothelium- and mural
cell-derived laminin-o4 is ablated in these laminin-a4
knockouts. It is thus unclear whether the enhanced
laminin-a5 is from endothelial cells or mural cells, which
makes data interpretation difficult. We are currently inves-
tigating the role of endothelium-derived laminin-a5 in is-
chemic stroke using endothelium-specific laminin-a5
conditional knockout mice. Results from this study will
contribute to our understanding of the biological function
of endothelial laminin-o5.

a5-PKO mice exhibited milder vascular damage, such
as less severe BBB disruption and decreased inflamma-
tory cell infiltration, and attenuated neurological injury,
including reduced ischemic volume, diminished neur-
onal death, and improved neurological function. Given
that inflammatory cells actively contribute to secondary
brain injury after stroke [1], we speculate that the atten-
uated neurological injury is due to milder vascular
damage. In support of this possibility, extravasated neu-
trophils have been demonstrated to contribute to neur-
onal injury and brain edema in ischemic injury [12, 34,
37, 55, 60]. Similarly, lymphocytes are found to be re-
sponsible for delayed post-ischemic injury [39, 40]. In
addition, monocytes have been shown to play a detri-
mental role in the acute phase (up to 3 days) after ische-
mic injury, although a beneficial role is reported in the
chronic phase (after day 3) [21, 22]. Consistent with
these reports, reduced numbers of neutrophils, lympho-
cytes, and mononuclear cells were observed in a5-PKO
mice after ischemic injury, especially at early time
points. It should be noted, however, that we are unable
to exclude the possibility that attenuated neurological in-
jury leads to milder vascular damage.

a5-PKO mice demonstrate a better outcome after
ischemia-reperfusion injury, suggest a detrimental role
of mural cell-derived laminin-a5 in ischemic injury.
Similar to our o5-PKO mutants, mice with
endothelium-specific deletion of integrin-a5 demon-
strated substantially reduced infarct size, increased BBB
integrity and improved neurological function after stroke
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[54], highlighting an adverse effect of endothelial
integrin-a5 in ischemic stroke. Together, these findings
suggest that mural cell-derived a5-containing laminins
and endothelial integrin-a5 may use a converging signal-
ing pathway to modulate the development/progression
of ischemic stroke, although integrin-a5 is not a classical
laminin receptor [6, 74]. Identifying the receptors and
downstream signaling pathways may provide innovative
molecular targets with therapeutic potential in ischemic
stroke.

Due to the multiphasic nature of ischemic stroke, this
study has a few limitations. First, only the transient is-
chemic model was used in this study. The transient is-
chemic model involves both ischemia and reperfusion.
However, most strokes found in human patients only in-
volve ischemia without reperfusion [19, 23, 42, 61, 70].
Thus, it is important to test the biological function of
mural cell-derived laminin-a5 in the permanent ische-
mic model. Second, only one ischemic duration (45 min)
was used in this study. It is known that longer occlusion
causes more severe injury [44, 49]. Currently, various is-
chemic durations ranging from 30 to 120 min have been
used in rodent MCAO studies [13, 14, 35, 49]. We chose
45-min ischemia for two reasons: (1) compared to other
durations, 45-min ischemia consistently induced signifi-
cant ischemic injury with less mortality in our hands,
and (2) significant differences in stroke outcomes be-
tween control and a5-PKO mice were observed with
45-min ischemia. Other ischemic durations should be
tested in future studies. Third, only young mice were
used in this study. Aging is a risk factor for ischemic
stroke and actively influences stroke outcomes [19, 23,
42]. Therefore, it is important to examine the biological
function of mural cell-derived laminin-a5 in ischemic
stroke using aged mice in the future. Fourth, unlike
previous studies reporting improved outcomes in young
female mice [19, 23, 42], we failed to observe gender
differences in infarct volume, neurological severity
score, and body weight loss. It should be noted that,
although not statistically significant, a trend toward at-
tenuated injury was observed in female mice independ-
ent of genotype. This discrepancy may be explained by
the relatively small animal number used in each group
and/or other factors, such as the severity of injury and
sensitivity of assays. Future research is needed to ad-
dress these limitations.

Conclusions

Collectively, our results suggest that mural cell-derived
laminin-o5 is dispensable for BBB maintenance and CBF
regulation under homeostatic condition. In ischemic
stroke, however, loss of mural cell-derived laminin-a5 at-
tenuates vascular damage and improves stroke outcomes,
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indicating a detrimental role of mural cell-derived
laminin-a5 in ischemic stroke. These findings identify
mural cell-derived laminin-a5 as a molecular target with
therapeutic potential in ischemic stroke.

Additional file

Additional file 1: Table S1. Modified Neurologic Severity Scores
(mNSS) system. Figure S1. Angioarchitecture is unaltered in a5-PKO
mice under homeostatic conditions. Figure S2. Spatial distribution of
infarct area in control and a5-PKO mice at day 1 after ischemic injury.
Figure S3. Comparison of gender-specific effects in control and a5-PKO
mice after ischemic stroke. Figure S4. a5-PKO mice show reduced neuronal
death in both penumbra and ischemic core after ischemic stroke. Figure S5.
a5-PKO mice have reduced inflammatory cell infiltration after ischemic
stroke. Figure S6. a5-PKO mice have reduced brain water content after
ischemic stroke. (DOCX 2830 kb)

Abbreviations

BBB: Blood-brain barrier; BM: Basement membrane; BMECs: Brain
microvascular endothelial cells; CBF: Cerebral blood flow; CCA: Common
carotid artery; CNS: Central nervous system; EAE: Experimental autoimmune
encephalomyelitis; ECA: External carotid artery; ICA: Internal carotid artery;
ICH: Intracerebral hemorrhage; MCAO: Middle cerebral artery occlusion;
SMA: Smooth muscle actin-a; TEM: Transmission electron microscopy;

TJP: Tight junction protein; vSMCs: Vascular smooth muscle cells

Acknowledgments
We thank Dr. Volkhard Lindner for the Pdgfr3-Cre mice.

Funding
This study was supported, in part, by the American Heart Association grant
165DG29320001 (to YY) and NIH ROTDK078314 (to JHM).

Availability of data and materials
All data generated or analyzed during this study are included in this
published article and its supplementary information files.

Authors’ contributions

YY conceived & designed the experiments, performed data analyses, and
wrote the manuscript; AN performed the experiments, collected & analyzed
the data, wrote the manuscript; JJ and BN contributed to data analyses; JHM
generated the laminin-a5 floxed mice & laminin-a5 antibody and contrib-
uted to data analyses. All authors have read and approved the final
submission.

Ethics approval

All applicable international, national, and/or institutional guidelines for the
care and use of animals were followed. All procedures performed in studies
involving animals were in accordance with the ethical standards of the
institution or practice at which the studies were conducted.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

1Departmem of Pharmaceutical and Biomedical Sciences, University of
Georgia, 240 W Green Street, Athens, GA 30602, USA. “Division of
Nephrology, Department of Medicine, Washington University School of
Medicine, St. Louis, MO, USA.


https://doi.org/10.1186/s40478-019-0676-8

Nirwane et al. Acta Neuropathologica Communications

(2019) 7:23

Received: 31 December 2018 Accepted: 10 February 2019
Published online: 18 February 2019

References

1.

20.

21.

Ahmad M, Graham SH (2010) Inflammation after stroke: mechanisms and
therapeutic approaches. Trans| Stroke Res 1:74-84. https.//doi.org/10.1007/
$12975-010-0023-7

Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K, Deik AA, Ginty
DD, Clish CB, Gu C (2017) Blood-brain barrier permeability is regulated by lipid
transport-dependent suppression of Caveolae-mediated transcytosis. Neuron
94:581-5%. https.//doi.org/10.1016/j.neuron.2017.03.043

Andreone BJ, Lacoste B, Gu C (2015) Neuronal and vascular interactions.
Annu Rev Neurosci 38:25-46. https://doi.org/10.1146/annurev-neuro-
071714-033835

Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental,
physiological, and pathological perspectives, problems, and promises. Dev
Cell 21:193-215. https://doi.org/10.1016/j.devcel.2011.07.001

Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L,
Norlin J, Lindblom P, Strittmatter K et al (2010) Pericytes regulate the blood-
brain barrier. Nature 468:557-561. https://doi.org/10.1038/nature09522
Aumailley M (2013) The laminin family. Cell Adhes Migr 7:48-55. https://doi.
0rg/104161/cam.22826

Baeten KM, Akassoglou K (2011) Extracellular matrix and matrix receptors in
blood-brain barrier formation and stroke. Dev Neurobiol 71:1018-1039.
https://doi.org/10.1002/dneu.20954

Bell RD, Winkler EA, Sagare AP, Singh |, LaRue B, Deane R, Zlokovic BV (2010)
Pericytes control key neurovascular functions and neuronal phenotype in
the adult brain andduring brain aging. Neuron 68:409-427. https://doi.org/
10.1016/j.neuron.2010.09.043

Bell RD, Winkler EA, Singh |, Sagare AP, Deane R, Wu Z, Holtzman DM,
Betsholtz C, Armulik A, Sallstrom J et al (2012) Apolipoprotein E controls
cerebrovascular integrity via cyclophilin A. Nature 485:512-516. https://doi.
0rg/10.1038/nature11087nature11087

Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y, Yan H, Gu C (2014)
Mfsd2a is critical for the formation and function of the blood-brain barrier.
Nature 509:507-511. https://doi.org/10.1038/nature13324

Bian GL, Wei LC, Shi M, Wang YQ, Cao R, Chen LW (2007) Fluoro-jade C can
specifically stain the degenerative neurons in the substantia nigra of the 1-
methyl-4-phenyl-1,2,3,6-tetrahydro pyridine-treated C57BL/6 mice. Brain Res
1150:55-61. https//doi.org/10.1016/j.brainres.2007.02.078

Buck BH, Liebeskind DS, Saver JL, Bang QY, Yun SW, Starkman S, Ali LK, Kim
D, Villablanca JP, Salamon N et al (2008) Early neutrophilia is associated with
volume of ischemic tissue in acute stroke. Stroke 39:355-360. https://doi.
0rg/10.1161/STROKEAHA.107.490128

Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J (2017)
Promoting neurovascular recovery in aged mice after ischemic stroke-
prophylactic effect of Omega-3 polyunsaturated fatty acids. Aging Dis 8:
531-545. https://doi.org/10.14336/AD.2017.0520

Carmichael ST (2005) Rodent models of focal stroke: size, mechanism, and
purpose. NeuroRx 2:396-409. https://doi.org/10.1602/neurorx.2.3.396

Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, Lyden PD (2009)
Severe blood-brain barrier disruption and surrounding tissue injury. Stroke
40:e666-e674. https;//doi.org/10.1161/STROKEAHA.109.551341

Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M,
Chopp M (2005) Atorvastatin induction of VEGF and BDNF promotes brain
plasticity after stroke in mice. J Cereb Blood Flow Metab 25:281-290.
https://doi.org/10.1038/s},jcbfm.9600034

Chow BW, Gu C (2015) The molecular constituents of the blood-brain
barrier. Trends Neurosci 38:598-608. https://doi.org/10.1016/}.tins.2015.08.
003

Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for
blood-brain barrier integrity during embryogenesis. Nature 468:562-566.
https://doi.org/10.1038/nature09513

Dirnagl U (2006) Bench to bedside: the quest for quality in experimental
stroke research. J Cereb Blood Flow Metab 26:1465-1478. https.//doi.org/10.
1038/s,jcbfm.9600298

Durbeej M (2010) Laminins. Cell Tissue Res 339:259-268. https://doi.org/10.
1007/500441-009-0838-2

EIAli A, Jean LeBlanc N (2016) The role of monocytes in ischemic stroke
pathobiology: new avenues to explore. Front Aging Neurosci 8:29. https.//
doi.org/10.3389/fnagi.2016.00029

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 16 of 18

Fang W, Zhai X, Han D, Xiong X, Wang T, Zeng X, He S, Liu R, Miyata M, Xu
B et al (2018) CCR2-dependent monocytes/macrophages exacerbate acute
brain injury but promote functional recovery after ischemic stroke in mice.
Theranostics 8:3530-3543. https://doi.org/10.7150/thno.24475

Fisher M, Feuerstein G, Howells DW, Hurn PD, Kent TA, Savitz SI, Lo EH,
Group S (2009) Update of the stroke therapy academic industry roundtable
preclinical recommendations. Stroke 40:2244-2250. https://doi.org/10.1161/
STROKEAHA.108.541128

Gambardella L, Zudaire E, Vermeren S (2012) Quantitative analysis of
angiogenesis in the allantois explant model. The textbook of angiogenesis and
Lymphangiogenesis: methods and applications. Springer, Dordrecht, pp 189-204
Gautam J, Miner JH, Yao Y (2019) Loss of endothelial laminin alpha5
exacerbates hemorrhagic brain injury. Trans! Stroke Res. https://doi.org/10.
1007/512975-019-0688-5

Gautam J, Zhang X, Yao Y (2016) The role of pericytic laminin in blood
brain barrier integrity maintenance. Sci Rep 6(36450). https://doi.org/10.
1038/srep36450

Gesuete R, Stevens SL, Stenzel-Poore MP (2016) Role of circulating immune
cells in stroke and preconditioning-induced protection. Acta Neurochir
Suppl 121:39-44. https://doi.org/10.1007/978-3-319-18497-5_7

Glukhova M, Koteliansky V, Fondacci C, Marotte F, Rappaport L (1993)
Laminin variants and integrin laminin receptors in developing and adult
human smooth muscle. Dev Biol 157:437-447. https://doi.org/10.1006/dbio.
1993.1147

Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG,
Sorokin L (2018) Molecular characterization of perivascular drainage
pathways in the murine brain. J Cereb Blood Flow Metab 38:669-686.
https://doi.org/10.1177/0271678X17749689

livanainen A, Kortesmaa J, Sahlberg C, Morita T, Bergmann U, Thesleff |,
Tryggvason K (1997) Primary structure, developmental expression, and
immunolocalization of the murine laminin alpha4 chain. J Biol Chem 272:
27862-27868. https://doi.org/10.1074/jbc.272.44.27862

JinR, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role
of inflammatory cells. J Leukoc Biol 87:779-789. https://doi.org/10.1189/jlb.
1109766

Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W (2012) Spatiotemporal evolution of
blood brain barrier damage and tissue infarction within the first 3h after
ischemia onset. Neurobiol Dis 48:309-316. https://doi.org/10.1016/j.nbd.
2012.07.007

Keep RF, Hua Y, Xi G (2012) Brain water content: a misunderstood
measurement? Trans| Stroke Res 3:263-265. https://doi.org/10.1007/512975-
012-0152-2

Kim J, Song TJ, Park JH, Lee HS, Nam CM, Nam HS, Kim YD, Heo JH (2012)
Different prognostic value of white blood cell subtypes in patients with
acute cerebral infarction. Atherosclerosis 222:464-467. https.//doi.org/10.
1016/j.atherosclerosis.2012.02.042

Kraft P, Gob E, Schuhmann MK, Gobel K, Deppermann C, Thielmann |,
Herrmann AM, Lorenz K, Brede M, Stoll G et al (2013) FTY720 ameliorates
acute ischemic stroke in mice by reducing thrombo-inflammation but not
by direct neuroprotection. Stroke 44:3202-3210. https://doi.org/10.1161/
STROKEAHA.113.002880

Krueger M, Hartig W, Reichenbach A, Bechmann |, Michalski D (2013) Blood-
brain barrier breakdown after embolic stroke in rats occurs without
ultrastructural evidence for disrupting tight junctions. PLoS One 8:256419.
https://doi.org/10.1371/journal.pone.0056419

Kumar AD, Boehme AK, Siegler JE, Gillette M, Albright KC, Martin-Schild S
(2013) Leukocytosis in patients with neurologic deterioration after acute
ischemic stroke is associated with poor outcomes. J Stroke Cerebrovasc Dis
22:e111-e117. https//doi.org/10.1016/jjstrokecerebrovasdis.2012.08.008
Li'Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with
intracarotid administration of marrow stromal cells. Neurology 56:1666—
1672. https://doi.org/10.1212/WNL.56.12.1666

Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory
lymphocytes in stroke: facts and controversies. Stroke 46:1422-1430. https:/
doi.org/10.1161/STROKEAHA.114.008608

Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder
D, Stegemann S, Cerwenka A et al (2011) Inhibition of lymphocyte
trafficking shields the brain against deleterious neuroinflammation after
stroke. Brain 134:704-720. https://doi.org/10.1093/brain/awr008

Liu F, Schafer DP, McCullough LD (2009) TTC, fluoro-Jade B and NeuN
staining confirm evolving phases of infarction induced by middle cerebral


https://doi.org/10.1007/s12975-010-0023-7
https://doi.org/10.1007/s12975-010-0023-7
https://doi.org/10.1016/j.neuron.2017.03.043
https://doi.org/10.1146/annurev-neuro-071714-033835
https://doi.org/10.1146/annurev-neuro-071714-033835
https://doi.org/10.1016/j.devcel.2011.07.001
https://doi.org/10.1038/nature09522
https://doi.org/10.4161/cam.22826
https://doi.org/10.4161/cam.22826
https://doi.org/10.1002/dneu.20954
https://doi.org/10.1016/j.neuron.2010.09.043
https://doi.org/10.1016/j.neuron.2010.09.043
https://doi.org/10.1038/nature11087nature11087
https://doi.org/10.1038/nature11087nature11087
https://doi.org/10.1038/nature13324
https://doi.org/10.1016/j.brainres.2007.02.078
https://doi.org/10.1161/STROKEAHA.107.490128
https://doi.org/10.1161/STROKEAHA.107.490128
https://doi.org/10.14336/AD.2017.0520
https://doi.org/10.1602/neurorx.2.3.396
https://doi.org/10.1161/STROKEAHA.109.551341
https://doi.org/10.1038/sj.jcbfm.9600034
https://doi.org/10.1016/j.tins.2015.08.003
https://doi.org/10.1016/j.tins.2015.08.003
https://doi.org/10.1038/nature09513
https://doi.org/10.1038/sj.jcbfm.9600298
https://doi.org/10.1038/sj.jcbfm.9600298
https://doi.org/10.1007/s00441-009-0838-2
https://doi.org/10.1007/s00441-009-0838-2
https://doi.org/10.3389/fnagi.2016.00029
https://doi.org/10.3389/fnagi.2016.00029
https://doi.org/10.7150/thno.24475
https://doi.org/10.1161/STROKEAHA.108.541128
https://doi.org/10.1161/STROKEAHA.108.541128
https://doi.org/10.1007/s12975-019-0688-5
https://doi.org/10.1007/s12975-019-0688-5
https://doi.org/10.1038/srep36450
https://doi.org/10.1038/srep36450
https://doi.org/10.1007/978-3-319-18497-5_7
https://doi.org/10.1006/dbio.1993.1147
https://doi.org/10.1006/dbio.1993.1147
https://doi.org/10.1177/0271678X17749689
https://doi.org/10.1074/jbc.272.44.27862
https://doi.org/10.1189/jlb.1109766
https://doi.org/10.1189/jlb.1109766
https://doi.org/10.1016/j.nbd.2012.07.007
https://doi.org/10.1016/j.nbd.2012.07.007
https://doi.org/10.1007/s12975-012-0152-2
https://doi.org/10.1007/s12975-012-0152-2
https://doi.org/10.1016/j.atherosclerosis.2012.02.042
https://doi.org/10.1016/j.atherosclerosis.2012.02.042
https://doi.org/10.1161/STROKEAHA.113.002880
https://doi.org/10.1161/STROKEAHA.113.002880
https://doi.org/10.1371/journal.pone.0056419
https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.08.008
https://doi.org/10.1212/WNL.56.12.1666
https://doi.org/10.1161/STROKEAHA.114.008608
https://doi.org/10.1161/STROKEAHA.114.008608
https://doi.org/10.1093/brain/awr008

Nirwane et al. Acta Neuropathologica Communications

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

(2019) 7:23

artery occlusion. J Neurosci Methods 179:1-8. https://doi.org/10.1016/j.
jneumeth.2008.12.028

Macleod MR, Fisher M, O'Collins V, Sena ES, Dirnagl U, Bath PM, Buchan A,
van der Worp HB, Traystman R, Minematsu K et al (2009) Good laboratory
practice: preventing introduction of bias at the bench. Stroke 40:e50-e52.
https://doi.org/10.1161/STROKEAHA.108.525386

McBride DW, Klebe D, Tang J, Zhang JH (2015) Correcting for brain
swelling's effects on infarct volume calculation after middle cerebral artery
occlusion in rats. Trans| Stroke Res 6:323-338. https://doi.org/10.1007/
$12975-015-0400-3

McColl BW, Carswell HV, McCulloch J, Horsburgh K (2004) Extension of
cerebral hypoperfusion and ischaemic pathology beyond MCA territory
after intraluminal filament occlusion in C57BI/6J mice. Brain Res 997:15-23.
https://doi.org/10.1016/j.brainres.2003.10.028

McLean SE, Mecham BH, Kelleher CM, Mariani TJ, Mecham RP (2005)
Extracellular matrix gene expression in the developing mouse aorta. Adv
Dev Biol 15:81-128. https.//doi.org/10.1016/51574-3349(05)15003-0

Miner JH, Lewis RM, Sanes JR (1995) Molecular cloning of a novel laminin
chain, alpha 5, and widespread expression in adult mouse tissues. J Biol
Chem 270:28523-28526. https://doi.org/10.1074/jbc.270.48.28523

Miner JH, Patton BL, Lentz S, Gilbert DJ, Snider WD, Jenkins NA, Copeland
NG, Sanes JR (1997) The laminin alpha chains: expression, developmental
transitions, and chromosomal locations of alphal-5, identification of
heterotrimeric laminins 8-11, and cloning of a novel alpha3 isoform. J Cell
Biol 137:685-701. https://doi.org/10.1083/jcb.137.3.685

Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga
AW, Jacobs RE, Liu CY, Amezcua L et al (2015) Blood-brain barrier
breakdown in the aging human hippocampus. Neuron 85:296-302. https.//
doi.org/10.1016/j.neuron.2014.12.032

Morris GP, Wright AL, Tan RP, Gladbach A, Ittner LM, Vissel B (2016) A
comparative study of variables influencing ischemic injury in the longa and
Koizumi methods of intraluminal filament middle cerebral artery occlusion
in mice. PLoS One 11:¢0148503. https.//doi.org/10.1371/journal.pone.
0148503

Nguyen NM, Kelley DG, Schlueter JA, Meyer MJ, Senior RM, Miner JH (2005)
Epithelial laminin alpha5 is necessary for distal epithelial cell maturation,
VEGF production, and alveolization in the developing murine lung. Dev Biol
282:111-125. https;//doi.org/10.1016/j.ydbio.2005.02.031

Nirwane A, Yao Y (2019) Laminins and their receptors in the CNS. Biol Rev
Camb Philos Soc 94:283-306. https://doi.org/10.1111/brv.12454

Petajaniemi N, Korhonen M, Kortesmaa J, Tryggvason K, Sekiguchi K,
Fujiwara H, Sorokin L, Thornell LE, Wondimu Z, Assefa D et al (2002)
Localization of laminin alpha4-chain in developing and adult human tissues.
J Histochem Cytochem 50:1113-1130. https.//doi.org/10.1177/
002215540205000813

Renolleau S, Aggoun-Zouaoui D, Ben-Ari Y, Charriaut-Marlangue C (1998) A
model of transient unilateral focal ischemia with reperfusion in the P7
neonatal rat: morphological changes indicative of apoptosis. Stroke 29:
1454-1460. https.//doi.org/10.1161/01.5TR.29.7.1454

Roberts J, de Hoog L, Bix GJ (2017) Mice deficient in endothelial a5 integrin
are profoundly resistant to experimental ischemic stroke. J Cereb Blood
Flow Metab 37:85-96. https://doi.org/10.1177/0271678X15616979

Ross AM, Hurn P, Perrin N, Wood L, Carlini W, Potempa K (2007) Evidence of
the peripheral inflammatory response in patients with transient ischemic
attack. J Stroke Cerebrovasc Dis 16:203-207. https://doi.org/10.1016/j.
jstrokecerebrovasdis.2007.05.002

Rousselet E, Kriz J, Seidah NG (2012) Mouse model of intraluminal MCAO:
cerebral infarct evaluation by cresyl violet staining. J Vis Exp:e4038. https//
doi.org/10.3791/4038

Sa-Pereira |, Brites D, Brito MA (2012) Neurovascular unit: a focus on
pericytes. Mol Neurobiol 45:327-347. https://doi.org/10.1007/512035-012-
8244-2

Schaar KL, Brenneman MM, Savitz SI (2010) Functional assessments in the
rodent stroke model. Exp Trans| Stroke Med 2:13. https://doi.org/10.1186/
2040-7378-2-13

Schmued LC, Stowers CC, Scallet AC, Xu L (2005) Fluoro-Jade C results in
ultra high resolution and contrast labeling of degenerating neurons. Brain
Res 1035:24-31. https://doi.org/10.1016/j.brainres.2004.11.054

Segel GB, Halterman MW, Lichtman MA (2011) The paradox of the
neutrophil's role in tissue injury. J Leukoc Biol 89:359-372. https://doi.org/10.
1189/j1b.0910538

62.

63.

64.

65.

66.

67.

68.

69.

70.

71,

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

Page 17 of 18

Sena ES, van der Worp HB, Bath PM, Howells DW, Macleod MR (2010)
Publication bias in reports of animal stroke studies leads to major
overstatement of efficacy. PLoS Biol 8:21000344. https://doi.org/10.1371/
journal.pbio.1000344

Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM (2001)
Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell
recruitment across the blood-brain barrier in experimental autoimmune
encephalomyelitis. J Cell Biol 153:933-946. https://doi.org/10.1083/jcb.153.5.933
Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, Li L, Litke-Enking
S, Zarbock A, Stadtmann A et al (2017) Endothelial basement membrane
laminin 511 contributes to endothelial junctional tightness and thereby
inhibits leukocyte transmigration. Cell Rep 18:1256-1269. https://doi.org/10.
1016/j.celrep.2016.12.092

Sorokin LM, Pausch F, Durbeej M, Ekblom P (1997) Differential expression of
five laminin alpha (1-5) chains in developing and adult mouse kidney. Dev
Dyn 210:446-462. https;//doi.org/10.1002/(SICI)1097-0177(199712)210:4<446:
AID-AJA8>3.0.CO2-G

Sorokin LM, Pausch F, Frieser M, Kroger S, Ohage E, Deutzmann R (1997)
Developmental regulation of the laminin alpha5 chain suggests a role in
epithelial and endothelial cell maturation. Dev Biol 189:285-300. https://doi.
0rg/10.1006/dbio.1997.8668

Sussman ES, Connolly ES Jr (2013) Hemorrhagic transformation: a review of
the rate of hemorrhage in the major clinical trials of acute ischemic stroke.
Front Neurol 4:69. https://doi.org/10.3389/fneur.2013.00069

Thomsen MS, Routhe LJ, Moos T (2017) The vascular basement membrane
in the healthy and pathological brain. J Cereb Blood Flow Metab 37:3300-
3317. https://doi.org/10.1177/0271678X17722436

Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O (2007)
Long-term neuroblast migration along blood vessels in an area with
transient angiogenesis and increased vascularization after stroke. Stroke 38:
3032-3039. https://doi.org/10.1161/STROKEAHA.107.488445

Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, livanainen A, Sorokin L,
Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin alpha4 chain
leads to impaired microvessel maturation. Mol Cell Biol 22:1194-1202.
https://doi.org/10.1128/MCB.22.4.1194-1202.2002

van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O'Collins V,
Macleod MR (2010) Can animal models of disease reliably inform human
studies? PLoS Med 7:21000245. https://doi.org/10.1371/journal.pmed.
1000245

Villasenor R, Lampe J, Schwaninger M, Collin L (2018) Intracellular transport
and regulation of transcytosis across the blood-brain barrier. Cell Mol Life
Sci. https://doi.org/10.1007/s00018-018-2982-x

Wang J, Tsirka SE (2005) Tuftsin fragment 1-3 is beneficial when delivered
after the induction of intracerebral hemorrhage. Stroke 36:613-618. https://
doi.org/10.1161/01.STR.0000155729.12931.8f

Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, Robenek H,
Tryggvason K, Song J, Korpos E et al (2009) Endothelial basement
membrane laminin a5 selectively inhibits T lymphocyte extravasation into
the brain. Nat Med 15:519-527. https://doi.org/10.1038/nm.1957

Wu X, Reddy DS (2012) Integrins as receptor targets for neurological
disorders. Pharmacol Ther 134:68-81. https://doi.org/10.1016/j.pharmthera.
2011.12.008

Yang Y, Rosenberg GA (2011) Blood-brain barrier breakdown in acute and
chronic cerebrovascular disease. Stroke 42:3323-3328. https://doi.org/10.
1161/STROKEAHA.110.608257

Yao Y (2017) Laminin: loss-of-function studies. Cell Mol Life Sci 74:1095-
1115. https://doi.org/10.1007/500018-016-2381-0

Yao Y (2019) Basement membrane and stroke. J Cereb Blood Flow Metab
39:3-19. https://doi.org/10.1177/0271678X18801467

Yao Y, Chen ZL, Norris EH, Strickland S (2014) Astrocytic laminin regulates
pericyte differentiation and maintains blood brain barrier integrity. Nat
Commun 5(3413). https://doi.org/10.1038/ncomms4413

Yao Y, Tsirka SE (2012) The CCL2-CCR2 system affects the progression and
clearance of intracerebral hemorrhage. Glia 60:908-918. https://doi.org/10.
1002/glia.22323

Yousif LF, Di Russo J, Sorokin L (2013) Laminin isoforms in endothelial and
perivascular basement membranes. Cell Adhes Migr 7:101-110. https.//doi.
0rg/104161/cam.22680

Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV (2015) Establishment and
dysfunction of the blood-brain barrier. Cell 163:1064-1078. https.//doi.org/
10.1016/j.cell.2015.10.067


https://doi.org/10.1016/j.jneumeth.2008.12.028
https://doi.org/10.1016/j.jneumeth.2008.12.028
https://doi.org/10.1161/STROKEAHA.108.525386
https://doi.org/10.1007/s12975-015-0400-3
https://doi.org/10.1007/s12975-015-0400-3
https://doi.org/10.1016/j.brainres.2003.10.028
https://doi.org/10.1016/S1574-3349(05)15003-0
https://doi.org/10.1074/jbc.270.48.28523
https://doi.org/10.1083/jcb.137.3.685
https://doi.org/10.1016/j.neuron.2014.12.032
https://doi.org/10.1016/j.neuron.2014.12.032
https://doi.org/10.1371/journal.pone.0148503
https://doi.org/10.1371/journal.pone.0148503
https://doi.org/10.1016/j.ydbio.2005.02.031
https://doi.org/10.1111/brv.12454
https://doi.org/10.1177/002215540205000813
https://doi.org/10.1177/002215540205000813
https://doi.org/10.1161/01.STR.29.7.1454
https://doi.org/10.1177/0271678X15616979
https://doi.org/10.1016/j.jstrokecerebrovasdis.2007.05.002
https://doi.org/10.1016/j.jstrokecerebrovasdis.2007.05.002
https://doi.org/10.3791/4038
https://doi.org/10.3791/4038
https://doi.org/10.1007/s12035-012-8244-2
https://doi.org/10.1007/s12035-012-8244-2
https://doi.org/10.1186/2040-7378-2-13
https://doi.org/10.1186/2040-7378-2-13
https://doi.org/10.1016/j.brainres.2004.11.054
https://doi.org/10.1189/jlb.0910538
https://doi.org/10.1189/jlb.0910538
https://doi.org/10.1371/journal.pbio.1000344
https://doi.org/10.1371/journal.pbio.1000344
https://doi.org/10.1083/jcb.153.5.933
https://doi.org/10.1016/j.celrep.2016.12.092
https://doi.org/10.1016/j.celrep.2016.12.092
https://doi.org/10.1002/(SICI)1097-0177(199712)210:4<446::AID-AJA8>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0177(199712)210:4<446::AID-AJA8>3.0.CO;2-G
https://doi.org/10.1006/dbio.1997.8668
https://doi.org/10.1006/dbio.1997.8668
https://doi.org/10.3389/fneur.2013.00069
https://doi.org/10.1177/0271678X17722436
https://doi.org/10.1161/STROKEAHA.107.488445
https://doi.org/10.1128/MCB.22.4.1194-1202.2002
https://doi.org/10.1371/journal.pmed.1000245
https://doi.org/10.1371/journal.pmed.1000245
https://doi.org/10.1007/s00018-018-2982-x
https://doi.org/10.1161/01.STR.0000155729.12931.8f
https://doi.org/10.1161/01.STR.0000155729.12931.8f
https://doi.org/10.1038/nm.1957
https://doi.org/10.1016/j.pharmthera.2011.12.008
https://doi.org/10.1016/j.pharmthera.2011.12.008
https://doi.org/10.1161/STROKEAHA.110.608257
https://doi.org/10.1161/STROKEAHA.110.608257
https://doi.org/10.1007/s00018-016-2381-0
https://doi.org/10.1177/0271678X18801467
https://doi.org/10.1038/ncomms4413
https://doi.org/10.1002/glia.22323
https://doi.org/10.1002/glia.22323
https://doi.org/10.4161/cam.22680
https://doi.org/10.4161/cam.22680
https://doi.org/10.1016/j.cell.2015.10.067
https://doi.org/10.1016/j.cell.2015.10.067

Nirwane et al. Acta Neuropathologica Communications (2019) 7:23

82.

83.

Zlokovic BV (2008) The blood-brain barrier in health and chronic
neurodegenerative disorders. Neuron 57:178-201. https.//doi.org/10.1016/j.
neuron.2008.01.003

Zudaire E, Gambardella L, Kurcz C, Vermeren S (2011) A computational tool
for quantitative analysis of vascular networks. PLoS One 6:¢27385. https://
doi.org/10.1371/journal.pone.0027385

Page 18 of 18

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions k BMC



https://doi.org/10.1016/j.neuron.2008.01.003
https://doi.org/10.1016/j.neuron.2008.01.003
https://doi.org/10.1371/journal.pone.0027385
https://doi.org/10.1371/journal.pone.0027385

	Abstract
	Introduction
	Materials and methods
	Mice
	Middle cerebral artery occlusion (MCAO)
	Body weight loss and neurological function
	Brain sectioning
	Infarct volume and neuronal death
	BBB permeability
	Brain edema
	Immunofluorescence analyses
	Image analyses
	Brain mural cell isolation
	Transmission electron microscopy (TEM)
	Western blotting
	Statistical analyses

	Results
	Laminin-α5 is indeed abrogated in mural cells in α5-PKO mice
	Brain angioarchitecture is unaffected in α5-PKO mice under homeostatic conditions
	BBB integrity and cerebral blood flow (CBF) are unchanged in α5-PKO mice under homeostatic conditions
	TJP expression and tight junction structure are unaltered in α5-PKO mice under homeostatic conditions
	Pericyte coverage and astrocyte polarity are unaltered in α5-PKO mice under homeostatic conditions
	α5-PKO mice have smaller infarct volume and improved neurological function after ischemia-reperfusion injury
	α5-PKO mice have reduced neuronal death after ischemia-reperfusion injury
	α5-PKO mice have milder BBB disruption after ischemia-reperfusion injury
	α5-PKO mice have decreased inflammatory cell infiltration after ischemia-reperfusion injury
	α5-PKO mice have less severe TJP loss after ischemia-reperfusion injury
	α5-PKO mice have less severe pericyte coverage reduction after ischemia-reperfusion injury
	Astrocyte polarity is unaffected in α5-PKO mice after ischemia-reperfusion injury
	α5-PKO mice have diminished brain edema after ischemia-reperfusion injury
	α5-PKO mice have alleviated hemorrhagic transformation after ischemia-reperfusion injury

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

